Limiting memory usage for Solr on Jetty - java

I have a memory-limited environment and I'm running Solr on Jetty with the following command:
java -jar -Xmx64M -Xmn32M -Xss512K start.jar
But the total memory consumption of the Solr instance (or Jetty) seems to be much higher than the heap limit I provide. The output of ps is:
ps -u buradayiz -o rss,etime,pid,command
155164 01:37:40 21989 java -jar -Xmx64M -Xmn32M -Xss512K start.jar
As you see, the RSS is over 150M. How can I avoid this situation? I just want to get a simple OutOfMemory exception when Solr/Jetty uses more memory than I let them.
I understand that there may be a difference between the heap limit I provide and the actual memory usage, but a difference factor of two (actually 2.5) seems a lot to me. I must be missing something.
Thanks.

There are a number of factors that contribute to memory usage beyond the heap specification.
A major one in your situation is the permanent generation. It's used to load classes for all the dependencies required to run the application and a few other things. There's not too much getting around a certain minimum for a given application due the classes necessary. You likely need around 64M (perhaps more) to run Solr on Jetty.
You can specify a maximum size to prevent the permanent generation from growing for the other things, e.g. add -XX:MaxPermSize=64M to your command line. It's unlikely going to help much though, and it might even break it if more is required. Usually it's almost all used by classes that you need.
Another contributor to memory usage beyond the heap is the stack size per thread. Each thread in your case is going to consume 512K. You can probably specify 256K safely, although you probably don't have enough threads running to matter too much.

I have the same problem; trying to run it in a limited environment. (Max 400mb ram/vm size). This solution seems to get it running at least.

Related

Java heap space OutOfMemory exception in spring boot application [duplicate]

I am writing a client-side Swing application (graphical font designer) on Java 5. Recently, I am running into java.lang.OutOfMemoryError: Java heap space error because I am not being conservative on memory usage. The user can open unlimited number of files, and the program keeps the opened objects in the memory. After a quick research I found Ergonomics in the 5.0 Java Virtual Machine and others saying on Windows machine the JVM defaults max heap size as 64MB.
Given this situation, how should I deal with this constraint?
I could increase the max heap size using command line option to java, but that would require figuring out available RAM and writing some launching program or script. Besides, increasing to some finite max does not ultimately get rid of the issue.
I could rewrite some of my code to persist objects to file system frequently (using database is the same thing) to free up the memory. It could work, but it's probably a lot work too.
If you could point me to details of above ideas or some alternatives like automatic virtual memory, extending heap size dynamically, that will be great.
Ultimately you always have a finite max of heap to use no matter what platform you are running on. In Windows 32 bit this is around 2GB (not specifically heap but total amount of memory per process). It just happens that Java chooses to make the default smaller (presumably so that the programmer can't create programs that have runaway memory allocation without running into this problem and having to examine exactly what they are doing).
So this given there are several approaches you could take to either determine what amount of memory you need or to reduce the amount of memory you are using. One common mistake with garbage collected languages such as Java or C# is to keep around references to objects that you no longer are using, or allocating many objects when you could reuse them instead. As long as objects have a reference to them they will continue to use heap space as the garbage collector will not delete them.
In this case you can use a Java memory profiler to determine what methods in your program are allocating large number of objects and then determine if there is a way to make sure they are no longer referenced, or to not allocate them in the first place. One option which I have used in the past is "JMP" http://www.khelekore.org/jmp/.
If you determine that you are allocating these objects for a reason and you need to keep around references (depending on what you are doing this might be the case), you will just need to increase the max heap size when you start the program. However, once you do the memory profiling and understand how your objects are getting allocated you should have a better idea about how much memory you need.
In general if you can't guarantee that your program will run in some finite amount of memory (perhaps depending on input size) you will always run into this problem. Only after exhausting all of this will you need to look into caching objects out to disk etc. At this point you should have a very good reason to say "I need Xgb of memory" for something and you can't work around it by improving your algorithms or memory allocation patterns. Generally this will only usually be the case for algorithms operating on large datasets (like a database or some scientific analysis program) and then techniques like caching and memory mapped IO become useful.
Run Java with the command-line option -Xmx, which sets the maximum size of the heap.
See here for details.
You could specify per project how much heap space your project wants
Following is for Eclipse Helios/Juno/Kepler:
Right mouse click on
Run As - Run Configuration - Arguments - Vm Arguments,
then add this
-Xmx2048m
Increasing the heap size is not a "fix" it is a "plaster", 100% temporary. It will crash again in somewhere else. To avoid these issues, write high performance code.
Use local variables wherever possible.
Make sure you select the correct object (EX: Selection between String, StringBuffer and StringBuilder)
Use a good code system for your program(EX: Using static variables VS non static variables)
Other stuff which could work on your code.
Try to move with multy THREADING
Big caveat ---- at my office, we were finding that (on some windows machines) we could not allocate more than 512m for Java heap. This turned out to be due to the Kaspersky anti-virus product installed on some of those machines. After uninstalling that AV product, we found we could allocate at least 1.6gb, i.e, -Xmx1600m (m is mandatory other wise it will lead to another error "Too small initial heap") works.
No idea if this happens with other AV products but presumably this is happening because the AV program is reserving a small block of memory in every address space, thereby preventing a single really large allocation.
I would like to add recommendations from oracle trouble shooting article.
Exception in thread thread_name: java.lang.OutOfMemoryError: Java heap space
The detail message Java heap space indicates object could not be allocated in the Java heap. This error does not necessarily imply a memory leak
Possible causes:
Simple configuration issue, where the specified heap size is insufficient for the application.
Application is unintentionally holding references to objects, and this prevents the objects from being garbage collected.
Excessive use of finalizers.
One other potential source of this error arises with applications that make excessive use of finalizers. If a class has a finalize method, then objects of that type do not have their space reclaimed at garbage collection time
After garbage collection, the objects are queued for finalization, which occurs at a later time. finalizers are executed by a daemon thread that services the finalization queue. If the finalizer thread cannot keep up with the finalization queue, then the Java heap could fill up and this type of OutOfMemoryError exception would be thrown.
One scenario that can cause this situation is when an application creates high-priority threads that cause the finalization queue to increase at a rate that is faster than the rate at which the finalizer thread is servicing that queue.
VM arguments worked for me in eclipse. If you are using eclipse version 3.4, do the following
go to Run --> Run Configurations --> then select the project under maven build --> then select the tab "JRE" --> then enter -Xmx1024m.
Alternatively you could do Run --> Run Configurations --> select the "JRE" tab --> then enter -Xmx1024m
This should increase the memory heap for all the builds/projects. The above memory size is 1 GB. You can optimize the way you want.
Yes, with -Xmx you can configure more memory for your JVM.
To be sure that you don't leak or waste memory. Take a heap dump and use the Eclipse Memory Analyzer to analyze your memory consumption.
Follow below steps:
Open catalina.sh from tomcat/bin.
Change JAVA_OPTS to
JAVA_OPTS="-Djava.awt.headless=true -Dfile.encoding=UTF-8 -server -Xms1536m
-Xmx1536m -XX:NewSize=256m -XX:MaxNewSize=256m -XX:PermSize=256m
-XX:MaxPermSize=256m -XX:+DisableExplicitGC"
Restart your tomcat
By default for development JVM uses small size and small config for other performance related features. But for production you can tune e.g. (In addition it Application Server specific config can exist) -> (If there still isn't enough memory to satisfy the request and the heap has already reached the maximum size, an OutOfMemoryError will occur)
-Xms<size> set initial Java heap size
-Xmx<size> set maximum Java heap size
-Xss<size> set java thread stack size
-XX:ParallelGCThreads=8
-XX:+CMSClassUnloadingEnabled
-XX:InitiatingHeapOccupancyPercent=70
-XX:+UnlockDiagnosticVMOptions
-XX:+UseConcMarkSweepGC
-Xms512m
-Xmx8192m
-XX:MaxPermSize=256m (in java 8 optional)
For example: On linux Platform for production mode preferable settings.
After downloading and configuring server with this way http://www.ehowstuff.com/how-to-install-and-setup-apache-tomcat-8-on-centos-7-1-rhel-7/
1.create setenv.sh file on folder /opt/tomcat/bin/
touch /opt/tomcat/bin/setenv.sh
2.Open and write this params for setting preferable mode.
nano /opt/tomcat/bin/setenv.sh
export CATALINA_OPTS="$CATALINA_OPTS -XX:ParallelGCThreads=8"
export CATALINA_OPTS="$CATALINA_OPTS -XX:+CMSClassUnloadingEnabled"
export CATALINA_OPTS="$CATALINA_OPTS -XX:InitiatingHeapOccupancyPercent=70"
export CATALINA_OPTS="$CATALINA_OPTS -XX:+UnlockDiagnosticVMOptions"
export CATALINA_OPTS="$CATALINA_OPTS -XX:+UseConcMarkSweepGC"
export CATALINA_OPTS="$CATALINA_OPTS -Xms512m"
export CATALINA_OPTS="$CATALINA_OPTS -Xmx8192m"
export CATALINA_OPTS="$CATALINA_OPTS -XX:MaxMetaspaceSize=256M"
3.service tomcat restart
Note that the JVM uses more memory than just the heap. For example
Java methods, thread stacks and native handles are allocated in memory
separate from the heap, as well as JVM internal data structures.
I read somewhere else that you can try - catch java.lang.OutOfMemoryError and on the catch block, you can free all resources that you know might use a lot of memory, close connections and so forth, then do a System.gc() then re-try whatever you were going to do.
Another way is this although, i don't know whether this would work, but I am currently testing whether it will work on my application.
The Idea is to do Garbage collection by calling System.gc() which is known to increase free memory. You can keep checking this after a memory gobbling code executes.
//Mimimum acceptable free memory you think your app needs
long minRunningMemory = (1024*1024);
Runtime runtime = Runtime.getRuntime();
if(runtime.freeMemory()<minRunningMemory)
System.gc();
Easy way to solve OutOfMemoryError in java is to increase the maximum heap size by using JVM options -Xmx512M, this will immediately solve your OutOfMemoryError. This is my preferred solution when I get OutOfMemoryError in Eclipse, Maven or ANT while building project because based upon size of project you can easily ran out of Memory.
Here is an example of increasing maximum heap size of JVM, Also its better to keep -Xmx to -Xms ration either 1:1 or 1:1.5 if you are setting heap size in your java application.
export JVM_ARGS="-Xms1024m -Xmx1024m"
Reference Link
If you came here to search this issue from REACT NATIVE.
Then i guess you should do this
cd android/ && ./gradlew clean && cd ..
Add this line to your gradle.properties file
org.gradle.jvmargs=-Xmx2048m -XX:MaxPermSize=512m -XX:+HeapDumpOnOutOfMemoryError -Dfile.encoding=UTF-8
It should work. You can change MaxPermSize accordingly to fix your heap problem
I have faced same problem from java heap size.
I have two solutions if you are using java 5(1.5).
just install jdk1.6 and go to the preferences of eclipse and set the jre path of jav1 1.6 as you have installed.
Check your VM argument and let it be whatever it is.
just add one line below of all the arguments present in VM arguments as
-Xms512m -Xmx512m -XX:MaxPermSize=...m(192m).
I think it will work...
If you need to monitor your memory usage at runtime, the java.lang.management package offers MBeans that can be used to monitor the memory pools in your VM (eg, eden space, tenured generation etc), and also garbage collection behaviour.
The free heap space reported by these MBeans will vary greatly depending on GC behaviour, particularly if your application generates a lot of objects which are later GC-ed. One possible approach is to monitor the free heap space after each full-GC, which you may be able to use to make a decision on freeing up memory by persisting objects.
Ultimately, your best bet is to limit your memory retention as far as possible whilst performance remains acceptable. As a previous comment noted, memory is always limited, but your app should have a strategy for dealing with memory exhaustion.
In android studio add/change this line at the end of gradle.properties (Global Properties):
...
org.gradle.jvmargs=-XX\:MaxHeapSize\=1024m -Xmx1024m
if it doesn't work you can retry with bigger than 1024 heap size.
add the below code inside android/gradle.properties:
org.gradle.jvmargs=-Xmx4096m -XX:MaxPermSize=4096m -XX:+HeapDumpOnOutOfMemoryError
org.gradle.daemon=true
org.gradle.parallel=true
org.gradle.configureondemand=true
Note that if you need this in a deployment situation, consider using Java WebStart (with an "ondisk" version, not the network one - possible in Java 6u10 and later) as it allows you to specify the various arguments to the JVM in a cross platform way.
Otherwise you will need an operating system specific launcher which sets the arguments you need.
In my case it solved by assigning more memory to Shared build process heap size in intellij settings.
Go to intellij settings > Compiler > Shared build process heap size
Regarding to netbeans, you could set max heap size to solve the problem.
Go to 'Run', then --> 'Set Project Configuration' --> 'Customise' --> 'run' of its popped up window --> 'VM Option' --> fill in '-Xms2048m -Xmx2048m'.
If you are using Android Studio just add these lines with gradle.properties file
org.gradle.jvmargs=-Xmx2048m -XX:MaxPermSize=512m -XX:+HeapDumpOnOutOfMemoryError -Dfile.encoding=UTF-8
Android Studio
File -> Invalidate Caches and Restart solved it for me :)
If this issue is happening in Wildfly 8 and JDK1.8,then we need to specify MaxMetaSpace settings instead of PermGen settings.
For example we need to add below configuration in setenv.sh file of wildfly.
JAVA_OPTS="$JAVA_OPTS -XX:MaxMetaspaceSize=256M"
For more information, please check Wildfly Heap Issue
If you keep on allocating & keeping references to object, you will fill up any amount of memory you have.
One option is to do a transparent file close & open when they switch tabs (you only keep a pointer to the file, and when the user switches tab, you close & clean all the objects... it'll make the file change slower... but...), and maybe keep only 3 or 4 files on memory.
Other thing you should do is, when the user opens a file, load it, and intercept any OutOfMemoryError, then (as it is not possible to open the file) close that file, clean its objects and warn the user that he should close unused files.
Your idea of dynamically extending virtual memory doesn't solve the issue, for the machine is limited on resources, so you should be carefull & handle memory issues (or at least, be carefull with them).
A couple of hints i've seen with memory leaks is:
--> Keep on mind that if you put something into a collection and afterwards forget about it, you still have a strong reference to it, so nullify the collection, clean it or do something with it... if not you will find a memory leak difficult to find.
--> Maybe, using collections with weak references (weakhashmap...) can help with memory issues, but you must be carefull with it, for you might find that the object you look for has been collected.
--> Another idea i've found is to develope a persistent collection that stored on database objects least used and transparently loaded. This would probably be the best approach...
Java OOM Heap space issue can also arise when your DB connection pool got full.
I faced this issue because of my Hikari Connection pool (when upgraded to Spring boot 2.4.*) was full and not able to provide connections anymore (all active connections are still pending to fetch results from database).
Issue is some of our native queries in JPA Repositories contain ORDER BY ?#{#pageable} which takes a very long time to get results when upgraded.
Removed ORDER BY ?#{#pageable} from all the native queries in JPA repositories and OOM heap space issue along with connection pool issue got resolved.
If this error occurs right after execution of your junit tests, then you should execute Build -> Rebuild Project.
If this error comes up during APK generation in react-native, cd into the android folder in your project and do:
./gradlew clean
then
./gradlew assembleRelease
If error persists, then, restart your machine.
In Intellij, it worked for me just by giving the "Build Project"
If everything else fails, in addition to increasing the max heap size try also increasing the swap size. For Linux, as of now, relevant instructions can be found in https://linuxize.com/post/create-a-linux-swap-file/.
This can help if you're e.g. compiling something big in an embedded platform.

Measure peak memory consumption (of a Java Application) at runtime?

I have to run a couple of java services on my machine to obtain a certain dev environment (and get my not-java-related work done)
java -Xmx400m -jar foo-app/target/foo-app-SNAPSHOT.jar
java -Xmx250m -jar bar-app/target/bar-app-SNAPSHOT.jar
...
To not run out of memory, I need to limit the memory usage. The default (512m afaik) ist too high for my machine so I lowered them somewhat (on a wild as guessing basis). Except for one, where I learned the hard way (crashed, even freezes, and thankfully some .pid error files left behind in the project folder...), that I better settle a little higher:
java -Xmx800m -jar doo-app/target/doo-app-SNAPSHOT.jar
Question: is there a way, to track memory usage of a certain app over time?
By some java command line parameter or even with ps -ae, htop or similar? (thus not fiddling in the source itself, remap garbage collectors, etc, etc)
I see plenty of numbers, but figuring out which belong to which java project running, and what could roughly indicate me a proper peak memory consumption (in a -Xmx___m sense)... I have no idea.
I work under Ubuntu-MATE 16.04, x64.
The best way to analyze memory consumption is a profiler. In your jdk there comes the jvisualvm profiler, which is absolutely sufficient for this task. A (lengthy) tutorial can be found here: https://engineering.talkdesk.com/ninjas-guide-to-getting-started-with-visualvm-f8bff061f7e7
Other approaches are basically shotgun-style -reduce the xmx and then generate load in the system and see if it runs oom. If you do NOT have a straight controll flow you have no way to predict the used memory.

Instructing JVM to use memory like normal processes do?

I'm totally fed up and disgusted of having to guess a good value for the -Xmx command-line option, having my applications crash with OutOfMemoryException, having to modify the -Xmx value and having to restart my applications all the time.
Is there a way to make JVM act normal so that it wouldn't require a -Xmx option, and would allocate and free memory directly from the OS just as any normal application would? Is there some GC which is more efficient, aggressively returning memory to the OS when objects are freed?
If I remember correctly, Java has its roots in embedded environments, but has long past grown in popularity and spread to all kinds of systems. Surely there must be a way to do this in the 21st century? There are many use-cases where an application may require anywhere from a few kilobytes to several terabytes of memory, and the cumbersome -Xmx is really getting in the way.
(Reminder to self: Since there are no good answers iteratively try out some other GC-s and random command line options in cargo cult fashion)
Is there a way to make JVM act normal so that it wouldn't require a -Xmx option, and would allocate and free memory directly from the OS just as any normal application would?
That is what it does by default. You only need to set the maximum heap size to indicate at what point you would rather it get an error than use more memory.
Is there some GC which is more efficient, aggressively returning memory to the OS when objects are freed?
I believe the G1 collector in the Oracle JVM is better at this (because it is newer ??)
If I remember correctly, Java has its roots in embedded environments,
It's root was in Java applets. J2ME was used in embedded systems and this is a different release and code base.
the cumbersome -Xmx is really getting in the way.
I usually don't set it myself. When you have 128 GB or more it defaults to 32 GB.
Since there are no good answers iteratively try out some other GC-s and random command line options in cargo cult fashion
An alternative approach is learning how the GCs work and what their performance tradeoffs are and how those various parameters affect them and then choosing them based on that information instead of randomly.
There is extensive documentation on that topic.
Of course you can still use SO answers as a starting point to find options that are likely to result in the outcome you desire, but there's nothing stopping you from then studying up on why they achieve those results.
No need to worship the planes.

Caused by: java.lang.OutOfMemoryError: Java heap space

MY GOAL:
I want run my application for 1000 users.
NOW
I am trying to run for 100 user. During application run, I'd like to do some process for each user that will take a minimum of one hour per user, so I'm using one thread per user.
ERROR
Caused by: java.lang.OutOfMemoryError: Java heap space
I've tried to figure out what this means, but I'm not really sure how to resolve it.
Can anybody help me?
This error means that your program needs more memory than your JVM allowed it to use!
Therefore you pretty much have two options:
Increase the default memory your program is allowed to use using the -Xmx option (for instance for 1024 MB: -Xmx1024m)
Modify your program so that it needs less memory, using less big data structures and getting rid of objects that are not any more used at some point in your program
As Peter Lawrey pointed out, using a profiler to see what your program is doing in such situations is generally a good idea.
Use a producer/consumer pattern with a limited number of worker threads.
100+ threads is ridiculous - no wonder your application is exploding.
You haven't provided any information which indicates the problem is very different to all the answers given in StackOverflow regarding this error either;
You are using too much memory and you need to use a memory profiler to reduce it.
You are setting the maximum memory too low and you need to increase the maximum memory with -mx or -Xmx
I suspect that since you want 1000 users to run processes which take an hour each you may need more resources than you have. e.g. 1000 cores perhaps? I suggest you look at how much hardware you need based on the CPU, memory, disk IO and network IO that is required to run the users at an acceptible level e.g. 20 users and multiple that by 50.
You can try increasing the JVM heap space when you launch your application. You can try setting it to 2GB with -Xmx2g. If you're running 32-bit Java I think 2GB is as high as you can go, but if you have a 64-bit JVM you should be able to go higher.
Edit:
Example: java -Xmx2g MyApp
I will check 2 areas when there is out of memory error
Is the allocated memory to the JVM sufficient, if not increase it using -Xmx
Check the code thoroughly, more than 90% of the time I found the error with some loop going recursive under some border condition.

Java memory consumption, "top" and HP-Ux

We ship Java applications that are run on Linux, AIX and HP-Ux (PA-RISC). We seem to struggle to get acceptable levels of performance on HP-Ux from applications that work just fine in the other two environments. This is true of both execution time and memory consumption.
Although I'm yet to find a definitive article on "why", I believe that measuring memory consumption using "top" is a crude approach due to things like the shared code giving misleading results. However, it's about all we have to go on with a customer site where memory consumption on HP-Ux has become an issue. It only became an issue this time when we moved from Java 1.4 to Java 1.5 (on HP-Ux 11.23 PA-RISC). By "an issue", I mean that the machine ceased to create new processes because we had exhausted all 16GB of physical memory.
By measuring "before" and "after" total "free memory" we are trying to gauge how much has been consumed by a Java application. I wrote a quick app that stores 10,000 random 64 bit strings in an ArrayList and tried this approach to measuring consumption on Linux and HP-Ux under Java 1.4 and Java 1.5.
The results:
HP Java 1.4 ~60MB
HP Java 1.5 ~150MB
Linux Java 1.4 ~24MB
Linux Java 1.5 ~16MB
Can anyone explain why these results might arise? Is this some idiosyncrasy of the way "top" measures free memory? Does Java 1.5 on HP really consume 2.5 times more memory than Java 1.4?
Thanks.
The JVMs might just have different default parameters. The heap will grow to the size that you have configured to let it. The default on the Sun VM is a certain percentage of the RAM in the machine - that's to say that Java will, by default, use more memory if you use a machine with more memory on it.
I'd be really surprised if the HP-UX VM hadn't had lots of tuning for this sort of thing by HP. I'd suggest you fiddle with the parameters on both - figure out what the smallest max heap size you can use without hurting performance or throughput.
I don't have a HP box right now to test my hypothesis. However, if I were you, I would use a profiler like JConsole(comes with JDK) OR yourkit to measure what is happening.
However, it appears that you started measuring after you saw something amiss; So, I'm NOT discounting that it's happening -- just pointing you at something I'd have done in the same situation.
First, it's not clear what did you measure by "10,000 random 64 bit strings" test. You supposed to start the application, measure it's bootstrap memory footprint, and then run your test. It could easily be that Java 1.5 acquires more heap right after start (due to heap manager settings, for instance).
Second, we do run Java apps under 1.4, 1.5 and 1.6 under HP-UX, and they don't demonstrate any special memory requirements. We have Itanium hardware, though.
Third, why do you use top? Why not just print Runtime.getRuntime().totalMemory()?
Fourth, by adding values to ArrayList you create memory fragmentation. ArrayList has to double it's internal storage now and then. Depending on GC settings and ArrayList.ensureCapacity() implementation the amount of non-collected memory may differ dramatically between 1.4 and 1.5.
Essentially, instead of figuring out the cause of problem you have run a random test that gives you no useful information. You should run a profiler on the application to figure out where the memory leaks.
You might also want to look at the problem you are trying to solve... I don't imagine there are many problems that eat 16GB of memory that aren't due for a good round of optimization.
Are you launching multiple VMs? Are you reading large datasets into memory, and not discarding them quickly enough? etc etc etc.

Categories