Java performance: arraylength vs iload - java

for (int i=0; i<arr.length; i++) {
}
This will result in a code:
getstatic #4;
arraylength
While the following code:
int length = arr.length;
for (int i=0; i<length; i++) {
}
will be compiled as:
iload_3
Is there a difference between the two snippets? Which code runs faster?
As you an see, the array is a static member in my case. Static and final to be exact. Taking JIT optimization into account, a basic optimizer can sense that and hard code the length of the array into the machine code of the method. It is much harder to follow this logic with a local variable (second case), so one would think there is a greater chance that the first one will be optimized than the second.

As it's static and final, I suspect it could hard-code the length, although I'm not sure it would go that far. But the JIT compiler may well still be able to do better with the first form than the second.
In particular, if it can detect that the array doesn't change within the loop, it can avoid evaluating the length more than once and remove array bounds checks within the loop - it can validate that you're never going to access the array outside the range [0, length).
I would hope that by now, decent JITs would notice the second form too - but I'd still prefer the first form for readability, and I'd want evidence of it not performing as well as the second before changing to that one.
As ever, write the most readable code first, but measure it against performance requirements.

Is there a difference between the two snippets?
It depends. If the arr variable is updated in the body of the loop, then the two code snippets are semantically different.
Which code runs faster?
It is impossible to say. It depends on the native code generated by the JIT compiler, and that can vary from one patch release to the next. The only know for sure is to dump the native code and examine it in detail, or benchmark the code. But either way, the difference is usually too small to be worth worrying about.

One optimisation the JVM does is to avoid bounds checking the array on every access. Instead it can bounds check the first and last value instead.
However, it is possible some micro-optimisation will confuse the JVM and you will get slower less optimised code in the end.
The form I use when micro-optimising is
for (int i = 0, length = methodCall(arr); i < length; i++) {
// use the array.
}
I prefer to use the simplest and most obvious solution to a problem because the JVM is most likely to optimise this use case best.

Related

Multiplying arrays in Java without a for loop

Suppose I have two equally long arrays of numbers. I want to create a third array such that:
c[0] = a[0] * b[0]
c[1] = a[1] * b[1]
...
If I were in Matlab, I could write a loop that performed the multiplication like this:
for i=1:length(a)
c(i) = a(i) * b(i);
end
but I know that it's good to avoid for loops, and there's a way to do that, which is:
c = a .* b;
This makes sense to me, and having timed it (tic toc) several times on two 8192-length arrays of random numbers, the .* method consistently finishes about 3x faster than the for loop.
So now I want to multiply the arrays in Java. So I write a for loop and say:
for (int i=0; i<a.length; i++) {
c[i] = a[i] * b[i];
}
My question is: is there a better way of doing this that avoids the for loop? And if there is, does it make a difference? In my mind, it runs faster without the for loop because it's multiplying the numbers in parallel instead of in series, but I have no idea what's going on under the hood (like if the compiler is unrolling the loop on its own).
There are (at least) two reasons why .* is faster than an explicit loop in Matlab. By explicit I mean a loop written in Matlab code, as opposed to internal loops that Matlab functions might be using. The reasons are:
.* is vectorized. This means that, although it very likely does the computations internally with a loop, that loop has been coded in some faster language than Matlab itself.
.* is multithreaded, and so it benefits from multiple cores running in parallel.
So in Matlab, whenever there is a built-in vectorized function, you should use it. Although the speed of Matlab's explicit loops has improved in recent years (thanks to JIT compiling for example), they are still slower than their vectorized versions.
Java follows a more conventional approach, in which explicit loops are the norm. They are not slow, and generally there are not vectorized functions that can replace them. So I'd say an explicit loop is the way to go in Java.
Although YOU are not writing a loop in Matlab, underneath, it's most likely that there is some kind of loop, and even maybe more than one (we'd have to check the source code). There is nothing magic in Matlab. It's just a "simplified" language, where underneath there are more complex code generated.
Your Java loop is the correct way.

Checking condition in loop [duplicate]

This question already has answers here:
Using collection size in for loop comparison
(4 answers)
for loop optimization
(15 answers)
Closed 9 years ago.
I would like to ask more experienced developers about one simple, but for me not obvious, thing. Assume you have got such a code (Java):
for(int i=0; i<vector.size(); i++){
//make some stuff here
}
I came across such statements very often, so maybe there is nothing wrong in it. But for me, it seems unnecessary to invoke a size method in each iteration. I would use such approach:
int vectorSize = vector.size();
for(int i=0; i<vectorSize; i++){
//make some stuff here
}
The same thing here:
for(int i=0; i<myTreeNode.getChildren().size(); i++){
//make some stuff here
}
I am definitely not an expert in programming yet, so my question is: Am I seeking a gap where the hedge is whole or it is important to take care of such details in professional code?
A method invocation requires that the JVM does indeed do additional stuff. So what you're doing, at first view seems like an optimization.
However, some JVM implementations are smart enough to inline method calls, and for those, the difference will be nonexistent.
The Android programming guidelines for example always recommend doing what you've pointed out, but again, the JVM implementation manual (if you can get your hands on one) will tell you if it optimizes code for you or not.
Usually size() is a small constant-time operation and so the cost of calling size is trivial compared to the cost of executing the loop body, and the just in time compiler may be taking care of this optimization for you; therefore, there may not be much benefit to this optimization.
That said, this optimization does not adversely affect code readability, so it isn't something to be avoided; often code optimizations that only affect speed by a small factor (as opposed to e.g. an optimization that changes a O(n) operation to a O(1) operation) should be avoided for this reason, for example you can unroll a loop:
int i;
int vectorSizeDivisibleBy4 = vectorSize - vectorSize % 4; // returns lowest multiple of four in vectorSize
for(i = 0; i < vectorSizeDivisibleBy4; i += 4) {
// loop body executed on [i]
// second copy of loop body executed on [i+1]
// third copy of loop body executed on [i+2]
// fourth copy of loop body executed on [i+3]
}
for(; i < vectorSize; i++) { // in case vectorSize wasn't a factor of four
// loop body
}
By unrolling the loop four times you reduce the number of times that i < vectorSize is evaluated by a factor of four, at the cost of making your code an unreadable mess (it might also muck up the instruction cache, resulting in a negative performance impact). Don't do this. But, like I said, int vectorSize = vector.size() doesn't fall into this category, so have at it.
At the 1st sight the alternative you are suggesting seams an optimization, but in terms of speed it is identical to the common approach, because of:
the complexity time of the call of size() function in a java vector has a complexity of order O(1) since each vector has always stored a variable containing its size, so you don't need to calculate its size in each iteration, you just access it.
note:
you can see that the size() function in: http://www.docjar.com/html/api/java/util/Vector.java.html is just returning a protected variable elementCount.

Performance of 'buffer[k%length]' vs 'buffer[k] catch ArrayIndexOutOfBounds'

A simple question about java performance. If I write a loop
for(int i=0;i<n;++i) buffer[(k++)%buffer.length]=something;
in which something is a non trivial digital filter. With this code I have a modulo operation at every write. This feels a bit silly because the Java VM will check that anyway. Therefore I would assume that a consturct using an ArrayIndexOutOfBounds would be faster (the buffer contains 1'000'000 numbers, so we won't have that overflow too often)
int i;
try
{
for(i=0;i<n;++i,++k) buffer[k]=something;
}
catch (ArrayIndexOutOfBounds e)
{
k=0;
for(;i<n;++i,++k) buffer[k]=something;
}
A third solution could be to calculate in advance at what point we would overflow and then split the loop manually in two. The code to determine how far the loop can go is executed every 768 samples, so from that perspective it might be slower than the catch method.
The problem here, aside from the silly duplication of code, which I will gladly sacrifice on the altar of performance, is that we have more code. And there it often appears that java doesn't optimize as well as with smaller routines.
So my question is: what strategy is the most performant ? Anybody experience with this type of construct ? Also, can anybody shed a light on the performance on android devices of both constructs ?
Your answer depends on your target platform. You've added the Android tag, so I'm going to answer in terms of Dalvik and (let's say) a Nexus 4.
First, the ARMv7-A architecture doesn't provide integer division instructions. Your modulus will be computed in software every time through the loop, which is going to slow you down a bit. (This is why it's best to use power-of-2 sizes for hash tables -- you can use a bit mask rather than a mod.)
Second, throwing an exception is expensive. The VM has to create the exception object, and initialize it with a snapshot of the current stack. In addition to the immediate overhead, you're creating X number of objects that have to be cleaned up later, and increasing the possibility that the VM will have to stop you mid-computation and collect garbage.
Third, generally speaking, any computation you can pull out of the inner loop represents a win, so manually testing for array overrun on every loop iteration is unsatisfying. You don't want to add a test for k vs. length to the loop header or body if you can avoid it. (A JIT compiler may do something like this -- if it can tell that the array index never walks off the end of the array, it doesn't have to do a per-element bounds check.)
Based on the (still slightly vague) sense of what you're doing and how many times you're doing it, I'd say the best option is to compute the "break" position ahead of the loop, and iterate the necessary number of times.
I'm curious to know how this turns out in practice. :-)

How do comparison operators work in java?

Recently someone told me that a comparison involving smaller integers will be faster, e.g.,
// Case 1
int i = 0;
int j = 1000;
if(i<j) {//do something}
// Case 2
int j = 6000000;
int i = 500000;
if(i<j){//do something else}
so, comparison (if condition) in Case 1 should be faster than that in Case 2. In Case 2 the integers will take more space to store but that can affect the comparison, I am not sure.
Edit 1: I was thinking of binary representation of i & j, e.g., for i=0, it will be 0 and for j=1000 its 1111101000 (in 32-bit presentation it should be: 22 zeros followed by 1111101000, completely forgot about 32-bit or 64-bit representation, my bad!)
I tried to look at JVM Specification and bytecode of a simple comparison program, nothing made much sense to me. Now the question is how does comparison work for numbers in java? I guess that will also answer why (or why not) any of the cases will be faster.
Edit 2: I am just looking for a detailed explanation, I am not really worried about micro optimizations
If you care about performance, you really only need to consider what happens when the code is compiled to native code. In this case, it is the behaviour of the CPU which matters. For simple operations almost all CPUs work the same way.
so, comparison (if condition) in Case 1 should be faster than that in Case 2. In Case 2 the integers will take more space to store but that can affect the comparison, I am not sure.
An int is always 32-bit in Java. This means it always takes the same space. In any case, the size of the data type is not very important e.g. short and byte are often slower because the native word size is 32-bit and/or 64-bit and it has to extract the right data from a larger type and sign extend it.
I tried to look at JVM Specification and bytecode of a simple comparison program, nothing made much sense to me.
The JLS specifies behaviour, not performance characteristics.
Now the question is how does comparison work for numbers in java?
It works the same way it does in just about every other compiled language. It uses a single machine code instruction to compare the two values and another to perform a condition branch as required.
I guess that will also answer why (or why not) any of the cases will be faster.
Most modern CPUs use branch prediction. To keep the CPUs pipeline full it attempt to predict which branch will be taken (before it know it is the right one to take) so there is no break in the instruction executed. WHen this works well the branch has almost no cost. When it mis-predicts, the pipeline can be filled with instructions for a branch which was the wrong guess and this can cause a significant delay as it clears the pipeline and takes the right branch. In the worst case it can mean 100s of clock cycles delay. e.g.
Consider the following.
int i; // happens to be 0
if (i > 0) {
int j = 100 / i;
Say the branch is usually taken. This means the pipeline could be loaded with an instruction which triggers an interrupt (or Error in Java) before it knows the branch will not be taken. This can result in a complex situation which takes a while to unwind correctly.
These are called Mispredicted branches In short a branch which goes the same way every/most of the time is faster, a branch which suddenly changes or is quite random (e.g. in sorting and tree data structures) will be slower.
Int might be faster on 32-bit system and long might be faster on 64-bit system.
Should I bother about it? No you dont code for system configuration you code based on what are your requirements. Micro optinizations never work and they might introduce some unprecedented issues.
Small Integer objects can be faster because java treats them specific.
All Integer values for -128 && i <= 127 are stored in IntegerCache an inner class of Integer

Technical reasons behind formatting when incrementing by 1 in a 'for' loop?

All over the web, code samples have for loops which look like this:
for(int i = 0; i < 5; i++)
while I used the following format:
for(int i = 0; i != 5; ++i)
I do this because I believe it to be more efficient, but does this really matter in most cases?
Everybody loves their micro-optimizations, but this would not make a difference as far as I can see. I compiled the two variations with g++ on for Intel processors without any fancy optimizations and the results are for
for(int i = 0; i < 5; i++)
movl $0, -12(%ebp)
jmp L2
L3:
leal -12(%ebp), %eax
incl (%eax)
L2:
cmpl $4, -12(%ebp)
jle L3
for(int i = 0; i != 5; ++i)
movl $0, -12(%ebp)
jmp L7
L8:
leal -12(%ebp), %eax
incl (%eax)
L7:
cmpl $5, -12(%ebp)
jne L8
I think jle and jne should translate to equally fast instructions on most architectures.
So for performance, you should not distinguish between the two. In general, I would agree that the first one is a little safer and I also think more common.
EDIT (2 years later): Since this thread recently got again a lot of attention, I would like to add that it will be difficult to answer this question generally. Which versions of code are more efficient is specifically not defined by the C-Standard [PDF] (and the same applies to C++ and probably also for C# ).
Section 5.1.2.3 Program execution
§1 The semantic descriptions in this International Standard describe the behavior of an abstract machine in which issues of optimization are irrelevant.
But it is reasonable to assume that a modern compiler will produce equally efficient code and I think that in only very rare cases will the loop-test and the counting expression be the bottleneck of a for-loop.
As for taste, I write
for(int i = 0; i < 5; ++i)
If for some reason i jumps to 50 in the loop, your version would loop forever. The i < 5 is a sanity check.
The form
for (int i = 0; i < 5; i++)
is idiomatic, so it's easier to read for experienced C programmers.
Especially when used to iterate over an array.
You should write idiomatic code whenever possible as it reads faster.
It is also a little safer in situations when you modify i inside the loop or use an increment different then 1.
But it's a minor thing.
It's best to carefully design your loop and add some asserts to catch broken assumptions early.
If the increment rule changes slightly you immediately have an infinite loop. I much prefer the first end condition.
It depends on the language.
C++ texts often suggest the second format as that will work with iterators which can be compared (!=) directly but not with a greater to or less than condition. Also pre increment can be faster than post increment as there is no need for a copy of the variable for comparison - however optimisers can deal with this.
For integers either form works. The common idiom for C is the first one whilst for C++ it is the second.
For C# and Java use I would foreach to loop over all things.
In C++ there is also the std::for_each function requiring a use of a functor which for simple cases is probably more complex than either example here and the Boost FOR_EACH which can look like the C# foreach but is complex inside.
With regards to using ++i instead of i++, it doesn't make a difference with most compilers, however ++i could be more efficient than i++ when used as an iterator.
There's actually four permutations on what you give. To your two:
for(int i = 0; i < 5; i++)
for(int i = 0; i != 5; ++i)
We can add:
for(int i = 0; i < 5; ++i)
for(int i = 0; i != 5; i++)
On most modern machines with modern compilers it shouldn't be surprising that these will be of exactly the same efficiency. It could be just about possible that you may one day find yourself programming for some small processor where there's a difference between equality comparisons and less-than comparisons.
It may in some case make more sense to a particular mind with a particular case to think of "less than" or of "not equals" depending on the reason why we chose 0 and 5, but even then what makes one seem obvious to one coder may not with another.
More abstractly, these are of the forms:
for(someType i = start; i < end; i++)
for(someType i = start; i != end; ++i)
for(someType i = start; i < end; ++i)
for(someType i = start; i != end; i++)
An obvious difference here is that in two cases someType must have a meaning for < and for the rest it must have a meaning for !=. Types for which != is defined and < isn't are quite common, including quite a few iterator objects in C++ (and potentially in C# where the same approach as STL iterators is possible and sometimes useful, but neither as idiomatic, directly supported by common libraries nor as often useful since there are rival idioms with more direct support). It's worth noting that the STL approach is specifically designed so as to include pointers within the set of valid iterator types. If you're in the habit of using the STL you'll consider the forms with != far more idiomatic even when applied to integers. Personally a very tiny amount of exposure to it was enough to make it my instinct.
On the other hand, while defining < and not != would be rarer, it's applicable to cases where either we replace the increment with a different increase in i's value, or where i may be altered within the loop.
So, there's definite cases on both sides where one or the other is the only approach.
Now for ++i vs i++. Again with integers and when called directly rather than through a function that returns the result (and chances are even then) the practical result will be exactly the same.
In some C-style languages (those without operator over-loading) integers and pointers are about the only cases there is. We could just about artificially invent a case where the increment is called through a function just to change how it goes, and chances are the compiler will still turn them into the same thing anyway.
C++ and C# allow us to override them. Generally the prefix ++ operates like a function that does:
val = OneMoreThan(val);//whatever OneMoreThan means in the context.
//note that we assigned something back to val here.
return val;
And the postfix ++ operates like a function that does:
SomeType copy = Clone(val);
val = OneMoreThan(val);
return copy;
Neither C++ nor C# match the above perfectly (I quite deliberately made my pseudo-code match neither), but in either case there may be a copy or perhaps two made. This may or may not be expensive. It may or may not be avoidable (in C++ we often can avoid it entirely for the prefix form by returning this and in the postfix by returning void). It may or may not be optimised away to nothing, but it remains that it could be more efficient to do ++i than i++ in certain cases.
More particularly, there's the slight possibility of a slight performance improvement with ++i, and with a large class it could even be considerable, but barring someone overriding in C++ so that the two had completely different meanings (a pretty bad idea) it's not generally possible for this to be the other way around. As such, getting into the habit of favouring prefix over postfix means you might gain an improvement mayone one time in a thousand, but won't lose out, so it's a habit C++ coders often get into.
In summary, there's absolutely no difference in the two cases given in your question, but there can be in variants of the same.
I switched to using != some 20+ years ago after reading Dijkstra's book called "A Discipline of Programming". In his book Dijkstra observed that weaker continuation conditions lead to stronger post-conditions in loop constructs.
For example, if we modify your construct to expose i after the loop, the post-condition of the fist loop would be i >= 5, while the post-condition of the second loop is a much stronger i == 5. This is better for reasoning about the program in formal terms of loop invariants, post-conditions, and weakest pre-conditions.
I agree with what's been said about readability - it's important to have code that's easy for a maintainer to read, although you'd hope that whoever that is would understand both pre- and post-increments.
That said, I thought that I'd run a simple test, and get some solid data about which of the four loops runs fastest.
I'm on an average spec computer, compiling with javac 1.7.0.
My program makes a for loop, iterating 2,000,000 time over nothing (so as not to swamp the interesting data with how long it takes to do whatever is in the for loop). It use all four types proposed above, and times the results, repeating 1000 times to get an average.
The actual code is:
public class EfficiencyTest
{
public static int iterations = 1000;
public static long postIncLessThan() {
long startTime = 0;
long endTime = 0;
startTime = System.nanoTime();
for (int i=0; i < 2000000; i++) {}
endTime = System.nanoTime();
return endTime - startTime;
}
public static long postIncNotEqual() {
long startTime = 0;
long endTime = 0;
startTime = System.nanoTime();
for (int i=0; i != 2000000; i++) {}
endTime = System.nanoTime();
return endTime - startTime;
}
public static long preIncLessThan() {
long startTime = 0;
long endTime = 0;
startTime = System.nanoTime();
for (int i=0; i < 2000000; ++i) {}
endTime = System.nanoTime();
return endTime - startTime;
}
public static long preIncNotEqual() {
long startTime = 0;
long endTime = 0;
startTime = System.nanoTime();
for (int i=0; i != 2000000; ++i) {}
endTime = System.nanoTime();
return endTime - startTime;
}
public static void analyseResults(long[] data) {
long max = 0;
long min = Long.MAX_VALUE;
long total = 0;
for (int i=0; i<iterations; i++) {
max = (max > data[i]) ? max : data[i];
min = (data[i] > min) ? min : data[i];
total += data[i];
}
long average = total/iterations;
System.out.print("max: " + (max) + "ns, min: " + (min) + "ns");
System.out.println("\tAverage: " + (average) + "ns");
}
public static void main(String[] args) {
long[] postIncLessThanResults = new long [iterations];
long[] postIncNotEqualResults = new long [iterations];
long[] preIncLessThanResults = new long [iterations];
long[] preIncNotEqualResults = new long [iterations];
for (int i=0; i<iterations; i++) {
postIncLessThanResults[i] = postIncLessThan();
postIncNotEqualResults[i] = postIncNotEqual();
preIncLessThanResults[i] = preIncLessThan();
preIncNotEqualResults[i] = preIncNotEqual();
}
System.out.println("Post increment, less than test");
analyseResults(postIncLessThanResults);
System.out.println("Post increment, inequality test");
analyseResults(postIncNotEqualResults);
System.out.println("Pre increment, less than test");
analyseResults(preIncLessThanResults);
System.out.println("Pre increment, inequality test");
analyseResults(preIncNotEqualResults);
}
}
Sorry if I've copied that in wrong!
The results supprised me - testing i < maxValue took about 1.39ms per loop, whether using pre- or post-increments, but i != maxValue took 1.05ms. That's a that's either a 24.5% saving or a 32.5% loss of time, depending on how you look at it.
Granted, how long it takes a for loop to run probably isn't your bottleneck, but this is the kind of optimisation that it's useful to know about, for the rare occasion when you need it.
I think I'll still stick to testing for less than, though!
Edit
I've tested decrementing i as well, and found that this doesn't really have an effect on th time it takes - for (int i = 2000000; i != 0; i--) and for (int i = 0; i != 2000000; i++) both take the same length of time, as do for (int i = 2000000; i > 0; i--) and for (int i = 0; i < 2000000; i++).
In generic code you should prefer the version with != operator since it only requires your i to be equally-comparable, while the < version requires it to be relationally-comparable. The latter is a stronger requirement than the former. You should generally prefer to avoid stronger requrements when a weaker requirement is perfectly sufficient.
Having said that, in your specific case if int i both will work equally well and there won't be any difference in performance.
I would never do this:
for(int i = 0; i != 5; ++i)
i != 5 leaves it open for the possibility that i will never be 5. It's too easy to skip over it and run into either an infinite loop or an array accessor error.
++i
Although a lot of people know that you can put ++ in front, there are a lot of people who don't. Code needs to be readable to people, and although it could be a micro optimization to make the code go faster, it really isn't worth the extra headache when someone has to modify the code and figure why it was done.
I think Douglas Crockford has the best suggestion and that is to not use ++ or -- at all. It can just become too confusing (may be not in a loop but definitely other places) at times and it is just as easy to write i = i + 1. He thinks it's just a bad habit to get out of, and I kind of agree after seeing some atrocious "optimized" code.
I think what crockford is getting at is with those operators you can get people writing things like:
var x = 0;
var y = x++;
y = ++x * (Math.pow(++y, 2) * 3) * ++x;
alert(x * y);
//the answer is 54 btw.
It is not a good idea to care about efficiency in those cases, because your compiler is usually smart enough to optimize your code when it is able to.
I have worked to a company that produces software for safety-critical systems, and one of the rules was that the loop should end with a "<" instead of a !=. There are several good reasons for that:
Your control variable might jump to a higher value by some hw problem or some memory invasion;
In the maintenance, one could increment your iterator value inside the loop, or do something like "i += 2", and this would make your loop to roll forever;
If for some reason your iterator type changes from "int" to "float" (I don't know why someone would do that, but anyways...) an exact comparison for float points is a bad practice.
(The MISRA C++ Coding Standard (for safety-critical systems) also tell you to prefer the "<" instead of "!=" in the rule 6-5-2. I don't know if I can post the rule definition here because MISRA is a paid document.)
About the ++i or i++, I'd preffer to use ++i. There is no difference for that when you are working with basic types, but when you are using a STL iterator, the preincrement is more efficient. So I always use preincrement to get used to it.
I have decided to list the most informative answers as this question is getting a little crowded.
DenverCoder8's bench marking clearly deserves some recognition as well as the compiled versions of the loops by Lucas. Tim Gee has shown the differences between pre & post increment while User377178 has highlighted some of the pros and cons of < and !=. Tenacious Techhunter has written about loop optimizations in general and is worth a mention.
There you have my top 5 answers.
DenverCoder8
Lucas
Tim Gee
User377178
Tenacious Techhunter
For the record the cobol equivalent of the "for" loop is:-
PERFORM VARYING VAR1
FROM +1 BY +1
UNTIL VAR1 > +100
* SOME VERBOSE COBOL STATEMENTS HERE
END-PERFORM.
or
PERFORM ANOTHER-PARAGRAPH
VARYING VAR2 BY +1
UNTIL TERMINATING-CONDITION
WITH TEST AFTER.
There are many variations on this. The major gotcha for peoples whose minds have not been damaged by long exposure to COBOL is the, by default, UNTIL actually means WHILE i.e. the test is performed at the top of the loop, before the loop variable is incremented and before the body of the loop is processed. You need the "WITH TEST AFTER" to make it a proper UNTIL.
The second is less readable, I think (if only because the "standard" practice seems to be the former).
Numeric literals sprinkled in your code? For shame...
Getting back on track, Donald Knuth once said
We should forget about small
efficiencies, say about 97% of the
time: premature optimization is the
root of all evil.
So, it really boils down to which is easier to parse
So... taking into account both of the above, which of the following is easier for a programmer to parse?
for (int i = 0; i < myArray.Length; ++i)
for (int i = 0; i != myArray.Length; ++i)
Edit: I'm aware that arrays in C# implement the System.Collections.IList interface, but that's not necessarily true in other languages.
Regarding readability. Being a C# programmer who likes Ruby, I recently wrote an extension method for int which allows the following syntax (as in Ruby):
4.Times(x => MyAction(x));
To sum up pros and cons of both options
Pros of !=
when int is replaced with some iterator or a type passed via template argument there is better chance it will work, it will do what is expected and it will be more efficient.
will 'loop forever' if something unpredicted happens to the i variable allowing bug detection
Pros of <
as other say is as efficient as the other one with simple types
it will not run 'forever' if i is increased in the loop or 5 is replaced with some expression that gets modified while the loop is running
will work with float type
more readable - matter of getting used to
My conclusions:
Perhaps the != version should be used in majority of cases, when i is discrete and it is as well as the other side of the comparison is not intended to be tampered within the loop.
While the presence of < would be a clear sign that the i is of simple type (or evaluates to simple type) and the condition is not straightforward: i or condition is additionally modified within the loop and/or parallel processing.
It appears no one has stated the reason why historically the preincrement operator, ++i, has been preferred over the postfix i++, for small loops.
Consider a typical implementation of the prefix (increment and fetch) and the postfix (fetch and increment):
// prefix form: increment and fetch
UPInt& UPInt::operator++()
{
*this += 1; // increment
return *this; // fetch
}
// posfix form: fetch and increment
const UPInt UPInt::operator++(int)
{
const UPInt oldValue = *this;
++(*this);
return oldValue;
}
Note that the prefix operation can be done in-place, where as the postfix requires another variable to keep track of the old value. If you are not sure why this is so, consider the following:
int a = 0;
int b = a++; // b = 0, the old value, a = 1
In a small loop, this extra allocation required by the postfix could theoretically make it slower and so the old school logic is the prefix is more efficient. As such, many C/C++ programmers have stuck with the habit of using the prefix form.
However, noted elsewhere is the fact that modern compilers are smart. They notice that when using the postfix form in a for loop, the return value of the postfix is not needed. As such, it's not necessary to keep track of the old value and it can be optimized out - leaving the same machine code you would get from using the prefix form.
Well... that's fine as long as you don't modify i inside your for loop. The real "BEST" syntax for this entirely depends on your desired result.
If your index were not an int, but instead (say) a C++ class, then it would be possible for the second example to be more efficient.
However, as written, your belief that the second form is more efficient is simply incorrect. Any decent compiler will have excellent codegen idioms for a simple for loop, and will produce high-quality code for either example. More to the point:
In a for loop that's doing heavy performance-critical computation, the index arithmetic will be a nearly negligible portion of the overall load.
If your for loop is performance-critical and not doing heavy computation such that the index arithmetic actually matters, you should almost certainly be restructuring your code to do more work in each pass of the loop.
When I first started programming in C, I used the ++i form in for loops simply because the C compiler I was using at the time did not do much optimization and would generate slightly more efficient code in that case.
Now I use the ++i form because it reads as "increment i", whereas i++ reads as "i is incremented" and any English teacher will tell you to avoid the passive voice.
The bottom line is do whatever seems more readable to you.
I think in the end it boils down to personal preference.
I like the idea of
for(int i = 0; i < 5; i++)
over
for(int i = 0; i != 5; ++i)
due to there being a chance of the value of i jumping past 5 for some reason. I know most times the chances on that happening are slim, but I think in the end its good practice.
We can use one more trick for this.
for (i = 5; i > 0; i--)
I suppose most of the compilers optimize the loops like this.
I am not sure. Someone please verify.
Ultimately, the deciding factor as to what is more efficient is neither the language nor the compiler, but rather, the underlying hardware. If you’re writing code for an embedded microcontroller like an 8051, counting up vs. counting down, greater or less than vs. not equals, and incrementing vs. decrementing, can make a difference to performance, within the very limited time scale of your loops.
While sufficient language and compiler support can (and often do) mitigate the absence of the instructions required to implement the specified code in an optimal but conceptually equivalent way, coding for the hardware itself guarantees performance, rather than merely hoping adequate optimizations exist at compile time.
And all this means, there is no one universal answer to your question, since there are so many different low-end microcontrollers out there.
Of much greater importance, however, than optimizing how your for loop iterates, loops, and breaks, is modifying what it does on each iteration. If causing the for loop one extra instruction saves two or more instructions within each iteration, do it! You will get a net gain of one or more cycles! For truly optimal code, you have to weigh the consequences of fully optimizing how the for loop iterates over what happens on each iteration.
All that being said, a good rule of thumb is, if you would find it a challenge to memorize all the assembly instructions for your particular target hardware, the optimal assembly instructions for all variations of a “for” loop have probably been fully accounted for. You can always check if you REALLY care.
I see plenty of answers using the specific code that was posted, and integer. However the question was specific to 'for loops', not the specific one mentioned in the original post.
I prefer to use the prefix increment/decrement operator because it is pretty much guaranteed to be as fast as the postfix operator, but has the possibility to be faster when used with non-primitive types. For types like integers it will never matter with any modern compiler, but if you get in the habit of using the prefix operator, then in the cases where it will provide a speed boost, you'll benefit from it.
I recently ran a static analysis tool on a large project (probably around 1-2 million lines of code), and it found around 80 cases where a postfix was being used in a case where a prefix would provide a speed benefit. In most of these cases the benefit was small because the size of the container or number of loops would usually be small, but in other cases it could potentially iterate over 500+ items.
Depending on the type of object being incremented/decremented, when a postfix occurs a copy can also occur. I would be curious to find out how many compilers will spot the case when a postfix is being used when its value isn't referenced, and thus the copy could not be used. Would it generate code in that case for a prefix instead? Even the static analysis tool mentioned that some of those 80 cases it had found might be optimized out anyway, but why take the chance and let the compiler decide? I don't find the prefix operator to be at all confusing when used alone, it only becomes a burden to read when it starts getting used, inline, as part of a logic statement:
int i = 5;
i = ++i * 3;
Having to think about operator precedence shouldn't be necessary with simple logic.
int i = 5;
i++;
i *= 3;
Sure the code above takes an extra line, but it reads more clearly. But with a for loop the variable being altered is its own statement, so you don't have to worry about whether it's prefix or postfix, just like in the code block above, the i++ is alone, so little thought is required as to what will happen with it, so this code block below is probably just as readable:
int i = 5;
++i;
i *= 3;
As I've said, it doesn't matter all that much, but using the prefix when the variable is not being used otherwise in the same statement is just a good habit in my opinion, because at some point you'll be using it on a non-primitive class and you might save yourself a copy operation.
Just my two cents.
On many architectures, it is far easier to check whether something is zero that whether it is some other arbitrary integer, therefore if you truly want to optimize the heck out of something, whenever possible count down, not up (here's an example on ARM chips).
In general, it really depends on how you think about numbers and counting. I'm doing lots of DSP and mathematics, so counting from 0 to N-1 is more natural to me, you may be different in this respect.
FORTRAN's DO loop and BASIC's FOR loop implemented < (actually <=) for positive increments. Not sure what COBOL did, but I suspect it was similar. So this approach was "natural" to the designers and users of "new" languages like C.
Additionally, < is more likely than != to terminate in erroneous situations, and is equally valid for integer and floating point values.
The first point above is the probable reason the style got started, the second is the main reason it continues.
I remember one code segment where the i was getting incremented by 2 instead of 1 due to some mistake and it was causing it to go in infinite loop. So it is better to have this loop as shown in the first option. This is more readable also. Because i != 5 and i < 5 conveys two different meaning to the reader. Also if you are increasing the loop variable then i<5 is suppose to end some point of time while i != 5 may never end because of some mistake.
It is not good approach to use as != 5. But
for (int i =0; i<index; ++i)
is more efficient than
for(int i=0; i<index; i++)
Because i++ first perform copy operation. For detailed information you can look operator overloading in C++.

Categories