I'm trying to implement a Java Swing GUI App with a game. The game is to count how many times a button is clicked in 5 seconds.
I'm using sqlite4java in one of my Java GUI projects. It is pretty minimalistic therefore supports only single-threaded apps.
I want to execute some SQL query after the 5 seconds is up. I have a Thread started in my button's onclick listener whose run() method is implemented like the following:
run() {
timeLeft = 5;
score = 0;
while(timeLeft>0)
Thread.sleep(100);
timeLeft -= 0.1;
update left time on GUI;
}
// time is up
execute some SQLite INSERT query here;
}
And since sqlite4java is single-thread supported, it throws an exception:
SQLite error:com.almworks.sqlite4java.SQLiteException:
[-98] DB[1] confined(Thread[main,5,]) used (Thread[Thread-3,6,main])
How can I possibly execute after thread is finished (outside the thread)? It is throwing an exception because the callee thread and the thread in which database is instantiated (Main thread) are not the same.
How can I make main thread signaled (and handle this signal in main thread) after this thread terminates?
All I want to achieve is to execute query to add user's score to high scores list. That's not an homework, I'm trying to develop a proof-of-concept application for my own ORM framework.
As #corlettk advises, you need to have a separate thread for database operations. sqlite4java comes with SQLiteQueue, which does that for you. There's a tutorial and javadoc with example.
Make sure you wrap ALL database operations with SQLiteJob(s) and pass them to the queue.
Hope this helps!
Igor
Ahmet,
I guess you'll have to do ALL your "database stuff" (including dis/connect) on ONE thread, which should probably be dedicated to this purpose; maybe even "hidden" behind a request-queue.
Good luck with that. Can you "just" swap RDBMS's instead?
Cheers. Keith.
Related
I'm fairly new to java and I was creating a program which would run indefinitely. Currently, the way I have the program set up is calling a certain method which would perform a task then call another method in the same class, this method would perform a task then call the initial method. This process would repeat indefinitely until I stop the compiler.
My problem is when I try to create a GUI to make my program more user friendly, once I press the initial start button this infinite loop will not allow me to perform any other actions -- including stopping the program.
There has to be another way to do this?
I apologize if this method is extremely sloppy, I sort of taught myself java from videos and looking at other programs and don't entirely understand it yet.
You'll need to run your task in a new thread, and have your GUI stuff in another thread.
Actually, if you keep working on this problem, you'll eventually invent event driven programming. Lots of GUI based software, like Android, use this paradigm.
There are several solutions. The first that comes to mind is that you could put whatever method needs to run forever in its own thread, and have a different thread listen for user input. This might introduce difficulties in getting the threads to interact with each other, but it would allow you to do this.
Alternatively, add a method that checks for user input and handles it inside the infinite loop of your program. something like below
while(true){
//do stuff
checkForUserInput();
//do other stuff
}
To solve this problem, you need to run your UI in another thread.
Many programs are based on an infinite loop (servers that keep waiting for a new user to connect for example) and your problem isn't there.
Managing the CPU time (or the core) allocated to your infinite loop and the one allocated to take care of your UI interactions is the job of the operating system, not yours : that's why your UI should run in a separate thread than your actual code.
Depending on the GUI library (Swing, ...) you're using there may be different ways to do it and the way to implement it is well answered on Stack Overflow
I have a GUI and the GUI is starting another thread (Java). This thread is starting a class which is crawling many websites. Now I want to show in the GUI how many websites are crawled and how many are left.
I wonder what's the best solution for that.
First idea was to start a timer in the GUI and periodically ask the crawler how many is left. But I guess this is quite dirty...
Then one could pass the GUI to the crawler and it is calling a GUI method every time the count of ready websites changes. But I don't think that's much better?
What is the best way to do something like that?
It depends.
Ask the crawler how much work it is done isn't a bad idea. The benefit is you can actually control when an update occurs and can balance out the load.
The downside is that the information may go stale very quickly and you may never get accurate results, as by the time you've read the values, the crawler may have already changed them.
You could have the crawler provide a call back interface, which the GUI registers to and when the crawler updates it's states, calls back to the GUI.
The problem here is the UI may become swamped with results, causing to lag as it tries to keep up. Equally, while the crawler is firing these notifications, it isn't doing it's work...
(Assuming Swing)
In either case, you need to make sure that any ideas you make to the UI are made from within the Event Dispatching Thread. This means if you use the callback method, the updates coming back will come from the crawlers thread context. You will need to resync these with the EDT.
In this case you could simply use a SwingWorker which provides mechanisms for syncing updates back to the EDT for you.
Check out Concurrency in Swing for more details
register a callback function to your thread. when your data is dirty, invoke this callback function to notify GUI thread to update. don't forget to use synchronization.
I'm developing an app which must heavily interact with the server.So user input name and password and after authorization the next tasks must be performed:
The app has to fetch all incoming and outcoming messages for this user and load them to SQLite database.
Fetch all user friends (JSON with id,names,contact_data) and also load it to the app's database
Jump to the next activity and display income messages from the local database.
The problem this operations are too slow and when app starts new activity it is nothing to fetch from the database :AsyncTasks have not completed yet.I'm forced to use AsyncTask.get() in order to wait when they all complete but this takes over 16 seconds to wait!So what should I do: use threads, or before loading fetched data to database hold it in memory and display it in the new activity instead of fetching it from the database?But even without database tasks other fetching tasks take nearly 10 seconds to wait!So what should I do?
Oke a couple of things going pretty wrong here.
Do not use AsyncTasks for Networking. Use a service. In short, this is because your AsyncTask will stop, as soon as the Activity that started it will stop. This means that network requests get aborted easily and data goes lost and has to re-start again when the Activity is opened again.
Do not use .get() on AsyncTasks. This makes the UI thread wait for the task to complete, making the whole AsyncTask idea kinda useless. In other words: This blocks your UI.
What you should do:
Read up on using services. You can also have a look at a great opensource library called RoboSpice to help you with this.
Stop using .get() on AsyncTasks, if you want to know when it is done just use a listener.
Execute AsyncTasks on a threadpool ( myTask.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR); ) when possible.
You should use a Service. This way it always can complete the tasks it was doing and you can complete all your tasks. Besides that you should initialize the app once, and after that only update the data.. that can't take 10 seconds.. than you're having an other problem.. But the nice thing of the service is that this can run in the background. see: Services in Android Tutorial
== Edit
Also take a look at GreenDao This library arranges fast SQlLite operations. Without the large setup!
AsyncTasks are not meant to run several small tasks concurrently at the same time. Quoting the docs
When first introduced, AsyncTasks were executed serially on a single background thread. Starting with DONUT, this was changed to a pool of threads allowing multiple tasks to operate in parallel. Starting with HONEYCOMB, tasks are executed on a single thread to avoid common application errors caused by parallel execution.
Use Threads in a ThreadPool when you want to run multiple tasks concurrently.
How you want to handle this situation is up to you. When the background tasks take too long, you can always show an alert dialog to the user and then take them to the activity once the data has been populated. Many apps show a 'Loading' screen when this happens. You can also show the 'Loading' Spinner control if no data is available yet. Never show a blank screen.
If the server side calls are under your control, employ some sort of caching to speed up the time. Any API call that lasts more than a second will make for an impatient user. If not employ one of the techniques mentioned in the previous paragraph. #Perception's technique is also one to consider if you can do it.
I have a SWING UI that contains a button that creates a new SwingWorker thread. That thread then queries the SQLite database for results to put them in a JTable. In my StringWorker constructor, the parameters are various fields taken from other SWING components such as a JSpinner, JComboBoxes, etc.
Since I'm new to all of this thread thing, I'd like some advice from more knowledgeable programmers on how I should go about doing what I want to do.
I'd like to know if threads automatically end when I close the program with System.exit(0); so I don't end up with memory leaks
What is the best way to make sure I don't have two threads accessing my database at the same time (let's say the user clicks multiple times on the button or, other case, an administrator is updating the database with some files as input (within my program), then while the first thread is parsing the files and updating the database, he wants to query the database using the button, etc.).
Is it slower to use threads? At first I did all my calculations right in the EDT and of course the UI locked every time after pressing the button, but it only locked for about 5 seconds if I recall correctly. Now, when I press the button, it doesn't lock up but it seems like the result take about a little bit less than twice as long to show up in the JTable. Is it because I made a mistake in my code or is this normal?
I though about using a static field in the class the queries are in and setting it to true if it's in use. Is that the correct way of doing it? That way, not matter which thread is using the database, the second thread won't launch.
If it's not absolutely necessary (it shouldn't be), don't use System#exit in your code. Here are some explanations why and what is better.
Your database is capable of handling two concurrent requests, so it's not a bad thing in itself. If you use JDBC and its pooled connections via DataSource, then you should probably restrict the usage of one such a connection to one thread at a time. To cure the problem of having redundant database queries, e.g. when "clicking twice", there is probably more than one solution. I assume here that you mean the scenario where you have a Swing UI that is distributed to several people, and each of these instances talks to the same database -> simply disable your button as long as the execution of the database query takes.
It's slightly slower if you do not run your code directly in the Event Dispatch Thread due to scheduling of execution of your workers, but this should not be noticable. To see what goes wrong I would have to see the relevant code.
I'd like to know if threads automatically end when I close the program with System.exit(0);
Yes. Entire process will end and threads that are part of this process. However, if you don't call System.exit(), all non daemon threads must finish before process is gone.
What is the best way to make sure I don't have two threads accessing my database at the same time
Since it's a Swing application, I assume that both you and administrator can't access the application at the same time. However, to guarantee that even in single application you can't start more than one operation affecting database, you have to block UI. Either disable buttons or put glass pane on top of UI. Modal progress dialog is also helpful.
Is it slower to use threads?
No, it is not slower if done right. Slow operation will take as long as it takes. You can't fix it with threads, but you can, either keep speed (perceived) the same while providing nice, non blocking UI or you can do more than one slow operation at a time and therefore increase that perceived speed.
I have a client/server question that i am trying to figure out the best solution for.
If a client ever gets disconnected from the server, for any reason, i would like a way for the input output thread to alert the gui thread that something went wrong, and thus have the gui thread print an error and gracefully handle it (probably drop back out to the login gui). After the initial gui thread is created, the client could change to any number of guis, depending on what he is doing, so I am thinking i need a way to dynamically see what gui is currently being run.
The way that i was thinking of doing this so far:
1) Create an object that creates and shows every gui. So instead of calling invokeLater...SomeGui.CreateAndShoGui()... we would have this object be responsible for doing that, ie GuiObject.showSomeGui();
2) Have each gui implement an interface, which will insure there is a method that, when called, will gracefully shutdown this gui when we have lost connection to the server.
3) Have a thread that monitors the IO thread and the gui object. If something goes wrong on the IO thread, the IO thread will close down and notify the monitoring thread that we have lost connection the server. The monitoring thread could then alert any open guis (from the gui object) that we have lost connection and that it needs to shut down.
I have just started thinking about this, and so far this is the best solution i have come up with. Does this seem like a reasonable solution that wont add too much complexity to the code? Or can anyone recommend a solution that would be simpler for people reading the code to understand?
Thanks
EDIT:
The other option i am toying with is having an object on the IO thread, that also gets passed to each new gui as it is opened. This object will give the currently opened guis reference back to the io thread, so that the io thread can alert it if something goes wrong. I am leaning against this solution though, because it seems like it would be easier to read if you had one object that was dedicated to get this working (like the above solution), instead of passing some obscure object to each gui.
Let me just go through each of your ideas:
1) Bad idea - you are tying your whole application together through a single object. This makes maintainability difficult and is the antithesis of modularity.
2) This is the way to go IMHO. Since it seems that each gui has unique logic in a failure scenario then it stands to reason that the object that best understands what to do would be the gui object itself.
Another version of this idea would be to create an adapter for each gui to put this failure logic into. The advantage would be you have one less dependency between your application framework and your gui. The disadvantage is that this is an extra layer of complexity. If your gui is already pretty coupled to your application then I would choose the interface method. If you want to reuse your guis in another application then the adapter way could help facilitate that.
3) This complements #2 nicely. So let me get this straight - you would have 3 threads: the IO thread, the monitor thread, and the UI thread. I don't know if you need the monitor thread. From what you were saying the IO thread would be able to detect a connection problem by itself (probably because some form of IOException was caught). When a connection problem is discovered the IO thread is not busy since it is just going to shut itself down soon so it might as well just have the responsibility of notifying the guis that there was a problem. The guis should have their interface method called on the UI thread anyways so the IO thread is just calling a bunch of invokeLater() calls (or asyncExec() calls for SWT) and then the IO thread can just shut itself down.
4) (Your Edit) You are basically describing the Visitor pattern. I do not think this is a good solution because the call is from the IO thread to the gui and not the other way around. I am not sure how passing a visitor object around will help in this case.
One final thought. If you make your interface generic (not gui specific) then you can apply this pattern to other resources. For instance you may want to flush your user credentials when you lose connection (since you talked about going to the login screen again). That isn't really gui logic and should not be done from a gui class.
Edit: I would use an event model. Let's say you create a interface like this:
public interface ConnectionFailureListener {
void handleConnectionFailure(); // Add an event object if you need it
}
You could then have registration methods in some object (maybe the Runnable for the IO thread or somewhere else that is convenient for you). These methods would be pretty standard:
public void addConnectionFailureListener(ConnectionFailureListener l) {}
public void removeConnectionFailureListener(ConnectionFailureListener l) {}
When you show a gui on the screen you would add it to your registration object and when you close the gui you would remove it from the registration object. You can add other types of objects as needed - for example when you log in you can add a listener for your credential system and remove it again when log out is processed.
This way when you have a failure condition you simply loop through the currently registered listeners and the listener does its thing.