relax exception catch necessity - java

Is there a possibility in Java to get rid of the necessity to catch non-RuntimeException exceptions? Maybe compiler flags?
I know the reason why the catching is promoted, but want to do simple and straight tools that enforce their requirements. So if something can went wrong I don't like to catch up but exit the application, crashing with a meaningful exception. Usually this ends up like:
try {
connection.close();
} catch (IOException e) {
throw new RuntimeException(e);
}
which introduces 4 lines of code mess, and introduces the wrapping RuntimeException mess on error output. Sometimes it even motivate people to wrap large try ... catch (Throwable ..) blocks around anything, which is the likely cause for our beloved 'Unknown error occured' alert boxes...

you can use throws keyword with method prototype to avoid try-catch block. which eventually throws the exception to JVM's Default Exception handler which halts the application if no catch block's are specified in your code to handle the exception raised.

Crashing the application at the first sight of an exception is very bad practice. Especially when some work is unsaved and the application is using some resources that needs to be freed and cleaned before the application terminates execution. Some very popular software used to do that... and instead of "fixing" the issue, they introduced a data recoverability features on application restart. However the trick, this is not good software engineering.
At the very least, your application should not crash on the first exception/error encountered, but recover with a meaningful message. It is being lazy to just wrap everything in a RuntimeException (or even Throwable) and, especially, not do anything with it.
Java does not support flags of any kind because there are 1) a workaround, and 2) better ways to handle this situation. For example :
1. Handle the exception in the calling method
You can add the throws keyword in your method declaration, up to your static public void main method, which, if not handling the exception, will eventually crash the application with a stacktrace.
class Foo {
public void someMethod(....) throws IllegalArgumentException, IOException {
...
}
static public void main(String...args) throws Throwable {
new Foo().someMethod();
}
}
This method does not offer any means of recoverability and will probably make your user unhappy (with a big meaningless stachtrace if they ran the application from a console, or just nothing at all if they launched it from a shortcut or GUI). Also, if you have some acquired resources, you will not be able to clean them when an exception occurs. At the very least, your main should catch (Throwable e) and output something before throwing the exception above. Something like :
class Foo {
public void someMethod(....) throws IllegalArgumentException, IOException {
...
}
static public void main(String...args) {
try {
new Foo().someMethod();
} catch (...) {
// output or log exception here and, optionally, cleanup and exit
}
}
}
** EDIT **
Consider this scenario : a program is initializing some resource for processing some data, then some runtime exception (or error) occurs during processing, the application crash, but the resources are not released or freed. In Java, however, one could do this
public E doSomething() throws RuntimeException {
// declare a bunch of resources
try {
// process resources with unchecked exceptions
} finally {
// free resources
}
// return some result
}
and cleanly exit the method on error or on success, perhaps even logging the runtime error for "posterity".
2. Log the error and return some meaningful value
Logging is a very good practice. You can show your user some message telling them that the operation could not be executed without crashing the whole thing, and giving you some traces of what and where the user were doing. A simplistic logging system could be :
class Foo {
static private final Logger LOG = Logger.getLogger(Foo.class.getName());
public boolean doSomethingImpl(...) {
boolean result = true;
try {
...
} catch (SomeException e) {
LOG.log(Level.SEVERE, "meaningful message why method could not do something!", e);
result = false;
}
return result;
}
public void doSomething() {
if (!doSomethingImpl(...)) {
// handle failure here
}
}
}
By default, the Logger will output everything to the err output stream, but you can add your own handlers :
// loggers are singletons, so you can retrieve any logger at anytime from
// anywhere, as long as you know the logger's name
Logger logger = Logger.getLogger(Foo.class.getName());
logger.setUseParentHandlers(false); // disable output to err
logger.addHandler(new MyHandler()); // MyHandler extends java.util.logging.Handler
Java already ships with some default logging handlers, one of which writes to file.
etc.

Is there a possibility in Java to get rid of the necessity to catch non-RuntimeException exceptions?
For a checked exception, you can chose between catching the exception and declaring it in the method header as thrown.
Maybe compiler flags?
No. There are no compiler flags to relax this. It is a fundamental part of the language design. Relaxing the checked exception rules via a compiler switch would cause serious library interoperability problems.

I don't think that there's any way around this for the JVM. Your best bet is to have your methods re-throw the exception, which gets rid of the "mess" in your code, and then have your main program throw Exception. This should propagate the error up to the top of your program.
Keep in mind, however, that the place where the exception actually happens is a much better place to let the user know what happened (i.e., exactly what it was doing when this particular IOException happened). You'll lose this resolution if all errors are simply propagated up to the top level.

You do have the ability to throw your exceptions up a level. Here's an example
public class Foo {
public Foo() {
super();
}
public void disconnect(connection) throws IOException {
connection.close();
}
}

Use "Throws" to avoid the error..but it will not be good programimg practice

Related

What does "error: unreported exception <XXX>; must be caught or declared to be thrown" mean and how do I fix it?

New Java programmers frequently encounter errors phrased like this:
"error: unreported exception <XXX>; must be caught or declared to be thrown"
where XXX is the name of some exception class.
Please explain:
What the compilation error message is saying,
the Java concepts behind this error, and
how to fix it.
First things first. This a compilation error not a exception. You should see it at compile time.
If you see it in a runtime exception message, that's probably because you are running some code with compilation errors in it. Go back and fix the compilation errors. Then find and set the setting in your IDE that prevents it generating ".class" files for source code with compilation errors. (Save yourself future pain.)
The short answer to the question is:
The error message is saying that the statement with this error is throwing (or propagating) a checked exception, and the exception (the XXX) is not being dealt with properly.
The solution is to deal with the exception by either:
catching and handling it with a try ... catch statement, or
declaring that the enclosing method or constructor throws it1.
1 - There are some edge-cases where you can't do that. Read the rest of the answer!
Checked versus unchecked exceptions
In Java, exceptions are represented by classes that descend from the java.lang.Throwable class. Exceptions are divided into two categories:
Checked exceptions are Throwable, and Exception and its subclasses, apart from RuntimeException and its subclasses.
Unchecked exceptions are all other exceptions; i.e. Error and its subclasses, and RuntimeException and its subclasses.
(In the above, "subclasses" includes by direct and indirect subclasses.)
The distinction between checked and unchecked exceptions is that checked exceptions must be "dealt with" within the enclosing method or constructor that they occur, but unchecked exceptions need not be dealt with.
(Q: How do you know if an exception is checked or not? A: Find the javadoc for the exception's class, and look at its parent classes.)
How do you deal with a (checked) exception
From the Java language perspective, there are two ways to deal with an exception that will "satisfy" the compiler:
You can catch the exception in a try ... catch statement. For example:
public void doThings() {
try {
// do some things
if (someFlag) {
throw new IOException("cannot read something");
}
// do more things
} catch (IOException ex) {
// deal with it <<<=== HERE
}
}
In the above, we put the statement that throws the (checked) IOException in the body of the try. Then we wrote a catch clause to catch the exception. (We could catch a superclass of IOException ... but in this case that would be Exception and catching Exception is a bad idea.)
You can declare that the enclosing method or constructor throws the exception
public void doThings() throws IOException {
// do some things
if (someFlag) {
throw new IOException("cannot read something");
}
// do more things
}
In the above we have declared that doThings() throws IOException. That means that any code that calls the doThings() method has to deal with the exception. In short, we are passing the problem of dealing with the exception to the caller.
Which of these things is the correct thing to do?
It depends on the context. However, a general principle is that you should deal with exceptions at a level in the code where you are able to deal with them appropriately. And that in turn depends on what the exception handling code is going to do (at HERE). Can it recover? Can it abandon the current request? Should it halt the application?
Solving the problem
To recap. The compilation error means that:
your code has thrown a checked exception, or called some method or constructor that throws the checked exception, and
it has not dealt with the exception by catching it or by declaring it as required by the Java language.
Your solution process should be:
Understand what the exception means, and why it could be thrown.
Based on 1, decide on the correct way to deal with it.
Based on 2, make the relevant changes to your code.
Example: throwing and catching in the same method
Consider the following example from this Q&A
public class Main {
static void t() throws IllegalAccessException {
try {
throw new IllegalAccessException("demo");
} catch (IllegalAccessException e){
System.out.println(e);
}
}
public static void main(String[] args){
t();
System.out.println("hello");
}
}
If you have been following what we have said so far, you will realise that the t() will give the "unreported exception" compilation error. In this case, the mistake is that t has been declared as throws IllegalAccessException. In fact the exception does not propagate, because it has been caught within the method that threw it.
The fix in this example will be to remove the throws IllegalAccessException.
The mini-lesson here is that throws IllegalAccessException is the method saying that the caller should expect the exception to propagate. It doesn't actually mean that it will propagate. And the flip-side is that if you don't expect the exception to propagate (e.g. because it wasn't thrown, or because it was caught and not rethrown) then the method's signature shouldn't say it is thrown!
Bad practice with exceptions
There are a couple of things that you should avoid doing:
Don't catch Exception (or Throwable) as a short cut for catching a list of exceptions. If you do that, you are liable catch things that you don't expect (like an unchecked NullPointerException) and then attempt to recover when you shouldn't.
Don't declare a method as throws Exception. That forces the called to deal with (potentially) any checked exception ... which is a nightmare.
Don't squash exceptions. For example
try {
...
} catch (NullPointerException ex) {
// It never happens ... ignoring this
}
If you squash exceptions, you are liable to make the runtime errors that triggered them much harder to diagnose. You are destroying the evidence.
Note: just believing that the exception never happens (per the comment) doesn't necessarily make it a fact.
Edge case: static initializers
There some situations where dealing with checked exceptions is a problem. One particular case is checked exceptions in static initializers. For example:
private static final FileInputStream input = new FileInputStream("foo.txt");
The FileInputStream is declared as throws FileNotFoundException ... which is a checked exception. But since the above is a field declaration, the syntax of the Java language, won't let us put the declaration inside a try ... catch. And there is no appropriate (enclosing) method or constructor ... because this code is run when the class is initialized.
One solution is to use a static block; for example:
private static final FileInputStream input;
static {
FileInputStream temp = null;
try {
temp = new FileInputStream("foo.txt");
} catch (FileNotFoundException ex) {
// log the error rather than squashing it
}
input = temp; // Note that we need a single point of assignment to 'input'
}
(There are better ways to handle the above scenario in practical code, but that's not the point of this example.)
Edge case: static blocks
As noted above, you can catch exceptions in static blocks. But what we didn't mention is that you must catch checked exceptions within the block. There is no enclosing context for a static block where checked exceptions could be caught.
Edge case: lambdas
A lambda expression (typically) should not throw an unchecked exception. This is not a restriction on lambdas per se. Rather it is a consequence of the function interface that is used for the argument where you are supplying the argument. Unless the function declares a checked exception, the lambda cannot throw one. For example:
List<Path> paths = ...
try {
paths.forEach(p -> Files.delete(p));
} catch (IOException ex) {
// log it ...
}
Even though we appear to have caught IOException, the compiler will complain that:
there is an uncaught exception in the lambda, AND
the catch is catching an exception that is never thrown!
In fact, the exception needs to be caught in the lambda itself:
List<Path> paths = ...
paths.forEach(p -> {
try {
Files.delete(p);
} catch (IOException ex) {
// log it ...
}
}
);
(The astute reader will notice that the two versions behave differently in the case that a delete throws an exception ...)
More Information
The Oracle Java Tutorial:
The catch or specify requirement
... also covers checked vs unchecked exceptions.
Catching and handling exceptions
Specifying the exceptions thrown by a method

How to centralize exception handling in multiple methods of an API

This is a plain Java 8+ question, no frameworks used.
We are producing an API for a higher layer which deals with the presentation layer among other activities. We have and interface agreed with the invoker, so they are happy to receive some particular exceptions we throw.
At the same time, we are also using other APIs under the same agreement, so we can do stuff by ourselves and throw exceptions or we can invoke other APIs which throw the agreed exceptions.
Currently, we do nothing with the exceptions thrown by the APIs we are invoking.
Thing is, we are the best positioned in this infrastructure to deal with intermediate activities while exceptions are thrown, so we need to capture both, our exceptions and the exceptions provided by those we are invoking; basically reporting the issue, raising system controls, etc, and then re-throw the original exception so the top layer keeps as it is now.
We have around 300 methods in the entry point class of our API:
public void method1 (arguments for method 1) {
...
}
...
public void method300 (arguments for method 300) {
...
}
I clearly understand that I can create a method to centralise the actions to be taken in the exception management, something like:
public void myExceptionHandler (Exception e) {
if (e instanceOf X) {
} else if ...
...
throw particularExceptionAccordingTheCase
}
But I'd also avoid modifying those 300 methods.
Any idea how to inject a try-catch in those 300 methods to send the Exception to myExceptionHandler without really adding a try-catch in each of them?
Any comments and ideas are much appreciated!
----------- After mprev0 suggestion -------------------------------
I tried this approach. It really catches the exception and so on, but I can't re-trow an Exception: I'm forced to catch it, but this goes against the requirement of re-sending the exception back to the top layer.
While I can throw an Error, I got a compiler error at line throw new FileNotFoundException();
public class myExceptionHandler implements Thread.UncaughtExceptionHandler {
#Override
public void uncaughtException(Thread t, Throwable e) {
System.out.println("gotcha!");
if (e instanceof java.lang.Error) {
System.out.println("AAT-CORE: Fatal Error");
throw new java.lang.Error(e.getCause());
} else if (e instanceof java.lang.Exception) {
System.out.println("AAT-CORE: Exception Error");
throw new FileNotFoundException();
}
}
}
Any ideas?
------------ After some more digging, fixed with a decorator pattern -------
Previous class implementation does not work, as I can't change the signature of the method and I need to re-throw the java.lang.Exception.
Using a decorator and handling the interface there makes the trick.
As a summary:
Top layer class:
public class TopLayer {
public static void main (String[] args) {
MiddleLayer m = new MiddleLayer();
m.method1();
}
}
Bottom layer class contains specific APIs and some implementation, the only interesting thing is that it contains java.lang.Exceptions uncontrolled, expecting the top layer to do this job. But, we are working in the middle and we will do this job:
public class MiddleLayer extends BottomLayer {
public MiddleLayer () {
final UncaughtExceptionHandler subclass = Thread.currentThread().getUncaughtExceptionHandler();
Thread.currentThread().setUncaughtExceptionHandler(new UncaughtExceptionHandler() {
#Override
public void uncaughtException(Thread thread, Throwable ex) {
System.out.println("gotcha2!");
// carry on with prior flow
subclass.uncaughtException(thread, ex);
}
});
}
}
In this way, I can get the system.out and the java.lang.Exception is propagated to the Top Layer.
Decorator inspiration came from here: Rethrow UncaughtExceptionHandler Exception after Logging It
Additional comments are welcome!
You can solve this by implementing the java.lang.Thread.UncaughtExceptionHandler interface:
public class MyExceptionHandler implements Thread.UncaughtExceptionHandler {
#Overrides
public void uncaughtException(Thread t, Throwable e) {
if (e instanceOf X) {
} else if ...
...
throw particularExceptionAccordingTheCase
}
}
Then you associate it to all threads as follows:
Thread.setDefaultUncaughtExceptionHandler(new MyExceptionHandler())
This will configure the exception handler to handle all uncaught exceptions in all threads of your application.
Note that this will only work for exceptions that aren't yet explicitly handled somewhere in your code and if there is no other handler configured for some particular thread (the uncaught exception handler can also be set for some specific thread).
EDIT: As discovered by #JBC, the above approach will not work for checked exceptions since we are forced to catch them explicitly in our uncaughtException method (note that we cannot add a throws clause to an overridden method). While it will work without problems if we only want to re-throw subtypes of RuntimeException and Error, there is a little adaptation needed if we want to make it work - you can find it explained in #JBC's question.
As you can see in the question updates, the final solution is a combination of two different approaches, in one side, having the mprev0 approach of implementing the java.lang.Thread.UncaughtExceptionHandler and, on top of this, adding a Decoration pattern to be able to re-throw a run-time exception.
There were no additional approaches so far, so I'm closing the question and bring this as the most complete response.
More information about UncaughtExceptionHandler can be found in the Java documentation, but as always, is short on examples, and here:
Advanced exception handling
Thread.UncaughtExceptionHandler Example
More information on Decorator pattern usage, can be found here:
Decorator Design Pattern in Java
Design Patterns - Decorator Pattern
And how to use to manipulate exceptions here:
Rethrow UncaughtExceptionHandler Exception after Logging It
You could also create a proxy API on top of your current API, have an invocation handler method in the proxy and put this method in a try catch block.
https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/proxy.html
https://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Proxy.html

Java: Testing if an exception is caught within a larger system

I know there are a number of questions on this topic, but all of them seem to assume one of two things:
You just want to test if an exception was thrown and not caught,
You should test the function that is inside of the try block
directly
I'm not sure how I can apply those options to this case. I have a small try/catch block, like so:
try {
o.getDataContainer().build(...);
o2.setDataContainer(o.getDataContainer());
} catch (final Exception e) {
LOGGER.error("Data set failed", e);
}
As you can see, if o.getDataContainer() returns null, an exception would be triggered. However, that exception is then caught, and the test tool considers it a successful test. Is it possible to test that the exception occurred without changing the code?
I ask because our logging system triggers a trouble ticket if it picks up an exception that is caught and logged. Since it is common human error to forget to guard something like this, I would like to write UTs that can test if an exception was triggered and caught. I can't remove the whole-program protection provided by the catch block, but the error would also cause a degradation of the user experience, since the data isn't being passed along. (I work in a place where minutes of site downtime equal millions of dollars lost.)
In other words: The exception is an error, and we want to log it and investigate it, but in case this manages to trigger on prod, we don't want to risk the whole site going down.
Note: This try/catch sits inside a much larger function with many such try/catch blocks. One could easily argue bad overall design, but fixing it is not an option (without a huge amount of free dev time, at least).
Update: As the task at hand does not allow me to spend a great deal of time on this, I went with a very simple generic test that would fail if the guard and catch were both removed so that I could move on. But, I'm leaving the question unanswered for now in hopes of continuing conversation. I would love to be able to write a simple UT for each new feature that fails if any exceptions are triggered and caught.
Ignoring the issues with this code (Sometimes you've gotta put lipstick on a pig, I guess), this is how I might handle the situation.
I'd use Mockito and mock o2, then use an Answer to ensure the method is invoked.
A test might look like this:
#RunWith(MockitoJUnitRunner.class)
public class TestClass{
#Mock
O2 o2;
#Mock
O1 o1;
boolean exceptionThrown = false;
#Test
public void test(){
Mockito.doAnswer(new Answer<Void>(){
public Void answer(InvocationOnMock invocation) throws Throwable {
exceptionThrown = true;
throw new RuntimeException("some message");
}
}).when(o2).setDataContainer(DataContainer.class);
}
}
Essentially, you can Mock out o2 in your example, and force the exception.
If this doesn't quite do what you want, you may need to mock LOGGER and verify that it's invoked with LOGGER.error("some message");. Unfortunately, mocking statics is not at all elegant, but it can be done with PowerMock.
You could add a custom handler to LOGGER that just throws when an error is logged. For java.util.logging you could do something like:
LOGGER.addHandler(new Handler() {
public void publish(LogRecord record) {
if ("Data set failed".equals(record.getMessage())) {
throw new RuntimeException(record.getThrown());
}
}
public void flush() {}
public void close() throws SecurityException {}
});
I think log4j calls it "Appender," but the same principle should work. See How to create a own Appender in log4j? or How to Create a Custom Appender in log4j2?

java throwing exception without catching it?

Is it possible to throw an exception without catching it?
Example
public void foo() throws SomeException{
// ....
if (somethingCatestrophic) throw new SomeException();
// ....
}
Now I want to call foo, but don't want to catch any errors, as the exceptions should never been thrown at runtime (unless there's a bug)
Unless it is something you are planning for and recovering from locally, it is probably best in this case to use an unchecked exception, e.g., a RuntimeException derivative.
Why don't you catch it inside the method?
Simply use try catch block and go on, if the exception is insignificant and doesn't influence any behaviour of your program.
You can avoid catching an exception, but if there is an exception thrown and you don't catch it your program will cease execution (crash).
There is no way to ignore an exception. If your app doesn't need to do anything in response to a given exception, then you would simply catch it, and then do nothing.
try {
...some code that throws an exception...
} catch (SomeException ex) {
// do nothing
}
NOTE: This is often considered bad style, however, and people may tell you so. The often-cited reason is that, even if you're not going to do anything with the exception, that in most cases you should at least log it somewhere, notify the user, or take some other appropriate action depending on what you app is doing, and what caused the exception in the first place. If you're not sure why an exception is being thrown (maybe it's a bug you haven't solved yet), then generally you should at least log it so you can figure it out later.
If SomeException is a checked exception, the method that calls foo() will either have to catch that exception and deal with it or also be declared to throw SomeException or a parent of it.
If SomeException is a runtime exception, then methods that call it will not need to catch it.
There is a trick, You can play with generics.
/**
* A java syntax glitch to throw any throwable without the need to catch it.
*
* #param throwable to be ignite
* #param <T> the type of the throwable to trick the compiler that it's the one thrown
* #throws T exactly the given throwable
*/
public static <T extends Throwable> void ignite(Throwable throwable) throws T {
Objects.requireNonNull(throwable, "throwable");
throw (T) throwable;
}
This test should pass
#Test(expected = IOException.class)
public void ignite() {
ignite(new IOException());
}

How can I detect when an Exception's been thrown globally in Java?

How can I detect when an Exception has been thrown anywhere in my application?
I'm try to auto-magically send myself an email whenever an exception is thrown anywhere in my Java Desktop Application. I figure this way I can be more proactive.
I know I could just explicitly log and notify myself whenever an exception occurs, but I'd have to do it everywhere and I might(more likely will) miss a couple.
Any suggestions?
You probobly don't want to mail on any exception. There are lots of code in the JDK that actaully depend on exceptions to work normally. What I presume you are more inerested in are uncaught exceptions. If you are catching the exceptions you should handle notifications there.
In a desktop app there are two places to worry about this, in the event-dispatch-thread (EDT) and outside of the EDT. Globaly you can register a class implementing java.util.Thread.UncaughtExceptionHandler and register it via java.util.Thread.setDefaultUncaughtExceptionHandler. This will get called if an exception winds down to the bottom of the stack and the thread hasn't had a handler set on the current thread instance on the thread or the ThreadGroup.
The EDT has a different hook for handling exceptions. A system property 'sun.awt.exception.handler' needs to be registerd with the Fully Qualified Class Name of a class with a zero argument constructor. This class needs an instance method handle(Throwable) that does your work. The return type doesn't matter, and since a new instance is created every time, don't count on keeping state.
So if you don't care what thread the exception occurred in a sample may look like this:
class ExceptionHandler implements Thread.UncaughtExceptionHandler {
public void uncaughtException(Thread t, Throwable e) {
handle(e);
}
public void handle(Throwable throwable) {
try {
// insert your e-mail code here
} catch (Throwable t) {
// don't let the exception get thrown out, will cause infinite looping!
}
}
public static void registerExceptionHandler() {
Thread.setDefaultUncaughtExceptionHandler(new ExceptionHandler());
System.setProperty("sun.awt.exception.handler", ExceptionHandler.class.getName());
}
}
Add this class into some random package, and then call the registerExceptionHandler method and you should be ready to go.
The new debugging hooks in Java 1.5 let you do this. It enables e.g. "break on any exception" in debuggers.
Here's the specific Javadoc you need.
Check out Thread.UncaughtExceptionHandler. You can set it per thread or a default one for the entire VM.
This would at least help you catch the ones you miss.
If you're using a web framework such as Spring then you can delegate in your web.xml to a page and then use the controller to send the email. For example:
In web.xml:
<error-page>
<error-code>500</error-code>
<location>/error/500.htm</location>
</error-page>
Then define /error/500.htm as a controller. You can access the exception from the parameter javax.servlet.error.exception:
Exception exception = (Exception) request.getAttribute("javax.servlet.error.exception");
If you're just running a regular Java program, then I would imagine you're stuck with public static void main(String[] args) { try { ... } catch (Exception e) {} }
If you are using java 1.3/1.4, Thread.UncaughtExceptionHandler is not available.
In this case you can use a solution based on AOP to trigger some code when an exception is thrown. Spring and/or aspectJ might be helpful.
In my current project I faced the similar requirement regarding the errors detection. For this purpose I have applied the following approach: I use log4j for logging across my app, and everywhere, where the exception is caught I do the standard thing: log.error("Error's description goes here", e);, where e is the Exception being thrown (see log4j documentation for details regarding the initialization of the "log").
In order to detect the error, I use my own Appender, which extends the log4j AppenderSkeleton class:
import org.apache.log4j.AppenderSkeleton;
import org.apache.log4j.spi.LoggingEvent;
public class ErrorsDetectingAppender extends AppenderSkeleton {
private static boolean errorsOccured = false;
public static boolean errorsOccured() {
return errorsOccured;
}
public ErrorsDetectingAppender() {
super();
}
#Override
public void close() {
// TODO Auto-generated method stub
}
#Override
public boolean requiresLayout() {
return false;
}
#Override
protected void append(LoggingEvent event) {
if (event.getLevel().toString().toLowerCase().equals("error")) {
System.out.println("-----------------Errors detected");
this.errorsOccured = true;
}
}
}
The log4j configuration file has to just contain a definition of the new appender and its attachement to the selected logger (root in my case):
log4j.rootLogger = OTHER_APPENDERS, ED
log4j.appender.ED=com.your.package.ErrorsDetectingAppender
You can either call the errorsOccured() method of the ErrorsDetectingAppender at some significant point in your programs's execution flow or react immidiately by adding functionality to the if block in the append() method. This approach is consistent with the semantics: things that you consider errors and log them as such, are detected. If you will later consider selected errors not so important, you just change the logging level to log.warn() and report will not be sent.
In this case I think your best bet might be to write a custom classloader to handle all classloading in your application, and whenever an exception class is requested you return a class that wraps the requested exception class. This wrapper calls through to the wrapped exception but also logs the exception event.
I assume you don't mean any Exception but rather any uncaught Exception.
If this is the case this article on the Sun Website has some ideas. You need to wrap your top level method in a try-catch block and also do some extra work to handle other Threads.
Sending an email may not be possible if you are getting a runtime exception like OutOfMemoryError or StackOverflow. Most likely you will have to spawn another process and catch any exceptions thrown by it (with the various techniques mentioned above).
There is simply no good reason to be informed of every thrown exception. I guess you are assuming that a thrown exception indicates a "problem" that your "need" to know about. But this is wrong. If an exception is thrown, caught and handled, all is well. The only thing you need to be worried about is an exception that is thrown but not handled (not caught). But you can do that in a try...catch clause yourself.

Categories