In the following line of code:
x = x.times(x).plus(y);
in what order are these expressions going to be executed?
Will it be like:
x = (x + y)*x
or x = (x^2) + y,
or something else and why?
Links to documentation about the specific subject will be highly appreciated as I had no luck with my search. Apparently I don't know where to look at and what to look for.
Thank you.
These are methods; the fact that they are called "plus" and "times" doesn't mean that they'll necessarily follow the behaviour of the built-in + and * operators.
So x.times(x) will be executed first. This will return a reference to an object, on which plus(y) will then be executed. The return value of this will then be assigned to x. It's equivalent to:
tmp = x.times(x);
x = tmp.plus(y);
Here's a link to a documentation which most likely contains the required answer (probably at 15.7). It's highly technical and verbose but not inaccessible to most people (I believe).
However, it seems that you're just starting programming, so you'll be better off reading other answers here, and programming more to get an intuitive feel (not exactly a 'feel', as it's systematic and rigourous) of the order of operations etc...
Don't be afraid to write "throw-away" code (which you can incidentally save too) to find out things you don't know if you don't know where else to look for the answer. You can always google more intensively or dive through the language specs at a latter date. You'll learn faster this way. :)
One simple way to find out is to write something like this:
class Number{
private int number;
public Number(int x){
number = x;
}
public Number times(Number x){
System.Out.PrintLn("times");
return number * x;
}
public Number plus(Number x){
System.Out.PrintLn("plus");
return number + x;
}
}
Method chains get executed from left to right, with each method using the result from the previous method, so it will be x = (x^2) + y.
What you're referring to in the algebraic expressions is operator precedence - evaluating multiplications before addition, for example. The Java compiler knows about these rules for expressions, and will generate code to evaluate them as you expect.
For method calling, there are no "special rules". When given x = x.times(x).plus(y); the compiler only knows that to evaluate x.times(x).plus(y), it first needs to know what x is, so it can call times on it. Likewise, it then needs to know what x.times(x) is so it can call the plus method on that result. Hence, this type of statement is parsed left to right : (x * x) + y.
Some languages allow the creation of functions that are "infix" with user supplied precedence. (such as Haskell : See http://www.haskell.org/tutorial/functions.html, section "Fixity declarations"). Java is, alas, not one of them.
It's going to be executed in left-to-right order, as
x = (x.times(x)).plus(y)
The other way:
x = x.(times(x).plus(y))
doesn't even make sense to me. You would have to rewrite it as
x = x.times(x.plus(y))
to make sense of it, but the fact that the second x is contained within times() while the y is outside it rules out that interpretation.
The reason the documentation doesn't say anything about this is probably that such expressions follow the normal rules for how a statement like a.b().c().d() is evaluated: from left to right. We start with a and call the function b() on it. Then, we call c() on the result of that call, and we call d() on the result of c(). Hence, x.times(x).plus(y) will first perform the multiplication, then the addition.
Related
I had this question on a homework assignment (don't worry, already done):
[Using your favorite imperative language, give an example of
each of ...] An error that the compiler can neither catch nor easily generate code to
catch (this should be a violation of the language definition, not just a
program bug)
From "Programming Language Pragmatics" (3rd ed) Michael L. Scott
My answer, call main from main by passing in the same arguments (in C and Java), inspired by this. But I personally felt like that would just be a semantic error.
To me this question's asking how to producing an error that is neither syntactic nor semantic, and frankly, I can't really think of situation where it wouldn't fall in either.
Would it be code that is susceptible to exploitation, like buffer overflows (and maybe other exploitation I've never heard about)? Some sort of pit fall from the structure of the language (IDK, but lazy evaluation/weak type checking)? I'd like a simple example in Java/C++/C, but other examples are welcome.
Undefined behaviour springs to mind. A statement invoking UB is neither syntactically nor semantically incorrect, but rather the result of the code cannot be predicted and is considered erroneous.
An example of this would be (from the Wikipedia page) an attempt to modify a string-constant:
char * str = "Hello world!";
str[0] = 'h'; // undefined-behaviour here
Not all UB-statements are so easily identified though. Consider for example the possibility of signed-integer overflow in this case, if the user enters a number that is too big:
// get number from user
char input[100];
fgets(input, sizeof input, stdin);
int number = strtol(input, NULL, 10);
// print its square: possible integer-overflow if number * number > INT_MAX
printf("%i^2 = %i\n", number, number * number);
Here there may not necessarily be signed-integer overflow. And it is impossible to detect it at compile- or link-time since it involves user-input.
Statements invoking undefined behavior1 are semantically as well as syntactically correct but make programs behave erratically.
a[i++] = i; // Syntax (symbolic representation) and semantic (meaning) both are correct. But invokes UB.
Another example is using a pointer without initializing it.
Logical errors are also neither semantic nor syntactic.
1. Undefined behavior: Anything at all can happen; the Standard imposes no requirements. The program may fail to compile, or it may execute incorrectly (either crashing or silently generating incorrect results), or it may fortuitously do exactly what the programmer intended.
Here's an example for C++. Suppose we have a function:
int incsum(int &a, int &b) {
return ++a + ++b;
}
Then the following code has undefined behavior because it modifies an object twice with no intervening sequence point:
int i = 0;
incsum(i, i);
If the call to incsum is in a different TU from the definition of the function, then it's impossible to catch the error at compile time, because neither bit of code is inherently wrong on its own. It could be detected at link time by a sufficiently intelligent linker.
You can generate as many examples as you like of this kind, where code in one TU has behavior that's conditionally undefined for certain input values passed by another TU. I went for one that's slightly obscure, you could just as easily use an invalid pointer dereference or a signed integer arithmetic overflow.
You can argue how easy it is to generate code to catch this -- I wouldn't say it's very easy, but a compiler could notice that ++a + ++b is invalid if a and b alias the same object, and add the equivalent of assert (&a != &b); at that line. So detection code can be generated by local analysis.
For a programming project in Calculus we were instructed to code a program that models the Simpson's 1/3 and 3/8 rule.
We are supposed to take in a polynomial(i.e. 5x^2+7x+10) but I am struggling conceptualizing this. I have began by using scanner but is there a better way to correctly read the polynomial?
Any examples or reference materials will be greatly appreciated.
I'd suggest that you start with a Function interface that takes in a number of input values and returns an output value:
public interface Function {
double evaluate(double x);
}
Write a polynomial implementation:
public class Poly {
public static double evaluate(double x, double [] coeffs) {
double value = 0.0;
if (coeffs != null) {
// Use Horner's method to evaluate.
for (int i = coeffs.length-1; i >= 0; --i) {
value = coeffs[i] + (x*value);
}
}
return value;
}
}
Pass that to your integrator and let it do its thing.
A simple way (to get you started) is to use an array.
In your example: 5x^2 + 7x + 10 would be:
{10,7,5}
I.e. at index 0 is the factor 10 for x^0 at index 1 is 7 for x^1 at index 2 is 10 for x^2.
Of course this not the best approach. To figure out way figure out how you would represent x^20
In java it would be easiest to pre-format your input and just ask for constants--as in, "Please enter the X^2 term" (and then the X term, and then the constant).
If that's not acceptable, you are going to be quite vulnerable to input style differences. You can separate the terms by String.split[ting] on + and -, that will leave you something like:
[5x^2], [7x], [10]
You could then search for strings containing "x^2" and "x" to differentiate your terms
Remove spaces and .toLowerCase() first to counter user variances, of course.
When you split your string you will need to identify the - cases so you can negate those constants.
You could do two splits, one on + the other on -. You could also use StringTokenizer with the option to keep the "Tokens" which might be more straight-forward but StringTokenizer makes some people a little uncomfortable, so go with whatever works for you.
Note that this will succeed even if the user types "5x^2 + 10 + 7 x", which can be handy.
I believe parsing is my problem. I am somewhat new to java so this is troubling me.
You should use a parser generator.
A parser generator is a tool that reads a grammar specification and converts it to a Java program that can recognize matches to the grammar. In addition to the parser generator itself, JavaCC provides other standard capabilities related to parser generation such as tree building (via a tool called JJTree included with JavaCC), actions, debugging, etc.
JavaCC's FAQ answers How do I parse arithmetic expressions?
See the examples that come with JavaCC.
See any text on compiling.
See Parsing Epressions by Recursive Descent and a tutorial by Theodore Norvell.
Also, see JavaCC - Parse math expressions into a class structure
I have two equations that need to be evaluated in java
y=(x+1)*2-3
y=5
These equations are dynamic in nature
y= x*8x6-5*5
y= 3
y is known in these equations, I need to determine the value of x
What is the best and easy way to write a program in java?
It seems that there are a couple of ways to go about this. My first thought (as always is overly complex and most likely not worth doing except for fun), is to use a create a grammar to parse out the order of operations, things that can evaluate to variables vs constants, etc. Then programatically solve the equations. This however is not something easily done. If this is for a compiler class, this might be worth looking at otherwise ignore it.
My second thought was to just use brute force. Though you will need to figure out what to do with negative values of x.
public int solve(int y){
int x=0;
while(y>(x+1)*2-3)
x++;
}
Some years later, hope this helps someone, to make this a lot simplier i will use the library exp4j (https://www.objecthunter.net/exp4j/) and the IDE netbeans 8.2 (https://netbeans.org/).
Create a frame like this
Later on the button add the code:
try {
net.objecthunter.exp4j.Expression e = new ExpressionBuilder(txtFunc.getText())
.variables("x")
.build()
.setVariable("x", Double.parseDouble(txtVar.getText()));
double result = e.evaluate();
txtRes.setText("" + result);
} catch (Exception e) {
JOptionPane.showMessageDialog(null, "Revisa la función o la variable, Posibles errores de operación: División entre 0");
}
Note: this is intended to evaluate "x"
So doing specifically that way is going to be little bit complicated, so we are going to do some math, if 5 is the value of the function evaluated then we isolate the value of "x". x=(y+1)/2 then re-evaluate, x=(5+1)/2=3, x=3 and with the code verify that this is actually the answer.
Comprobation
Same thing goes with the other function. (sorry for my technical english)
If by saying the equations are "dynamic" we are to infer that you are trying to construct a program to solve for x in an arbitrary algebraic equation (or set of equations), that's well beyond the scope of this forum. There are entire software packages designed to do things like that.
I would like to know other people's opinion on the following style of writing a for loop:
for (int rep = numberOfReps; rep --> 0 ;) {
// do something that you simply want to repeat numberOfReps times
}
The reason why I invented this style is to distinguish it from the more general case of for loops. I only use this when I need to simply repeat something numberOfReps times and the body of the loop does not use the values of rep and numberofReps in any way.
As far as I know, standard Java for example doesn't have a simple way of saying "just repeat this N times", and that's why I came up with this. I'd even go as far as saying that the body of the loop must not continue or break, unless explicitly documented at the top of the for loop, because as I said the whole purpose is to make the code easier to understand by coming up with a distinct style to express simple repetitions.
The idea is that if what you're doing is not simple (dependency on value of an inreasing/decreasing index, breaks, continues, etc), then use the standard for loop. If what you are doing is simple repetition, on the other hand, then this distinct style communicates that "fact" (once you know the purpose of the style, of course).
I said "fact" because the style can be abused, of course. I'm operating under the assumption that you have competent programmers whose objective is to make their code easier to understand, not harder.
A comment was made that allude to the principle that for should only be used for simple iteration, and while should be used otherwise (e.g. if the loop variables are modified in the body).
If that's the case, then I'm merely extending that principle to say that if it's even simpler than your simple for loops (i.e. you don't even care about the iteration index, or whether it's increasing or decreasing, etc, you just want to repeat doing something N times), then use the winking arrow for loop construct instead.
What a coincidence, Josh Bloch just tweeted the following:
Goes-to Considered Harmful:
public static void main(String[] a) {
int i = 10;
while (i --> 0) /* i goes-to 0 */ {
System.out.println(i);
}
}
Unfortunately no explanation was given, but it seems that at least this pseudo operator has a name. It has also been discussed before on SO: What is the name of this operator: “-->”?
You have the language-agnostic tag, but this question isn't really language agnostic. That pattern would be fine if there wasn't already a well established idiom for doing something n times in your language.
You go on to mention Java, whicha already has a well-established idiom for doing something n times:
for (int i = 0; i < numberOfReps; i++) {
// do something that you simply want to repeat numberOfReps times
}
While your pattern works just as well, it's confusing to others. When I first saw it my thoughts were:
What's that weird arrow?
Why is that line winking at me?
Unless you develop a pattern that has a significant advantage over the standard idiom, it's best to stick with the standard so your fellow coders don't end up scratching their heads.
Nearly every language these days has lambda, so you can write a function like
nTimes(n, body)
that takes an int and a lambda, and more directly communicate intent. In F#, for example
let nTimes(n,f) =
for i in 1..n do f()
nTimes(3, fun() -> printfn "Hello")
or if you prefer extension methods
type System.Int32 with
member this.Times(f) =
for i in 1..this do f()
(3).Times(fun() -> printfn "Hello")
I was wondering whether anyone had managed to use the 'listing.' command in JPL to examine the contents of the Prolog knowledgebase? JPL requires you construct queries and will return solutions based on the variables which you set in the query. For example (Java):
Query q = new Query("holdsAt((X,Y) = true, 3)");
while ( q.hasMoreSolutions() ){
Hashtable s = q.nextSolution();
System.out.println(s.get("X")+", "+s.get("Y"));
}
I can't see how this would work for listing/0, or even listing/1 which requires an instantiated input. At the moment I am playing around with code of the form
predicate_property(L,interpreted),
\+ predicate_property(L, built_in),
\+ predicate_property(L,imported_from(_)),
current_predicate( X, L), current_predicate(X/Z).
which returns for a function existing in the knowledgebase:
myFunction:-
myGoal1,
myGoal2.
the answer:
L = myFunction(_G403,_G404),
X = myFunction,
Z = 2
But it's not sufficient as none of the goals are returned. I suppose what I require (if the listing function cannot be called using JPL), is a function which returns as a variable the predicate head along with a list of the relevant goals which must be satisfied. Unfortunately, I'm not familiar with the internals of the listing function, so I'm not sure how to go about doing this.
Thanks in advance
I have a function which is working for the time being, but I am concerned that it is less efficient than a 'listing' call
getClauses(Y):-
predicate_property(L,interpreted),
\+ predicate_property(L, built_in),
\+ predicate_property(L,imported_from(_)),
current_predicate( X, L),
current_predicate(X/Z),
findall((L, T), clause(L, T), Y).
which returns for a predicate existing in the knowledgebase:
myPredicate:-
myGoal1,
myGoal2.
the result:
?- getClauses(Y).
Y = [ (myPredicate, myGoal1, myGoal2)]
Note that this will not work for predicates which have been imported from other modules.