I'm dealing with the following code that is used to split a large file into a set of smaller files:
FileInputStream input = new FileInputStream(this.fileToSplit);
BufferedInputStream iBuff = new BufferedInputStream(input);
int i = 0;
FileOutputStream output = new FileOutputStream(fileArr[i]);
BufferedOutputStream oBuff = new BufferedOutputStream(output);
int buffSize = 8192;
byte[] buffer = new byte[buffSize];
while (true) {
if (iBuff.available() < buffSize) {
byte[] newBuff = new byte[iBuff.available()];
iBuff.read(newBuff);
oBuff.write(newBuff);
oBuff.flush();
oBuff.close();
break;
}
int r = iBuff.read(buffer);
if (fileArr[i].length() >= this.partSize) {
oBuff.flush();
oBuff.close();
++i;
output = new FileOutputStream(fileArr[i]);
oBuff = new BufferedOutputStream(output);
}
oBuff.write(buffer);
}
} catch (Exception e) {
e.printStackTrace();
}
This is the weird behavior I'm seeing... when I run this code using a 3GB file, the initial iBuff.available() call returns a value of a approximatley 2,100,000,000 and the code works fine. When I run this code on a 12GB file, the initial iBuff.available() call only returns a value of 200,000,000 (which is smaller than the split file size of 500,000,000 and causes the processing to go awry).
I'm thinking this discrepancy in behvaior has something to do with the fact that this is on 32-bit windows. I'm going to run a couple more tests on a 4.5 GB file and a 3.5 GB file. If the 3.5 file works and the 4.5 one doesn't, that will further confirm the theory that it's a 32bit vs 64bit issue since 4GB would then be the threshold.
Well if you read the javadoc it quite clearly states:
Returns the number of bytes that can
be read from this input stream
without blocking (emphasis added by me)
So it's quite clear that what you want is not what this method offers. So depending on the underlying InputStream you may get problems much earlier (eg a stream over the network with a server that doesn't return the filesize - you'd have to read the complete file and buffer it just to return the "correct" available() count, which would take a lot of time - what if you only want to read a header?)
So the correct way to handle this is to change your parsing method to be able to handle the file in pieces. Personally I don't see much reason at all to even use available() here - just calling read() and stopping as soon as read() returns -1 should work fine. Can be made more complicated if you want to assure that every file really contains blockSize byte - just add an internal loop if that scenario is important.
int blockSize = XXX;
byte[] buffer = new byte[blockSize];
int i = 0;
int read = in.read(buffer);
while(read != -1) {
out[i++].write(buffer, 0, read);
read = in.read(buffer);
}
There are few correct uses of available(), and this isn't one of them. You don't need all that junk. Memorize this:
int count;
byte[] buffer = new byte[8192]; // or more
while ((count = in.read(buffer)) > 0)
out.write(buffer, 0, count);
That's the canonical way to copy a stream in Java.
You should not use the InputStream.available() function at all. It is only needed in very special circumstances.
You should also not create byte arrays that are larger than 1 MB. It's a waste of memory. The commonly accepted way is to read a small block (4 kB up to 1 MB) from the source file and then store only as many bytes as you have read in the destination file. Do that until you have reached the end of the source file.
available isn't a measure of how much is still to be read but more a measure how much is guaranteed to be able to read before it might EOF or block waiting for input
and put close calls in the finallies
BufferedInputStream iBuff = new BufferedInputStream(input);
int i = 0;
FileOutputStream output;
BufferedOutputStream oBuff=0;
try{
int buffSize = 8192;
int offset=0;
byte[] buffer = new byte[buffSize];
while(true){
int len = iBuff.read(buffer,offset,buffSize-offset);
if(len==-1){//EOF write out last chunk
oBuff.write(buffer,0,offset);
break;
}
if(len+offset==buffSize){//end of buffer write out to file
try{
output = new FileOutputStream(fileArr[i]);
oBuff = new BufferedOutputStream(output);
oBuff.write(buffer);
}finally{
oBuff.close();
}
++i;
offset=0;
}
offset+=len;
}//while
}finally{
iBuff.close();
}
Here is some code that splits a file. If performance is critical to you, you can experiment with the buffer size.
package so6164853;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.Formatter;
public class FileSplitter {
private static String printf(String fmt, Object... args) {
Formatter formatter = new Formatter();
formatter.format(fmt, args);
return formatter.out().toString();
}
/**
* #param outputPattern see {#link Formatter}
*/
public static void splitFile(String inputFilename, long fragmentSize, String outputPattern) throws IOException {
InputStream input = new FileInputStream(inputFilename);
try {
byte[] buffer = new byte[65536];
int outputFileNo = 0;
OutputStream output = null;
long writtenToOutput = 0;
try {
while (true) {
int bytesToRead = buffer.length;
if (bytesToRead > fragmentSize - writtenToOutput) {
bytesToRead = (int) (fragmentSize - writtenToOutput);
}
int bytesRead = input.read(buffer, 0, bytesToRead);
if (bytesRead != -1) {
if (output == null) {
String outputName = printf(outputPattern, outputFileNo);
outputFileNo++;
output = new FileOutputStream(outputName);
writtenToOutput = 0;
}
output.write(buffer, 0, bytesRead);
writtenToOutput += bytesRead;
}
if (output != null && (bytesRead == -1 || writtenToOutput == fragmentSize)) {
output.close();
output = null;
}
if (bytesRead == -1) {
break;
}
}
} finally {
if (output != null) {
output.close();
}
}
} finally {
input.close();
}
}
public static void main(String[] args) throws IOException {
splitFile("d:/backup.zip", 1440 << 10, "d:/backup.zip.part%04d");
}
}
Some remarks:
Only those bytes that have actually been read from the input file are written to one of the output files.
I left out the BufferedInputStream and BufferedOutputStream since their buffer's size is only 8192 bytes, which less than the buffer I use in the code.
As soon as I open a file, I make sure that it will be closed at the end, no matter what happens. (The finally blocks.)
The code contains only one call to input.read and only one call to output.write. This makes it easier to check for correctness.
The code for splitting a file does not catch the IOException, since it doesn't know what to do in such a case. It is just passed to the caller; maybe the caller knows how to handle it.
Both #ratchet and #Voo are correct.
As for what is happening.
int max value is 2,147,483,647 (http://download.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html).
14 gigabytes is 15,032,385,536 which clearly don't fit an int.
See that according to the API Javadoc (http://download.oracle.com/javase/6/docs/api/java/io/BufferedInputStream.html#available%28%29) and as stated by #Voo, this don't break the method contract at all (just isn't what you are looking for).
Related
I am new to java IO and I tried to simply copy and paste a photo. I used two ways to achieve this the first works nicely but the second doesn't.
This Code works fine.
try (BufferedInputStream input = new BufferedInputStream(new FileInputStream("photoOriginal.jpg"));
BufferedOutputStream output =new BufferedOutputStream(new FileOutputStream("photoCopy.jpg"))) {
try {
int n =0;
byte[] buf = new byte[4092];
while((n = input.read(buf))!=-1){
output. Write(buf,0,n);
output.flush();
}
}
} catch (IOException e) {
System.out.println("Error: " + e.getMessage());
e.printStackTrace();
}
But the second doesn't work , after the program finished I find the copy File with the same exact size as the original but when trying to open it ,it shows format not supported error.
try (BufferedInputStream input = new BufferedInputStream(new FileInputStream("photoOriginal.jpg"));
BufferedOutputStream output =new BufferedOutputStream(new FileOutputStream("photoCopy.jpg"))) {
try {
int byteRead = input.read();
while (byteRead != -1) {
byteRead = input.read();
output.write(byteRead);
output.flush();
}
}
}
} catch (IOException e) {
System.out.println("Error: " + e.getMessage());
e.printStackTrace();
}
I don't understand where the problem is, it seems that the 2 sample are doing the same thing.
Is reading to and writing from byte array different from reading and writing single byte at a time ?
Isn't writing int to a Stream with write(int b) method only writes the lowest 8 bits and vice versa as said in Documentation ?
write
public abstract void write(int b)
throws IOException
Writes the specified byte to this output stream. The general contract for write is that one byte is written to the output stream. The byte to be written is the eight low-order bits of the argument b. The 24 high-order bits of b are ignored.
hope someone will help.
You're not writing out the first byte - you call input.read(), check that it's not -1, but then call input.read() again:
// Broken code
int byteRead = input.read();
while (byteRead != -1) {
byteRead = input.read();
output.write(byteRead);
output.flush();
}
If you just move the next input.read() call to the end of the loop, it will work:
// Working code with duplication
int byteRead = input.read();
while (byteRead != -1) {
output.write(byteRead);
output.flush();
byteRead = input.read();
}
Or you could combine the "read and test" to avoid duplication:
// Working code without duplication
int byteRead;
while ((byteRead = input.read()) != -1) {
output.write(byteRead);
output.flush();
}
However, this is still a very inefficient way of copying a stream. Copying a chunk at a time, as per your first code, is much more efficient (or using the built-in transferTo method if you're using Java 9 or higher, as rostamn79 notes).
Baeldung.com provides information on stream.transferTo() method which does not incur an additional copy to Java heap
https://www.baeldung.com/java-inputstream-to-outputstream
Example code
#Test
public void givenUsingJavaNine_whenCopyingInputStreamToOutputStream_thenCorrect() throws IOException {
String initialString = "Hello World!";
try (InputStream inputStream = new ByteArrayInputStream(initialString.getBytes());
ByteArrayOutputStream targetStream = new ByteArrayOutputStream()) {
inputStream.transferTo(targetStream);
assertEquals(initialString, new String(targetStream.toByteArray()));
}
}
See how this transferTo is called with both streams as arguments
I wanted to use Base64.java to encode and decode files. Encode.wrap(InputStream) and decode.wrap(InputStream) worked but runned slowly. So I used following code.
public static void decodeFile(String inputFileName,
String outputFileName)
throws FileNotFoundException, IOException {
Base64.Decoder decoder = Base64.getDecoder();
InputStream in = new FileInputStream(inputFileName);
OutputStream out = new FileOutputStream(outputFileName);
byte[] inBuff = new byte[BUFF_SIZE]; //final int BUFF_SIZE = 1024;
byte[] outBuff = null;
while (in.read(inBuff) > 0) {
outBuff = decoder.decode(inBuff);
out.write(outBuff);
}
out.flush();
out.close();
in.close();
}
However, it always throws
Exception in thread "AWT-EventQueue-0" java.lang.IllegalArgumentException: Input byte array has wrong 4-byte ending unit
at java.util.Base64$Decoder.decode0(Base64.java:704)
at java.util.Base64$Decoder.decode(Base64.java:526)
at Base64Coder.JavaBase64FileCoder.decodeFile(JavaBase64FileCoder.java:69)
...
After I changed final int BUFF_SIZE = 1024; into final int BUFF_SIZE = 3*1024;, the code worked. Since "BUFF_SIZE" is also used to encode file, I believe there were something wrong with the file encoded (1024 % 3 = 1, which means paddings are added in the middle of the file).
Also, as #Jon Skeet and #Tagir Valeev mentioned, I should not ignore the return value from InputStream.read(). So, I modified the code as below.
(However, I have to mention that the code does run much faster than using wrap(). I noticed the speed difference because I had coded and intensively used Base64.encodeFile()/decodeFile() long before jdk8 was released. Now, my buffed jdk8 code runs as fast as my original code. So, I do not know what is going on with wrap()... )
public static void decodeFile(String inputFileName,
String outputFileName)
throws FileNotFoundException, IOException
{
Base64.Decoder decoder = Base64.getDecoder();
InputStream in = new FileInputStream(inputFileName);
OutputStream out = new FileOutputStream(outputFileName);
byte[] inBuff = new byte[BUFF_SIZE];
byte[] outBuff = null;
int bytesRead = 0;
while (true)
{
bytesRead = in.read(inBuff);
if (bytesRead == BUFF_SIZE)
{
outBuff = decoder.decode(inBuff);
}
else if (bytesRead > 0)
{
byte[] tempBuff = new byte[bytesRead];
System.arraycopy(inBuff, 0, tempBuff, 0, bytesRead);
outBuff = decoder.decode(tempBuff);
}
else
{
out.flush();
out.close();
in.close();
return;
}
out.write(outBuff);
}
}
Special thanks to #Jon Skeet and #Tagir Valeev.
I strongly suspect that the problem is that you're ignoring the return value from InputStream.read, other than to check for the end of the stream. So this:
while (in.read(inBuff) > 0) {
// This always decodes the *complete* buffer
outBuff = decoder.decode(inBuff);
out.write(outBuff);
}
should be
int bytesRead;
while ((bytesRead = in.read(inBuff)) > 0) {
outBuff = decoder.decode(inBuff, 0, bytesRead);
out.write(outBuff);
}
I wouldn't expect this to be any faster than using wrap though.
Try to use decode.wrap(new BufferedInputStream(new FileInputStream(inputFileName))). With buffering it should be at least as fast as your manually crafted version.
As for why your code doesn't work: that's because the last chunk is likely to be shorter than 1024 bytes, but you try to decode the whole byte[] array. See the #JonSkeet answer for details.
Well, I changed
"final int BUFF_SIZE = 1024;"
into
"final int BUFF_SIZE = 1024 * 3;"
It worked!
So, I guess probabaly there is something wrong with padding... I mean, when encoding the file, (since 1024 % 3 = 1) there must be paddings. And those might raise problems when decoding...
You should records the number of bytes you have read, beside this,
You should be sure that your buffer size is divisible for 3, cause in Base64, every 3 bytes have four output(64 is 2^6, and 3*8 equals 4*6), by doing this, you can avoid padding problems.( In this way your output will not have the wrong ending of "=")
I am trying merge n pieces of file become single file. But I got strange behavior on my function. The function are called for x times in n seconds. Let say I have 100 files which I will merge, every second I call 5 files and merger it. and in the next second the amount is double to be 10, but from 1-5 is the same file as before the rest is new file. It work normal but in some point, its give zero byte or sometime give the right size.
Could you help me spot the mistake in my function below?
public void mergeFile(list<String> fileList, int x) {
int count = 0;
BufferedOutputStream out = null;
try {
out = new BufferedOutputStream(new FileOutputStream("Test.doc"));
for (String file : fileList) {
InputStream in = new BufferedInputStream(new FileInputStream(file));
byte[] buff = new byte[1024];
in.read(buff);
out.write(buff);
in.close();
count++;
if (count == x) {
break;
}
}
out.flush();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
*sorry for my English
in.read(buff);
Check the Javadoc. That method isn't guaranteed to fill the buffer. It returns a value which tells you how many bytes it read. You're supposed to use that, and in this situation you are supposed to use it when deciding how many bytes, if any, to write.
You do not read the full file, you read from each file only up to 1024 bytes. You need to loop the read as long as it returns data (or use something like Files.copy().
BTW: you dont need a BufferedOutputStream if you copy with large buffers.
public void mergeFile(list<String> fileList, int x) throws IOException {
try (OutputStream out = new FileOutputStream("Test.doc");) {
int count=0;
for (String file : fileList) {
Files.copy(new File(file).toPath(), out);
count++;
if (count == x) {
break;
}
}
}
}
You also do not need to flush() if you close. I am using "try-with-resource" here, so I dont need to close it explicitely. It is best to propagate the exceptions.
I am getting OutOfMemory Exception. Why? I am using this code for logging. Does this approach correct?
Exceptions and closing of streams are handled in parent methods.
private static void writeToFile(File file, FileWriter out, String message) throws IOException {
if (file.exists() && file.isFile()) {
if ((file.length() + message.getBytes().length) <= FILE_MAX_SIZE_B) {
out.write(message);
} else {
int cutLenght = (int) (file.length() + message.getBytes().length - FILE_MAX_SIZE_B);
FileInputStream fileInputStream = new FileInputStream(file);
BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(fileInputStream));
char[] buf = new char[1024];
int numRead = 0;
StringBuffer text = new StringBuffer(1000);
while ((numRead=bufferedReader.read(buf)) != -1) {
text.append(buf,0,numRead);
}
String result = new String(text).substring(cutLenght);
result += message;
FileWriter fileWriter = new FileWriter(file, appendToFile);
writeToFile(file, fileWriter, result);
bufferedReader.close();
}
}
}
EDIT:
I am using this method for writting my logs in file. So for example in one second I can call 10 logs. I am getting error on lines:
while ((numRead=bufferedReader.read(buf)) != -1) {
text.append(buf,0,numRead);
}
My guess is that you are getting the OutOfMemoryError because you are reading the entire contents of the log file back into memory once it has gotten too close to its maximum size.
You could instead read and write it in smaller chunks, but that could be tricky since you have to avoid overwriting something you haven't already read.
Overall, this technique seems like a very inefficient method of maintaining the log data. Some alternative approaches off the top of my head:
(1) maintain a set of n log files, each with maximum size FILE_MAX_SIZE_B/n. When the first log fills up, open the next one for writing, and so on; when the last one fills up, go back to the first one. In this way you are discarding some of the oldest log data each time you switch files, but not all of it, and still maintaining your overall size limit.
(2) rotate the data within a single file. After each write, add a marker that indicates this is the end of the log stream. When the file has reached its maximum size, just start again at the beginning, overwriting the data that is there. The marker will tell you where the latest message is.
Try something like this:
void appendToFile(File f, CharSequence message, Charset cs, long maximumSize) throws IOException {
long available = maximumSize - f.length();
if (available > 0) {
FileOutputStream fos = new FileOutputStream(f, true);
try {
CharBuffer chars = CharBuffer.wrap(message);
ByteBuffer bytes = ByteBuffer.allocate(8 * 1024); // Re-used when encoding the string
CharsetEncoder enc = cs.newEncoder();
CoderResult res;
do {
res = enc.encode(chars, bytes, true);
bytes.flip();
long len = Math.min(available, bytes.remaining());
available -= len;
fos.write(bytes.array(), bytes.position(), (int) len);
bytes.clear();
} while (res == CoderResult.OVERFLOW && available > 0);
} finally {
fos.close();
}
}
}
Testable with this:
File f = new File(getCacheDir(), "tmp.txt");
f.delete();
// Or whatever charset you want.
Charset cs = Charset.forName("UTF-8");
int maxlen = 2 * 1024; // For this test, 2kb
try {
for (int i = 0; i < maxlen / 20; i++) {
// Write 30 characters for maxlen/20 times == guaranteed overflow
appendToFile(f, "123456789012345678901234567890", cs, maxlen);
System.out.println("Length=" + f.length());
}
} catch (Throwable t) {
t.printStackTrace();
}
f.delete();
Well, you're getting OOM because you're trying to load a huge file into memory.
Did you try opening it with append option instead?
you get OOME because you load the whole file, then get some part of the string. Instead, do a skip on your input stream and read.
I would like to know how can I read a file byte by byte then perform some operation every n bytes.
for example:
Say I have a file of size = 50 bytes, I want to divide it into blocks each of n bytes. Then each block is sent to a function for some operations to be done on those bytes. The blocks are to be created during the read process and sent to the function when the block reaches n bytes so that I don`t use much memory for storing all blocks.
I want the output of the function to be written/appended on a new file.
This is what I've reached to read, yet I don't know it it is right:
fc = new JFileChooser();
File f = fc.getSelectedFile();
FileInputStream in = new FileInputStream(f);
byte[] b = new byte[16];
in.read(b);
I haven't done anything yet for the write process.
You're on the right lines. Consider wrapping your FileInputStream with a BufferedInputStream, which improve I/O efficiency by reading the file in chunks.
The next step is to check the number of bytes read (returned by your call to read) and to hand-off the array to the processing function. Obviously you'll need to pass the number of bytes read to this method too in case the array was only partially populated.
So far your code looks OK. For reading binary files (as opposed to text files) you should indeed use FileInputStream (for reading text files, you should use a Reader, such as FileReader).
Note that you should check the return value from in.read(b);, because it might read less than 16 bytes if there are less than 16 bytes left at the end of the file.
Ofcourse you should add a loop to the program that keeps reading blocks of bytes until you reach the end of the file.
To write data to a binary file, use FileOutputStream. That class has a constructor that you can pass a flag to indicate that you want to append to an existing file:
FileOutputStream out = new FileOutputStream("output.bin", true);
Also, don't forget to call close() on the FileInputStream and FileOutputStream when you are done.
See the Java API documentation, especially the classes in the java.io package.
I believe that this will work:
final int blockSize = // some calculation
byte[] block = new byte[blockSize];
InputStream is = new FileInputStream(f);
try {
int ret = -1;
do {
int bytesRead = 0;
while (bytesRead < blockSize) {
ret = is.read(block, bytesRead, blockSize - bytesRead);
if (ret < 0)
break; // no more data
bytesRead += ret;
}
myFunction(block, bytesRead);
} while (0 <= ret);
}
finally {
is.close();
}
This code will call myFunction with blockSize bytes for all but possibly the last invocation.
It's a start.
You should check what read() returns. It can read fewer bytes than the size of the array, and also indicate that the end of the file is reached.
Obviously, you need to read() in a loop...
It might be a good idea to reuse the array, but that requires that the part that reads the array copies what it needs, rather than just keeping a reference to the array.
I think this is what you migth need
void readFile(String path, int n) {
try {
File f = new File(path);
FileInputStream fis = new FileInputStream(f);
int ret = 0;
byte[] array = new byte[n];
while(ret > -1) {
ret = fis.read(array);
doSomething(array, ret);
}
fis.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}