Key not found in a HashMap for a composite object - java

So, I made my own composite key in Java with 3 members
public class MyOwnKey{
int location;
int length;
String [] tokens;
}
Now I create two objects using the constructor
String [] tokens = "Stackoverflow is great".split("\\s+");
Object key1 = new MyOwnKey(0,0,tokens)
tokens = "Web is great".split("\\s+");
Object key2 = new MyOwnKey(0,0,tokens)
Now, I add the key in HashMap
HashMap map = new HashMap();
map.put(key1,1);
Now, this is the problem
when I do contains key, it gives false;
**map.containsKey(key2) //returns false whereas it should return true.**
Just so that it makes sense:
key1.equals(key2) returns true
and the hashcode codes are also equal. key1.hashCode() == key2.hashCode().
I have implemeneted my own version of hashCode, toEquals() and toCompare().
Not sure what's the problem.
Here is the code
import java.io.DataOutput;
import java.io.DataInput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
public class PatternGeneratorKey implements WritableComparable<Object> {
private String [] tokens;
int location;
int length;
StringBuffer _toString = null;
public PatternGeneratorKey(){
tokens = new String[1];
location =0;
length=1;
}
public PatternGeneratorKey(int location, int length, String [] tokens){
this.location = location;
this.length = length;
this.tokens= new String[tokens.length];
for(int i = 0; i < tokens.length;i++){
this.tokens[i] = tokens[i];
}
}
public int compareTo(Object o) {
if (!(o instanceof PatternGeneratorKey))
return -1;
return this.compareTo((PatternGeneratorKey) o);
}
public void write(DataOutput out) throws IOException {
out.writeInt(tokens.length);
for(int i = 0; i<tokens.length;i++){
out.writeUTF(tokens[i]);
}
out.writeInt(location);
out.writeInt(length);
}
public void readFields(DataInput in) throws IOException {
int l = in.readInt();
tokens = new String[l];
for(int i = 0; i < l ; i++){
tokens[i] = in.readUTF();
}
location = in.readInt();
length = in.readInt();
}
public int compareTo(PatternGeneratorKey k) {
if(this.tokens.length - this.length != k.tokens.length - k.length){
return this.tokens.length - this.length -( k.tokens.length - k.length);
}
if(this.location != k.location){
return this.location - k.location;
}
int i = 0 , j= 0;
for(i = 0, j=0 ; i < this.tokens.length && j < k.tokens.length;){
if(i == this.location ){
i = i + length;
continue;
}
if( j == k.location){
j = j + k.length;
continue;
}
if(!this.tokens[i].equalsIgnoreCase(k.tokens[j])){
return this.tokens[i].compareTo(k.tokens[j]);
}else{
i++;
j++;
}
}
//TODO: add comparison on left out phrase
return 0;
}
public int hashCode() {
int hashCode=0;
for(int i = 0; i < tokens.length;){
if(i == location ){
i = i + length;
continue;
}
hashCode += tokens[i++].hashCode();
}
hashCode+= location + tokens.length;
return hashCode;
}
public String toString(){
if(_toString == null){
_toString = new StringBuffer();
for(int k = 0; k < tokens.length ;k++){
if(k==location){
_toString.append(":").append(" ");
k=k+length-1;
}else{
_toString.append(tokens[k]).append(" ");
}
}
}
return _toString.toString();
}
public boolean equals(PatternGeneratorKey k) {
if(this.tokens.length - this.length == k.tokens.length - k.length
&& this.location == k.location){
//assume second one is larger
String tokens[] = k.tokens;
int length = k.length;
int location = k.location;
String [] tokens1 = this.tokens;
int length1 = this.length;
int location1 = this.location;
//make the local variable point to the largest of the two
if( this.tokens.length > k.tokens.length){
tokens = this.tokens;
length = this.length;
location = this.location;
tokens1 = k.tokens;
length1 = k.length;
location1 = k.location;
}
int i = 0 , j= 0;
for(i = 0, j=0 ; i < tokens.length;){
if(i == location ){
i = i + length;
continue;
}
// if( j >= location1 && j<= location1 + length1 -1){
if( j == location1){
j = j + length1;
continue;
}
if(!tokens[i++].equalsIgnoreCase(tokens1[j++])){
return false;
}
}
return true;
}else{
return false;
}
}
}
And, this is the code I am testing on
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.apache.hadoop.io.Text;
public class Test {
/**
* #param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
String value = "gm used cars";
// Compile all the words using regex
String[] tokens = value.toString().split("\\s+");
//to find pattern we need atleast two words in the query
if(tokens.length <=1){
return;
}
Map<PatternGeneratorKey,List> map = new HashMap<PatternGeneratorKey, List>();
for(int l = 1 ; l < tokens.length; l++){
for(int i = 0 ; i < tokens.length - (l-1); i++){
String hit = new String(getPhrase(l, i, tokens));
PatternGeneratorKey key1 = new PatternGeneratorKey(i, l, tokens);
List list = null;
for(int k = 0;k< tokens.length;k++){
System.out.println("i:" + i + ",l:" + l + ",tokens:" + tokens[k]);
}
System.out.println("hashcode:" + key1.hashCode());
if(!map.containsKey(key1)){
list = new ArrayList<String>();
map.put(key1, list);
}else{
list = (List) map.get(key1);
}
list.add(hit);
}
}
value = "ford used cars";
String[] tokens2= value.toString().split("\\s+");
PatternGeneratorKey key2 = new PatternGeneratorKey(0, 1, tokens);
//run a sliding window for length 1 to tokens length -1
for(int l = 1 ; l < tokens2.length; l++){
//genereate token pairs with sliding window.
for(int i = 0 ; i < tokens2.length - (l-1); i++){
//hit a single token or a + b if there are two.
String hit = new String(getPhrase(l, i, tokens2));
PatternGeneratorKey key1 = new PatternGeneratorKey(i, l, tokens2);
System.out.println();
System.out.println(key1.toString() + "|" + key2.toString() + "|"+ key1.equals(key2));
for(int k = 0;k< tokens2.length;k++){
System.out.println("i:" + i + ",l:" + l + ",tokens:" + tokens2[k]);
}
System.out.println("hashcode:" + key1.hashCode());
List list = null;
if(!map.containsKey(key1)){
list = new ArrayList<String>();
map.put(key1, list);
}else{
list = (List) map.get(key1);
}
list.add(hit);
}
}
value = "ford used cars";
tokens= value.toString().split("\\s+");
PatternGeneratorKey key1 = new PatternGeneratorKey(0,1,tokens);
tokens2 = "gm used cars".split("\\s+");
key2 = new PatternGeneratorKey(0,1,tokens2);
System.out.println(key1.equals(key2));
System.out.println(key2.equals(key1));
System.out.println(key1.hashCode() );
System.out.println(key2.hashCode() );
System.out.println(map);
}
private static String getPhrase(int l, int i, String[] tokens){
StringBuffer strin = new StringBuffer();
int index = 0;
for(index = i ; index < i+l;index++){
if(index < i+l-1){
strin.append(tokens[index]).append("+");
}
else
{
strin.append(tokens[index]);
}
}
return strin.toString();
}
}

Your problem is caused by the fact that equals(PatternGeneratorKey) doesn't override equals(Object) (but it overloads equals(Object), so that key1.equals(key2) returns true when key1 and key2 are variables of type PatternGeneratorKey!).
Since HashMap calls equals(Object) to check keys for equality, your method never gets called, so you need to implement equals(Object) instead.

You have a bug in either hashCode() or equals(). Show us the code.
Wild guess: in your code key1.equals(key2) doesn't mean key2.equals(key1).

You created an overload for equals(MyOwnKey) instead of overriding equals(Object).
Use the #Override annotation on equals() and hashCode(). It will catch this fairly common error at compile time.

HashMap#containsKey overrides AbstractMap#containsKey - so there's a subtle difference in the way that the condition:
"Returns true if and only if this map contains a mapping for a key k such that (key==null ? k==null : key.equals(k))"
is implemented.
For a subclass of AbstractMap which doesn't override containsKey() then you may well be able to get away with just implementing equals() correctly. However, for a HashMap, you need to have the implementation of hashCode() correct and satisfying the appropriate identity as well.
In any case - show us the code.

You haven't actually implemented equals.
public boolean equals(PatternGeneratorKey k) {
is not what HashMap uses. It's looking for public boolean equals(Object obj) {}

Related

Efficient/Fast way to get permutation of a String in java [duplicate]

What is an elegant way to find all the permutations of a string. E.g. permutation for ba, would be ba and ab, but what about longer string such as abcdefgh? Is there any Java implementation example?
public static void permutation(String str) {
permutation("", str);
}
private static void permutation(String prefix, String str) {
int n = str.length();
if (n == 0) System.out.println(prefix);
else {
for (int i = 0; i < n; i++)
permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
}
}
(via Introduction to Programming in Java)
Use recursion.
Try each of the letters in turn as the first letter and then find all the permutations of the remaining letters using a recursive call.
The base case is when the input is an empty string the only permutation is the empty string.
Here is my solution that is based on the idea of the book "Cracking the Coding Interview" (P54):
/**
* List permutations of a string.
*
* #param s the input string
* #return the list of permutations
*/
public static ArrayList<String> permutation(String s) {
// The result
ArrayList<String> res = new ArrayList<String>();
// If input string's length is 1, return {s}
if (s.length() == 1) {
res.add(s);
} else if (s.length() > 1) {
int lastIndex = s.length() - 1;
// Find out the last character
String last = s.substring(lastIndex);
// Rest of the string
String rest = s.substring(0, lastIndex);
// Perform permutation on the rest string and
// merge with the last character
res = merge(permutation(rest), last);
}
return res;
}
/**
* #param list a result of permutation, e.g. {"ab", "ba"}
* #param c the last character
* #return a merged new list, e.g. {"cab", "acb" ... }
*/
public static ArrayList<String> merge(ArrayList<String> list, String c) {
ArrayList<String> res = new ArrayList<>();
// Loop through all the string in the list
for (String s : list) {
// For each string, insert the last character to all possible positions
// and add them to the new list
for (int i = 0; i <= s.length(); ++i) {
String ps = new StringBuffer(s).insert(i, c).toString();
res.add(ps);
}
}
return res;
}
Running output of string "abcd":
Step 1: Merge [a] and b:
[ba, ab]
Step 2: Merge [ba, ab] and c:
[cba, bca, bac, cab, acb, abc]
Step 3: Merge [cba, bca, bac, cab, acb, abc] and d:
[dcba, cdba, cbda, cbad, dbca, bdca, bcda, bcad, dbac, bdac, badc, bacd, dcab, cdab, cadb, cabd, dacb, adcb, acdb, acbd, dabc, adbc, abdc, abcd]
Of all the solutions given here and in other forums, I liked Mark Byers the most. That description actually made me think and code it myself.
Too bad I cannot voteup his solution as I am newbie.
Anyways here is my implementation of his description
public class PermTest {
public static void main(String[] args) throws Exception {
String str = "abcdef";
StringBuffer strBuf = new StringBuffer(str);
doPerm(strBuf,0);
}
private static void doPerm(StringBuffer str, int index){
if(index == str.length())
System.out.println(str);
else { //recursively solve this by placing all other chars at current first pos
doPerm(str, index+1);
for (int i = index+1; i < str.length(); i++) {//start swapping all other chars with current first char
swap(str,index, i);
doPerm(str, index+1);
swap(str,i, index);//restore back my string buffer
}
}
}
private static void swap(StringBuffer str, int pos1, int pos2){
char t1 = str.charAt(pos1);
str.setCharAt(pos1, str.charAt(pos2));
str.setCharAt(pos2, t1);
}
}
I prefer this solution ahead of the first one in this thread because this solution uses StringBuffer. I wouldn't say my solution doesn't create any temporary string (it actually does in system.out.println where the toString() of StringBuffer is called). But I just feel this is better than the first solution where too many string literals are created. May be some performance guy out there can evalute this in terms of 'memory' (for 'time' it already lags due to that extra 'swap')
A very basic solution in Java is to use recursion + Set ( to avoid repetitions ) if you want to store and return the solution strings :
public static Set<String> generatePerm(String input)
{
Set<String> set = new HashSet<String>();
if (input == "")
return set;
Character a = input.charAt(0);
if (input.length() > 1)
{
input = input.substring(1);
Set<String> permSet = generatePerm(input);
for (String x : permSet)
{
for (int i = 0; i <= x.length(); i++)
{
set.add(x.substring(0, i) + a + x.substring(i));
}
}
}
else
{
set.add(a + "");
}
return set;
}
All the previous contributors have done a great job explaining and providing the code. I thought I should share this approach too because it might help someone too. The solution is based on (heaps' algorithm )
Couple of things:
Notice the last item which is depicted in the excel is just for helping you better visualize the logic. So, the actual values in the last column would be 2,1,0 (if we were to run the code because we are dealing with arrays and arrays start with 0).
The swapping algorithm happens based on even or odd values of current position. It's very self explanatory if you look at where the swap method is getting called.You can see what's going on.
Here is what happens:
public static void main(String[] args) {
String ourword = "abc";
String[] ourArray = ourword.split("");
permute(ourArray, ourArray.length);
}
private static void swap(String[] ourarray, int right, int left) {
String temp = ourarray[right];
ourarray[right] = ourarray[left];
ourarray[left] = temp;
}
public static void permute(String[] ourArray, int currentPosition) {
if (currentPosition == 1) {
System.out.println(Arrays.toString(ourArray));
} else {
for (int i = 0; i < currentPosition; i++) {
// subtract one from the last position (here is where you are
// selecting the the next last item
permute(ourArray, currentPosition - 1);
// if it's odd position
if (currentPosition % 2 == 1) {
swap(ourArray, 0, currentPosition - 1);
} else {
swap(ourArray, i, currentPosition - 1);
}
}
}
}
Let's use input abc as an example.
Start off with just the last element (c) in a set (["c"]), then add the second last element (b) to its front, end and every possible positions in the middle, making it ["bc", "cb"] and then in the same manner it will add the next element from the back (a) to each string in the set making it:
"a" + "bc" = ["abc", "bac", "bca"] and "a" + "cb" = ["acb" ,"cab", "cba"]
Thus entire permutation:
["abc", "bac", "bca","acb" ,"cab", "cba"]
Code:
public class Test
{
static Set<String> permutations;
static Set<String> result = new HashSet<String>();
public static Set<String> permutation(String string) {
permutations = new HashSet<String>();
int n = string.length();
for (int i = n - 1; i >= 0; i--)
{
shuffle(string.charAt(i));
}
return permutations;
}
private static void shuffle(char c) {
if (permutations.size() == 0) {
permutations.add(String.valueOf(c));
} else {
Iterator<String> it = permutations.iterator();
for (int i = 0; i < permutations.size(); i++) {
String temp1;
for (; it.hasNext();) {
temp1 = it.next();
for (int k = 0; k < temp1.length() + 1; k += 1) {
StringBuilder sb = new StringBuilder(temp1);
sb.insert(k, c);
result.add(sb.toString());
}
}
}
permutations = result;
//'result' has to be refreshed so that in next run it doesn't contain stale values.
result = new HashSet<String>();
}
}
public static void main(String[] args) {
Set<String> result = permutation("abc");
System.out.println("\nThere are total of " + result.size() + " permutations:");
Iterator<String> it = result.iterator();
while (it.hasNext()) {
System.out.println(it.next());
}
}
}
This one is without recursion
public static void permute(String s) {
if(null==s || s.isEmpty()) {
return;
}
// List containing words formed in each iteration
List<String> strings = new LinkedList<String>();
strings.add(String.valueOf(s.charAt(0))); // add the first element to the list
// Temp list that holds the set of strings for
// appending the current character to all position in each word in the original list
List<String> tempList = new LinkedList<String>();
for(int i=1; i< s.length(); i++) {
for(int j=0; j<strings.size(); j++) {
tempList.addAll(merge(s.charAt(i), strings.get(j)));
}
strings.removeAll(strings);
strings.addAll(tempList);
tempList.removeAll(tempList);
}
for(int i=0; i<strings.size(); i++) {
System.out.println(strings.get(i));
}
}
/**
* helper method that appends the given character at each position in the given string
* and returns a set of such modified strings
* - set removes duplicates if any(in case a character is repeated)
*/
private static Set<String> merge(Character c, String s) {
if(s==null || s.isEmpty()) {
return null;
}
int len = s.length();
StringBuilder sb = new StringBuilder();
Set<String> list = new HashSet<String>();
for(int i=0; i<= len; i++) {
sb = new StringBuilder();
sb.append(s.substring(0, i) + c + s.substring(i, len));
list.add(sb.toString());
}
return list;
}
Well here is an elegant, non-recursive, O(n!) solution:
public static StringBuilder[] permutations(String s) {
if (s.length() == 0)
return null;
int length = fact(s.length());
StringBuilder[] sb = new StringBuilder[length];
for (int i = 0; i < length; i++) {
sb[i] = new StringBuilder();
}
for (int i = 0; i < s.length(); i++) {
char ch = s.charAt(i);
int times = length / (i + 1);
for (int j = 0; j < times; j++) {
for (int k = 0; k < length / times; k++) {
sb[j * length / times + k].insert(k, ch);
}
}
}
return sb;
}
One of the simple solution could be just keep swapping the characters recursively using two pointers.
public static void main(String[] args)
{
String str="abcdefgh";
perm(str);
}
public static void perm(String str)
{ char[] char_arr=str.toCharArray();
helper(char_arr,0);
}
public static void helper(char[] char_arr, int i)
{
if(i==char_arr.length-1)
{
// print the shuffled string
String str="";
for(int j=0; j<char_arr.length; j++)
{
str=str+char_arr[j];
}
System.out.println(str);
}
else
{
for(int j=i; j<char_arr.length; j++)
{
char tmp = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp;
helper(char_arr,i+1);
char tmp1 = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp1;
}
}
}
python implementation
def getPermutation(s, prefix=''):
if len(s) == 0:
print prefix
for i in range(len(s)):
getPermutation(s[0:i]+s[i+1:len(s)],prefix+s[i] )
getPermutation('abcd','')
This is what I did through basic understanding of Permutations and Recursive function calling. Takes a bit of time but it's done independently.
public class LexicographicPermutations {
public static void main(String[] args) {
// TODO Auto-generated method stub
String s="abc";
List<String>combinations=new ArrayList<String>();
combinations=permutations(s);
Collections.sort(combinations);
System.out.println(combinations);
}
private static List<String> permutations(String s) {
// TODO Auto-generated method stub
List<String>combinations=new ArrayList<String>();
if(s.length()==1){
combinations.add(s);
}
else{
for(int i=0;i<s.length();i++){
List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
for (String string : temp) {
combinations.add(s.charAt(i)+string);
}
}
}
return combinations;
}}
which generates Output as [abc, acb, bac, bca, cab, cba].
Basic logic behind it is
For each character, consider it as 1st character & find the combinations of remaining characters. e.g. [abc](Combination of abc)->.
a->[bc](a x Combination of (bc))->{abc,acb}
b->[ac](b x Combination of (ac))->{bac,bca}
c->[ab](c x Combination of (ab))->{cab,cba}
And then recursively calling each [bc],[ac] & [ab] independently.
Use recursion.
when the input is an empty string the only permutation is an empty string.Try for each of the letters in the string by making it as the first letter and then find all the permutations of the remaining letters using a recursive call.
import java.util.ArrayList;
import java.util.List;
class Permutation {
private static List<String> permutation(String prefix, String str) {
List<String> permutations = new ArrayList<>();
int n = str.length();
if (n == 0) {
permutations.add(prefix);
} else {
for (int i = 0; i < n; i++) {
permutations.addAll(permutation(prefix + str.charAt(i), str.substring(i + 1, n) + str.substring(0, i)));
}
}
return permutations;
}
public static void main(String[] args) {
List<String> perms = permutation("", "abcd");
String[] array = new String[perms.size()];
for (int i = 0; i < perms.size(); i++) {
array[i] = perms.get(i);
}
int x = array.length;
for (final String anArray : array) {
System.out.println(anArray);
}
}
}
this worked for me..
import java.util.Arrays;
public class StringPermutations{
public static void main(String args[]) {
String inputString = "ABC";
permute(inputString.toCharArray(), 0, inputString.length()-1);
}
public static void permute(char[] ary, int startIndex, int endIndex) {
if(startIndex == endIndex){
System.out.println(String.valueOf(ary));
}else{
for(int i=startIndex;i<=endIndex;i++) {
swap(ary, startIndex, i );
permute(ary, startIndex+1, endIndex);
swap(ary, startIndex, i );
}
}
}
public static void swap(char[] ary, int x, int y) {
char temp = ary[x];
ary[x] = ary[y];
ary[y] = temp;
}
}
Java implementation without recursion
public Set<String> permutate(String s){
Queue<String> permutations = new LinkedList<String>();
Set<String> v = new HashSet<String>();
permutations.add(s);
while(permutations.size()!=0){
String str = permutations.poll();
if(!v.contains(str)){
v.add(str);
for(int i = 0;i<str.length();i++){
String c = String.valueOf(str.charAt(i));
permutations.add(str.substring(i+1) + c + str.substring(0,i));
}
}
}
return v;
}
Let me try to tackle this problem with Kotlin:
fun <T> List<T>.permutations(): List<List<T>> {
//escape case
if (this.isEmpty()) return emptyList()
if (this.size == 1) return listOf(this)
if (this.size == 2) return listOf(listOf(this.first(), this.last()), listOf(this.last(), this.first()))
//recursive case
return this.flatMap { lastItem ->
this.minus(lastItem).permutations().map { it.plus(lastItem) }
}
}
Core concept: Break down long list into smaller list + recursion
Long answer with example list [1, 2, 3, 4]:
Even for a list of 4 it already kinda get's confusing trying to list all the possible permutations in your head, and what we need to do is exactly to avoid that. It is easy for us to understand how to make all permutations of list of size 0, 1, and 2, so all we need to do is break them down to any of those sizes and combine them back up correctly. Imagine a jackpot machine: this algorithm will start spinning from the right to the left, and write down
return empty/list of 1 when list size is 0 or 1
handle when list size is 2 (e.g. [3, 4]), and generate the 2 permutations ([3, 4] & [4, 3])
For each item, mark that as the last in the last, and find all the permutations for the rest of the item in the list. (e.g. put [4] on the table, and throw [1, 2, 3] into permutation again)
Now with all permutation it's children, put itself back to the end of the list (e.g.: [1, 2, 3][,4], [1, 3, 2][,4], [2, 3, 1][, 4], ...)
import java.io.IOException;
import java.util.ArrayList;
import java.util.Scanner;
public class hello {
public static void main(String[] args) throws IOException {
hello h = new hello();
h.printcomp();
}
int fact=1;
public void factrec(int a,int k){
if(a>=k)
{fact=fact*k;
k++;
factrec(a,k);
}
else
{System.out.println("The string will have "+fact+" permutations");
}
}
public void printcomp(){
String str;
int k;
Scanner in = new Scanner(System.in);
System.out.println("enter the string whose permutations has to b found");
str=in.next();
k=str.length();
factrec(k,1);
String[] arr =new String[fact];
char[] array = str.toCharArray();
while(p<fact)
printcomprec(k,array,arr);
// if incase u need array containing all the permutation use this
//for(int d=0;d<fact;d++)
//System.out.println(arr[d]);
}
int y=1;
int p = 0;
int g=1;
int z = 0;
public void printcomprec(int k,char array[],String arr[]){
for (int l = 0; l < k; l++) {
for (int b=0;b<k-1;b++){
for (int i=1; i<k-g; i++) {
char temp;
String stri = "";
temp = array[i];
array[i] = array[i + g];
array[i + g] = temp;
for (int j = 0; j < k; j++)
stri += array[j];
arr[z] = stri;
System.out.println(arr[z] + " " + p++);
z++;
}
}
char temp;
temp=array[0];
array[0]=array[y];
array[y]=temp;
if (y >= k-1)
y=y-(k-1);
else
y++;
}
if (g >= k-1)
g=1;
else
g++;
}
}
/** Returns an array list containing all
* permutations of the characters in s. */
public static ArrayList<String> permute(String s) {
ArrayList<String> perms = new ArrayList<>();
int slen = s.length();
if (slen > 0) {
// Add the first character from s to the perms array list.
perms.add(Character.toString(s.charAt(0)));
// Repeat for all additional characters in s.
for (int i = 1; i < slen; ++i) {
// Get the next character from s.
char c = s.charAt(i);
// For each of the strings currently in perms do the following:
int size = perms.size();
for (int j = 0; j < size; ++j) {
// 1. remove the string
String p = perms.remove(0);
int plen = p.length();
// 2. Add plen + 1 new strings to perms. Each new string
// consists of the removed string with the character c
// inserted into it at a unique location.
for (int k = 0; k <= plen; ++k) {
perms.add(p.substring(0, k) + c + p.substring(k));
}
}
}
}
return perms;
}
Here is a straightforward minimalist recursive solution in Java:
public static ArrayList<String> permutations(String s) {
ArrayList<String> out = new ArrayList<String>();
if (s.length() == 1) {
out.add(s);
return out;
}
char first = s.charAt(0);
String rest = s.substring(1);
for (String permutation : permutations(rest)) {
out.addAll(insertAtAllPositions(first, permutation));
}
return out;
}
public static ArrayList<String> insertAtAllPositions(char ch, String s) {
ArrayList<String> out = new ArrayList<String>();
for (int i = 0; i <= s.length(); ++i) {
String inserted = s.substring(0, i) + ch + s.substring(i);
out.add(inserted);
}
return out;
}
We can use factorial to find how many strings started with particular letter.
Example: take the input abcd. (3!) == 6 strings will start with every letter of abcd.
static public int facts(int x){
int sum = 1;
for (int i = 1; i < x; i++) {
sum *= (i+1);
}
return sum;
}
public static void permutation(String str) {
char[] str2 = str.toCharArray();
int n = str2.length;
int permutation = 0;
if (n == 1) {
System.out.println(str2[0]);
} else if (n == 2) {
System.out.println(str2[0] + "" + str2[1]);
System.out.println(str2[1] + "" + str2[0]);
} else {
for (int i = 0; i < n; i++) {
if (true) {
char[] str3 = str.toCharArray();
char temp = str3[i];
str3[i] = str3[0];
str3[0] = temp;
str2 = str3;
}
for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
if (j != n-1) {
char temp1 = str2[j+1];
str2[j+1] = str2[j];
str2[j] = temp1;
} else {
char temp1 = str2[n-1];
str2[n-1] = str2[1];
str2[1] = temp1;
j = 1;
} // end of else block
permutation++;
System.out.print("permutation " + permutation + " is -> ");
for (int k = 0; k < n; k++) {
System.out.print(str2[k]);
} // end of loop k
System.out.println();
} // end of loop j
} // end of loop i
}
}
//insert each character into an arraylist
static ArrayList al = new ArrayList();
private static void findPermutation (String str){
for (int k = 0; k < str.length(); k++) {
addOneChar(str.charAt(k));
}
}
//insert one char into ArrayList
private static void addOneChar(char ch){
String lastPerStr;
String tempStr;
ArrayList locAl = new ArrayList();
for (int i = 0; i < al.size(); i ++ ){
lastPerStr = al.get(i).toString();
//System.out.println("lastPerStr: " + lastPerStr);
for (int j = 0; j <= lastPerStr.length(); j++) {
tempStr = lastPerStr.substring(0,j) + ch +
lastPerStr.substring(j, lastPerStr.length());
locAl.add(tempStr);
//System.out.println("tempStr: " + tempStr);
}
}
if(al.isEmpty()){
al.add(ch);
} else {
al.clear();
al = locAl;
}
}
private static void printArrayList(ArrayList al){
for (int i = 0; i < al.size(); i++) {
System.out.print(al.get(i) + " ");
}
}
//Rotate and create words beginning with all letter possible and push to stack 1
//Read from stack1 and for each word create words with other letters at the next location by rotation and so on
/* eg : man
1. push1 - man, anm, nma
2. pop1 - nma , push2 - nam,nma
pop1 - anm , push2 - amn,anm
pop1 - man , push2 - mna,man
*/
public class StringPermute {
static String str;
static String word;
static int top1 = -1;
static int top2 = -1;
static String[] stringArray1;
static String[] stringArray2;
static int strlength = 0;
public static void main(String[] args) throws IOException {
System.out.println("Enter String : ");
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader bfr = new BufferedReader(isr);
str = bfr.readLine();
word = str;
strlength = str.length();
int n = 1;
for (int i = 1; i <= strlength; i++) {
n = n * i;
}
stringArray1 = new String[n];
stringArray2 = new String[n];
push(word, 1);
doPermute();
display();
}
public static void push(String word, int x) {
if (x == 1)
stringArray1[++top1] = word;
else
stringArray2[++top2] = word;
}
public static String pop(int x) {
if (x == 1)
return stringArray1[top1--];
else
return stringArray2[top2--];
}
public static void doPermute() {
for (int j = strlength; j >= 2; j--)
popper(j);
}
public static void popper(int length) {
// pop from stack1 , rotate each word n times and push to stack 2
if (top1 > -1) {
while (top1 > -1) {
word = pop(1);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 2);
}
}
}
// pop from stack2 , rotate each word n times w.r.t position and push to
// stack 1
else {
while (top2 > -1) {
word = pop(2);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 1);
}
}
}
}
public static void rotate(int position) {
char[] charstring = new char[100];
for (int j = 0; j < word.length(); j++)
charstring[j] = word.charAt(j);
int startpos = strlength - position;
char temp = charstring[startpos];
for (int i = startpos; i < strlength - 1; i++) {
charstring[i] = charstring[i + 1];
}
charstring[strlength - 1] = temp;
word = new String(charstring).trim();
}
public static void display() {
int top;
if (top1 > -1) {
while (top1 > -1)
System.out.println(stringArray1[top1--]);
} else {
while (top2 > -1)
System.out.println(stringArray2[top2--]);
}
}
}
Another simple way is to loop through the string, pick the character that is not used yet and put it to a buffer, continue the loop till the buffer size equals to the string length. I like this back tracking solution better because:
Easy to understand
Easy to avoid duplication
The output is sorted
Here is the java code:
List<String> permute(String str) {
if (str == null) {
return null;
}
char[] chars = str.toCharArray();
boolean[] used = new boolean[chars.length];
List<String> res = new ArrayList<String>();
StringBuilder sb = new StringBuilder();
Arrays.sort(chars);
helper(chars, used, sb, res);
return res;
}
void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) {
if (sb.length() == chars.length) {
res.add(sb.toString());
return;
}
for (int i = 0; i < chars.length; i++) {
// avoid duplicates
if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) {
continue;
}
// pick the character that has not used yet
if (!used[i]) {
used[i] = true;
sb.append(chars[i]);
helper(chars, used, sb, res);
// back tracking
sb.deleteCharAt(sb.length() - 1);
used[i] = false;
}
}
}
Input str: 1231
Output list: {1123, 1132, 1213, 1231, 1312, 1321, 2113, 2131, 2311, 3112, 3121, 3211}
Noticed that the output is sorted, and there is no duplicate result.
Recursion is not necessary, even you can calculate any permutation directly, this solution uses generics to permute any array.
Here is a good information about this algorihtm.
For C# developers here is more useful implementation.
public static void main(String[] args) {
String word = "12345";
Character[] array = ArrayUtils.toObject(word.toCharArray());
long[] factorials = Permutation.getFactorials(array.length + 1);
for (long i = 0; i < factorials[array.length]; i++) {
Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
printPermutation(permutation);
}
}
private static void printPermutation(Character[] permutation) {
for (int i = 0; i < permutation.length; i++) {
System.out.print(permutation[i]);
}
System.out.println();
}
This algorithm has O(N) time and space complexity to calculate each permutation.
public class Permutation {
public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
T[] permutation = generatePermutation(array, sequence);
return permutation;
}
public static <T> T[] generatePermutation(T[] array, int[] sequence) {
T[] clone = array.clone();
for (int i = 0; i < clone.length - 1; i++) {
swap(clone, i, i + sequence[i]);
}
return clone;
}
private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
int[] sequence = new int[size];
for (int j = 0; j < sequence.length; j++) {
long factorial = factorials[sequence.length - j];
sequence[j] = (int) (permutationNumber / factorial);
permutationNumber = (int) (permutationNumber % factorial);
}
return sequence;
}
private static <T> void swap(T[] array, int i, int j) {
T t = array[i];
array[i] = array[j];
array[j] = t;
}
public static long[] getFactorials(int length) {
long[] factorials = new long[length];
long factor = 1;
for (int i = 0; i < length; i++) {
factor *= i <= 1 ? 1 : i;
factorials[i] = factor;
}
return factorials;
}
}
My implementation based on Mark Byers's description above:
static Set<String> permutations(String str){
if (str.isEmpty()){
return Collections.singleton(str);
}else{
Set <String> set = new HashSet<>();
for (int i=0; i<str.length(); i++)
for (String s : permutations(str.substring(0, i) + str.substring(i+1)))
set.add(str.charAt(i) + s);
return set;
}
}
Permutation of String:
public static void main(String args[]) {
permu(0,"ABCD");
}
static void permu(int fixed,String s) {
char[] chr=s.toCharArray();
if(fixed==s.length())
System.out.println(s);
for(int i=fixed;i<s.length();i++) {
char c=chr[i];
chr[i]=chr[fixed];
chr[fixed]=c;
permu(fixed+1,new String(chr));
}
}
Here is another simpler method of doing Permutation of a string.
public class Solution4 {
public static void main(String[] args) {
String a = "Protijayi";
per(a, 0);
}
static void per(String a , int start ) {
//bse case;
if(a.length() == start) {System.out.println(a);}
char[] ca = a.toCharArray();
//swap
for (int i = start; i < ca.length; i++) {
char t = ca[i];
ca[i] = ca[start];
ca[start] = t;
per(new String(ca),start+1);
}
}//per
}
A java implementation to print all the permutations of a given string considering duplicate characters and prints only unique characters is as follow:
import java.util.Set;
import java.util.HashSet;
public class PrintAllPermutations2
{
public static void main(String[] args)
{
String str = "AAC";
PrintAllPermutations2 permutation = new PrintAllPermutations2();
Set<String> uniqueStrings = new HashSet<>();
permutation.permute("", str, uniqueStrings);
}
void permute(String prefixString, String s, Set<String> set)
{
int n = s.length();
if(n == 0)
{
if(!set.contains(prefixString))
{
System.out.println(prefixString);
set.add(prefixString);
}
}
else
{
for(int i=0; i<n; i++)
{
permute(prefixString + s.charAt(i), s.substring(0,i) + s.substring(i+1,n), set);
}
}
}
}
String permutaions using Es6
Using reduce() method
const permutations = str => {
if (str.length <= 2)
return str.length === 2 ? [str, str[1] + str[0]] : [str];
return str
.split('')
.reduce(
(acc, letter, index) =>
acc.concat(permutations(str.slice(0, index) + str.slice(index + 1)).map(val => letter + val)),
[]
);
};
console.log(permutations('STR'));
In case anyone wants to generate the permutations to do something with them, instead of just printing them via a void method:
static List<int[]> permutations(int n) {
class Perm {
private final List<int[]> permutations = new ArrayList<>();
private void perm(int[] array, int step) {
if (step == 1) permutations.add(array.clone());
else for (int i = 0; i < step; i++) {
perm(array, step - 1);
int j = (step % 2 == 0) ? i : 0;
swap(array, step - 1, j);
}
}
private void swap(int[] array, int i, int j) {
int buffer = array[i];
array[i] = array[j];
array[j] = buffer;
}
}
int[] nVector = new int[n];
for (int i = 0; i < n; i++) nVector [i] = i;
Perm perm = new Perm();
perm.perm(nVector, n);
return perm.permutations;
}

Using compareTo to sort one array in ascending order

So I have to create an array of 5 chocolates, but I have to order them based on their quantities. I am not allowed to use the sort function.
import java.util.Scanner;
import java.util.Random;
public class Chocolate {
private String name;
private int quantity;
public Chocolate(String cName, int cQuantity) {
this.name = cName;
this.quantity = cQuantity;
}
public String getName() {
return name;
}
public int getQuantity() {
return quantity;
}
public int compareTo(Chocolate obj1){
if(this.quantity < obj1.quantity)
return -1;
else if (this.quantity > obj1.quantity)
return 1;
else
return 0;
}
public static void main(String args[]) {
Chocolate[] ch = new Chocolate[5];
Random rand = new Random();
Scanner scan = new Scanner(System.in);
String name;
int result;
int quantity;
for (int i = 0; i < ch.length; i++) {
System.out.println("Enter name of chocolates");
name = scan.nextLine();
quantity = rand.nextInt((19 - 1) + 1) + 1;
ch[i] = new Chocolate(name, quantity);
}
for (int i = 0; i < ch.length; i++) {
result = ch[i].compareTo(ch[i]);
System.out.println(ch[i].getName() + " " + ch[i].getQuantity());
System.out.println(result);
}
}
}
So basically I need to have a loop that uses the compareTo and orders the chocolates by quantity and then print them sorted. Cannot use .sort. Thanks
You cannot sort an array with only one loop. If you are not allowed to used sort method you can do it with a classic bubble sort:
for (int i = 0; i < ch.length; i++) {
for (int j = 0; j < ch.length - 1; j++) {
if (ch[j].compareTo(ch[j + 1]) < 0) {
Chocolate temp = ch[j];
ch[j] = ch[j + 1];
ch[j + 1] = temp;
}
}
}
But you will need for in for to achieve it.
You can do sorting without using any type of common sorting technique as long as you have these constraints:
The field to be used for sorting is integer or can be converted to integer.
The range of integer value of the field is within a small predefined range.
In your case your example satisfies both constraints.
You are sorting by cQuantity field which is an integer.
The cQuantity field is within 0 to 19 range.
What you can do is:
Create an Chocolate[20][20] array. Lets call it sorted.
Iterate over ch and put each Chocolate into the above sorted array using their getQuantity field as index. In case we have more than one Chocolate with the same getQuantity add them together under the same index.
Iterate over sorted and print its value if it is not null.
Here is the code:
Chocolate[][] sorted = new Chocolate[20][20];
for (Chocolate c : ch) {
Chocolate[] bucket = sorted[ c.getQuantity() ];
if (bucket == null) {
bucket = new Chocolate[20];
bucket[0] = c;
sorted[ c.getQuantity() ] = bucket;
}else {
//if we already have entry under this index, find next index that is not occupaed and add this one
for (int i = 0; i < bucket.length; i++) {
if (bucket[i] == null) {
bucket[i] = c;
break;
}
}
}
}
for (Chocolate[] bucket : sorted) {
if ( bucket != null) {
//System.out.println("b");
for (Chocolate c : bucket) {
if (c != null) System.out.println( c.getName() + " " + c.getQuantity() );
}
}
}

Cartesian products of two sets in Java

I'm trying to solve a problem from a textbook I'm using that has to do with cartesian products and sets without using built-in java APIs or any fancy function.
For example
Set A contains = {1,3,4}
Set B contains = {2,5}
their products would yield to this result {(1,2),(1,5),(3,2),(3,5),(4,2),(4,5)}
I have written some methods to perform various functions on each set but here is what I came up with. How could I implement this to the sets?
public String cartesian(Set other)
{
String result = "";
int res;
for ( int i = 0; i < this.size; ++i )
{
for ( int j = 0; j < other.size; ++j )
{
//System.out.println("#####"+ other.size);
//result = data[i] + ""+ other[i] + "";
//res = data[i] *= other.data[j];
}
}
return result;
}
The method returns the result as a string. My logic is to got through each set's element at the same time but I get stuck at thinking up a way to cross them together.
Here is the rest of my code.
public class Sets {
public static void main(String[] args)
{
Set set1;
set1 = new Set();
Set set2 = new Set();
set1.add(1);
set1.add(2);
set1.add(3);
set2.add(3);
set2.add(4);
/*set2.add(4);
set2.add(5);*/
//System.out.println(set1.difference(set2));
System.out.println(set1.cartesianReformed(set2));
}
}
User-defined Set class
class Set
{
private int[] data;
private int size;
public Set()
{
data = new int[20];
size = 0;
}
public void add(int value)
{
int[] copy;
//avoiding duplicates
if ( !in(value) )
{
if ( size > data.length )
{
copy = new int[data.length * 2];
System.arraycopy(data, 0, copy,0,data.length);
data = copy;
}
data[size] = value;
size++;
}
else
{
System.out.println("You are trying to insert a number that's already here ---> " + value);
}
}
public String toString()
{
String result = "{";
for(int i = 0; i < size; i++)
{
result += "" + data[i];
//Add a comma after all but the last item
if ( i < size - 1 )
{
result += ",";
}
}
result += "}";
return result;
}
public boolean in(int value)
{
boolean result = false;
for(int i = 0; i < size; i++)
{
if ( data[i] == value )
{
result = true;
}
}
return result;
}
public Set intersection(Set other)
{
Set result = new Set();
for ( int i = 0; i < size; ++i )
{
if ( other.in(data[i]) )
{
result.add(data[i]);
}
}
return result;
}
public boolean equals(Set other)
{
boolean result = false;
int count = 0;
for ( int i = 0; i < size; ++i ) //iterating over this
{
if ( other.in(data[i]) )
{
count++;
}
if ( count == size )
{
result = true;
}
}
return result;
}
public Set difference(Set other)
{
Set result = new Set();
for(int i = 0; i < size; ++i)
{
if ( !other.in(data[i]) )
{
result.add(data[i]);
}
}
return result;
}
public String cartesian(Set other)
{
String result = "";
int res;
for ( int i = 0; i < this.size; ++i )
{
for ( int j = 0; j < other.size; ++j )
{
//System.out.println("#####"+ other.size);
//result = data[i] + ""+ other[i] + "";
//res = data[i] *= other.data[j];
}
}
return result;
}
public Set union(Set other) {
Set result = (Set)other.clone();
for (int i = 0; i < size; i++) {
result.add(data[i]);
}
return result;
}
public Object clone() {
Set result = new Set();
for (int i = 0; i < size; i++) {
result.add(data[i]);
}
return result;
}
}
Something like this will work:
public String cartesian (Set other)
{
String [] cart = new String [this.size * other.size];
int k = 0;
for (int i : this.data)
{
for (int j : other.data)
{
cart[k++] = "(" + i + "," + j + ")";
}
}
return Arrays.toString(cart);
}
Returns:
[(1,2), (1,5), (3,2), (3,5), (4,2), (4,5)]
Note:
Naming your class Set is a bad idea since it conflicts with java.util.Set.
Let's get to the crux of the matter. You essentially need all the combinations of elements in 2 lists. The following is a very simple way of looking at it, by using nested for-loops to go over the elements in the sets A and B.
Set<Integer> A = new HashSet<Integer>();
Set<Integer> B = new HashSet<Integer>();
for(int i = 1 ; i < 5 ; i++)
A.add(i);
for(int i = 10 ; i < 13 ; i++)
B.add(i);
System.out.println("A: " + A);
System.out.println("B: " + B);
List<Set<Integer>> list = new ArrayList<Set<Integer>>();
for(Integer i: A) {
for(Integer j: B) {
Set<Integer> combination = new HashSet<Integer>();
combination.add(i);
combination.add(j);
list.add(combination);
}
}
System.out.println(list);

permutations of a string using iteration

I'm trying to find permutation of a given string, but I want to use iteration. The recursive solution I found online and I do understand it, but converting it to an iterative solution is really not working out. Below I have attached my code. I would really appreciate the help:
public static void combString(String s) {
char[] a = new char[s.length()];
//String temp = "";
for(int i = 0; i < s.length(); i++) {
a[i] = s.charAt(i);
}
for(int i = 0; i < s.length(); i++) {
String temp = "" + a[i];
for(int j = 0; j < s.length();j++) {
//int k = j;
if(i != j) {
System.out.println(j);
temp += s.substring(0,j) + s.substring(j+1,s.length());
}
}
System.out.println(temp);
}
}
Following up on my related question comment, here's a Java implementation that does what you want using the Counting QuickPerm Algorithm:
public static void combString(String s) {
// Print initial string, as only the alterations will be printed later
System.out.println(s);
char[] a = s.toCharArray();
int n = a.length;
int[] p = new int[n]; // Weight index control array initially all zeros. Of course, same size of the char array.
int i = 1; //Upper bound index. i.e: if string is "abc" then index i could be at "c"
while (i < n) {
if (p[i] < i) { //if the weight index is bigger or the same it means that we have already switched between these i,j (one iteration before).
int j = ((i % 2) == 0) ? 0 : p[i];//Lower bound index. i.e: if string is "abc" then j index will always be 0.
swap(a, i, j);
// Print current
System.out.println(join(a));
p[i]++; //Adding 1 to the specific weight that relates to the char array.
i = 1; //if i was 2 (for example), after the swap we now need to swap for i=1
}
else {
p[i] = 0;//Weight index will be zero because one iteration before, it was 1 (for example) to indicate that char array a[i] swapped.
i++;//i index will have the option to go forward in the char array for "longer swaps"
}
}
}
private static String join(char[] a) {
StringBuilder builder = new StringBuilder();
builder.append(a);
return builder.toString();
}
private static void swap(char[] a, int i, int j) {
char temp = a[i];
a[i] = a[j];
a[j] = temp;
}
List<String> results = new ArrayList<String>();
String test_str = "abcd";
char[] chars = test_str.toCharArray();
results.add(new String("" + chars[0]));
for(int j=1; j<chars.length; j++) {
char c = chars[j];
int cur_size = results.size();
//create new permutations combing char 'c' with each of the existing permutations
for(int i=cur_size-1; i>=0; i--) {
String str = results.remove(i);
for(int l=0; l<=str.length(); l++) {
results.add(str.substring(0,l) + c + str.substring(l));
}
}
}
System.out.println("Number of Permutations: " + results.size());
System.out.println(results);
Example:
if we have 3 character string e.g. "abc", we can form permuations as below.
1) construct a string with first character e.g. 'a' and store that in results.
char[] chars = test_str.toCharArray();
results.add(new String("" + chars[0]));
2) Now take next character in string (i.e. 'b') and insert that in all possible positions of previously contsructed strings in results. Since we have only one string in results ("a") at this point, doing so gives us 2 new strings 'ba', 'ab'. Insert these newly constructed strings in results and remove "a".
for(int i=cur_size-1; i>=0; i--) {
String str = results.remove(i);
for(int l=0; l<=str.length(); l++) {
results.add(str.substring(0,l) + c + str.substring(l));
}
}
3) Repeat 2) for every character in the given string.
for(int j=1; j<chars.length; j++) {
char c = chars[j];
....
....
}
This gives us "cba", "bca", "bac" from "ba" and "cab", "acb" and "abc" from "ab"
Work queue allows us to create an elegant iterative solution for this problem.
static List<String> permutations(String string) {
List<String> permutations = new LinkedList<>();
Deque<WorkUnit> workQueue = new LinkedList<>();
// We need to permutate the whole string and haven't done anything yet.
workQueue.add(new WorkUnit(string, ""));
while (!workQueue.isEmpty()) { // Do we still have any work?
WorkUnit work = workQueue.poll();
// Permutate each character.
for (int i = 0; i < work.todo.length(); i++) {
String permutation = work.done + work.todo.charAt(i);
// Did we already build a complete permutation?
if (permutation.length() == string.length()) {
permutations.add(permutation);
} else {
// Otherwise what characters are left?
String stillTodo = work.todo.substring(0, i) + work.todo.substring(i + 1);
workQueue.add(new WorkUnit(stillTodo, permutation));
}
}
}
return permutations;
}
A helper class to hold partial results is very simple.
/**
* Immutable unit of work
*/
class WorkUnit {
final String todo;
final String done;
WorkUnit(String todo, String done) {
this.todo = todo;
this.done = done;
}
}
You can test the above piece of code by wrapping them in this class.
import java.util.*;
public class AllPermutations {
public static void main(String... args) {
String str = args[0];
System.out.println(permutations(str));
}
static List<String> permutations(String string) {
...
}
}
class WorkUnit {
...
}
Try it by compiling and running.
$ javac AllPermutations.java; java AllPermutations abcd
The below implementation can also be easily tweaked to return a list of permutations in reverse order by using a LIFO stack of work instead of a FIFO queue.
import java.util.List;
import java.util.Set;
import java.util.ArrayList;
import java.util.HashSet;
public class Anagrams{
public static void main(String[] args)
{
String inpString = "abcd";
Set<String> combs = getAllCombs(inpString);
for(String comb : combs)
{
System.out.println(comb);
}
}
private static Set<String> getAllCombs(String inpString)
{
Set<String> combs = new HashSet<String>();
if( inpString == null | inpString.isEmpty())
return combs;
combs.add(inpString.substring(0,1));
Set<String> tempCombs = new HashSet<String>();
for(char a : inpString.substring(1).toCharArray())
{
tempCombs.clear();
tempCombs.addAll(combs);
combs.clear();
for(String comb : tempCombs)
{
combs.addAll(getCombs(comb,a));
}
}
return combs;
}
private static Set<String> getCombs(String comb, char a) {
Set<String> combs = new HashSet<String>();
for(int i = 0 ; i <= comb.length(); i++)
{
String temp = comb.substring(0, i) + a + comb.substring(i);
combs.add(temp);
//System.out.println(temp);
}
return combs;
}
}
Just posting my approach to the problem:
import java.util.ArrayDeque;
import java.util.Queue;
public class PermutationIterative {
public static void main(String[] args) {
permutationIterative("abcd");
}
private static void permutationIterative(String str) {
Queue<String> currentQueue = null;
int charNumber = 1;
for (char c : str.toCharArray()) {
if (currentQueue == null) {
currentQueue = new ArrayDeque<>(1);
currentQueue.add(String.valueOf(c));
} else {
int currentQueueSize = currentQueue.size();
int numElements = currentQueueSize * charNumber;
Queue<String> nextQueue = new ArrayDeque<>(numElements);
for (int i = 0; i < currentQueueSize; i++) {
String tempString = currentQueue.remove();
for (int j = 0; j < charNumber; j++) {
int n = tempString.length();
nextQueue.add(tempString.substring(0, j) + c + tempString.substring(j, n));
}
}
currentQueue = nextQueue;
}
charNumber++;
}
System.out.println(currentQueue);
}
}
package vishal villa;
import java.util.Scanner;
public class Permutation {
static void result( String st, String ans)
{
if(st.length() == 0)
System.out.println(ans +" ");
for(int i = 0; i<st.length(); i++)
{
char ch = st.charAt(i);
String r = st.substring(0, i) + st.substring(i + 1);
result(r, ans + ch);
}
}
public static void main(String[] args)
{
Scanner Sc = new Scanner(System.in);
System.out.println("enter the string");
String st = Sc.nextLine();
Permutation p = new Permutation();
p.result(st,"" );
}
}
// Java program to print all permutations of a
// given string.
public class Permutation
{
public static void main(String[] args)
{
String str = "ABC";
int n = str.length();
Permutation permutation = new Permutation();
permutation.permute(str, 0, n-1);
}
/**
* permutation function
* #param str string to calculate permutation for
* #param s starting index
* #param e end index
*/
private void permute(String str, int s, int e)
{
if (s == e)
System.out.println(str);
else
{
for (int i = s; i <= s; i++)
{
str = swap(str,l,i);
permute(str, s+1, e);
str = swap(str,l,i);
}
}
}
/**
* Swap Characters at position
* #param a string value
* #param i position 1
* #param j position 2
* #return swapped string
*/
public String swap(String a, int i, int j)
{
char temp;
char[] charArray = a.toCharArray();
temp = charArray[i] ;
charArray[i] = charArray[j];
charArray[j] = temp;
return String.valueOf(charArray);
}
}

Returning new object, overwrite the existing one in Java

Note: This is an assignment.
Hi,
Ok I have this method that will create a supposedly union of 2 sets.
i
mport java.io.*;
class Set {
public int numberOfElements;
public String[] setElements;
public int maxNumberOfElements;
// constructor for our Set class
public Set(int numberOfE, int setE, int maxNumberOfE) {
this.numberOfElements = numberOfE;
this.setElements = new String[setE];
this.maxNumberOfElements = maxNumberOfE;
}
// Helper method to shorten/remove element of array since we're using basic array instead of ArrayList or HashSet from collection interface :(
static String[] removeAt(int k, String[] arr) {
final int L = arr.length;
String[] ret = new String[L - 1];
System.arraycopy(arr, 0, ret, 0, k);
System.arraycopy(arr, k + 1, ret, k, L - k - 1);
return ret;
}
int findElement(String element) {
int retval = 0;
for ( int i = 0; i < setElements.length; i++) {
if ( setElements[i] != null && setElements[i].equals(element) ) {
return retval = i;
}
retval = -1;
}
return retval;
}
void add(String newValue) {
int elem = findElement(newValue);
if( numberOfElements < maxNumberOfElements && elem == -1 ) {
setElements[numberOfElements] = newValue;
numberOfElements++;
}
}
int getLength() {
if ( setElements != null ) {
return setElements.length;
}
else {
return 0;
}
}
String[] emptySet() {
setElements = new String[0];
return setElements;
}
Boolean isFull() {
Boolean True = new Boolean(true);
Boolean False = new Boolean(false);
if ( setElements.length == maxNumberOfElements ){
return True;
} else { return False; }
}
Boolean isEmpty() {
Boolean True = new Boolean(true);
Boolean False = new Boolean(false);
if ( setElements.length == 0 ) {
return True;
} else { return False; }
}
void remove(String newValue) {
for ( int i = 0; i < setElements.length; i++) {
if ( setElements[i] != null && setElements[i].equals(newValue) ) {
setElements = removeAt(i,setElements);
}
}
}
int isAMember(String element) {
int retval = -1;
for ( int i = 0; i < setElements.length; i++ ) {
if (setElements[i] != null && setElements[i].equals(element)) {
return retval = i;
}
}
return retval;
}
void printSet() {
for ( int i = 0; i < setElements.length; i++) {
if (setElements[i] != null) {
System.out.println("Member elements on index: "+ i +" " + setElements[i]);
}
}
}
String[] getMember() {
String[] tempArray = new String[setElements.length];
for ( int i = 0; i < setElements.length; i++) {
if(setElements[i] != null) {
tempArray[i] = setElements[i];
}
}
return tempArray;
}
Set union(Set x, Set y) {
String[] newXtemparray = new String[x.getLength()];
String[] newYtemparray = new String[y.getLength()];
int len = newYtemparray.length + newXtemparray.length;
Set temp = new Set(0,len,len);
newXtemparray = x.getMember();
newYtemparray = x.getMember();
for(int i = 0; i < newYtemparray.length; i++) {
temp.add(newYtemparray[i]);
}
for(int j = 0; j < newXtemparray.length; j++) {
temp.add(newXtemparray[j]);
}
return temp;
}
Set difference(Set x, Set y) {
String[] newXtemparray = new String[x.getLength()];
String[] newYtemparray = new String[y.getLength()];
int len = newYtemparray.length + newXtemparray.length;
Set temp = new Set(0,len,len);
newXtemparray = x.getMember();
newYtemparray = x.getMember();
for(int i = 0; i < newXtemparray.length; i++) {
temp.add(newYtemparray[i]);
}
for(int j = 0; j < newYtemparray.length; j++) {
int retval = temp.findElement(newYtemparray[j]);
if( retval != -1 ) {
temp.remove(newYtemparray[j]);
}
}
return temp;
}
}
// This is the SetDemo class that will make use of our Set class
class SetDemo {
public static void main(String[] args) {
//get input from keyboard
BufferedReader keyboard;
InputStreamReader reader;
String temp = "";
reader = new InputStreamReader(System.in);
keyboard = new BufferedReader(reader);
try
{
System.out.println("Enter string element to be added" );
temp = keyboard.readLine( );
System.out.println("You entered " + temp );
}
catch (IOException IOerr)
{
System.out.println("There was an error during input");
}
/*
**************************************************************************
* Test cases for our new created Set class.
*
**************************************************************************
*/
Set setA = new Set(0,10,10);
setA.add(temp);
setA.add("b");
setA.add("b");
setA.add("hello");
setA.add("world");
setA.add("six");
setA.add("seven");
setA.add("b");
int size = setA.getLength();
System.out.println("Set size is: " + size );
Boolean isempty = setA.isEmpty();
System.out.println("Set is empty? " + isempty );
int ismember = setA.isAMember("sixb");
System.out.println("Element sixb is member of setA? " + ismember );
Boolean output = setA.isFull();
System.out.println("Set is full? " + output );
//setA.printSet();
int index = setA.findElement("world");
System.out.println("Element b located on index: " + index );
setA.remove("b");
//setA.emptySet();
int resize = setA.getLength();
System.out.println("Set size is: " + resize );
//setA.printSet();
Set setB = new Set(0,10,10);
setB.add("b");
setB.add("z");
setB.add("x");
setB.add("y");
Set setC = setA.union(setB,setA);
System.out.println("Elements of setA");
setA.printSet();
System.out.println("Union of setA and setB");
setC.printSet();
}
}
The union method works a sense that somehow I can call another method on it but it doesn't do the job, i supposedly would create and union of all elements of setA and setB but it only return element of setB. Sample output follows:
java SetDemo
Enter string element to be added
hello
You entered hello
Set size is: 10
Set is empty? false
Element sixb is member of setA? -1
Set is full? true
Element b located on index: 2
Set size is: 9
Elements of setA
Member elements on index: 0 hello
Member elements on index: 1 world
Member elements on index: 2 six
Member elements on index: 3 seven
Union of setA and setB
Member elements on index: 0 b
Member elements on index: 1 z
Member elements on index: 2 x
Member elements on index: 3 y
thanks,
lupin
In union(), you have a typo here:
newYtemparray = x.getMember();
should be
newYtemparray = y.getMember();

Categories