How can I handle precision error with float in Java? - java

I'm wondering what the best way to fix precision errors is in Java. As you can see in the following example, there are precision errors:
class FloatTest
{
public static void main(String[] args)
{
Float number1 = 1.89f;
for(int i = 11; i < 800; i*=2)
{
System.out.println("loop value: " + i);
System.out.println(i*number1);
System.out.println("");
}
}
}
The result displayed is:
loop value: 11
20.789999
loop value: 22
41.579998
loop value: 44
83.159996
loop value: 88
166.31999
loop value: 176
332.63998
loop value: 352
665.27997
loop value: 704
1330.5599
Also, if someone can explain why it only does it starting at 11 and doubling the value every time. I think all other values (or many of them at least) displayed the correct result.
Problems like this have caused me headache in the past and I usually use number formatters or put them into a String.
Edit: As people have mentioned, I could use a double, but after trying it, it seems that 1.89 as a double times 792 still outputs an error (the output is 1496.8799999999999).
I guess I'll try the other solutions such as BigDecimal

If you really care about precision, you should use BigDecimal
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/math/BigDecimal.html

The problem is not with Java but with the good standard float's (http://en.wikipedia.org/wiki/IEEE_floating-point_standard).
You can either:
use Double and have a bit more precision (but not perfect of course, it also has limited precision)
use a arbitrary-precision-library
use numerically stable algorithms and truncate/round digits of which you are not sure they are correct (you can calculate numeric precision of operations)

When you print the result of a double operation you need to use appropriate rounding.
System.out.printf("%.2f%n", 1.89 * 792);
prints
1496.88
If you want to round the result to a precision, you can use rounding.
double d = 1.89 * 792;
d = Math.round(d * 100) / 100.0;
System.out.println(d);
prints
1496.88
However if you see below, this prints as expected, as there is a small amount of implied rounding.
It worth nothing that (double) 1.89 is not exactly 1.89 It is a close approximation.
new BigDecimal(double) converts the exact value of double without any implied rounding. It can be useful in finding the exact value of a double.
System.out.println(new BigDecimal(1.89));
System.out.println(new BigDecimal(1496.88));
prints
1.8899999999999999023003738329862244427204132080078125
1496.8800000000001091393642127513885498046875

Most of your question has been pretty well covered, though you might still benefit from reading the [floating-point] tag wiki to understand why the other answers work.
However, nobody has addressed "why it only does it starting at 11 and doubling the value every time," so here's the answer to that:
for(int i = 11; i < 800; i*=2)
╚═══╤════╝ ╚╤═╝
│ └───── "double the value every time"
│
└───── "start at 11"

You could use doubles instead of floats

If you really need arbitrary precision, use BigDecimal.

first of Float is the wrapper class for the primitive float
and doubles have more precision
but if you only want to calculate down to the second digit (for monetary purposes for example) use an integer (as if you are using cents as unit) and add some scaling logic when you are multiplying/dividing
or if you need arbitrary precision use BigDecimal

If precision is vital, you should use BigDecimal to make sure that the required precision remains. When you instantiate the calculation, remember to use strings to instantiate the values instead of doubles.

I never had a problem with simple arithmetic precision in either Basic, Visual Basic, FORTRAN, ALGOL or other "primitive" languages. It is beyond comprehension that JAVA can't do simple arithmetic without introducing errors. I need just two digits to the right of the decimal point for doing some accounting. Using Float subtracting 1000 from 1355.65 I get 355.650002! In order to get around this ridiculous error I have implemented a simple solution. I process my input by separating the values on each side of the decimal point as character, convert each to integers, multiply each by 1000 and add the two back together as integers. Ridiculous but there are no errors introduced by the poor JAVA algorithms.

Related

The accuracy of a double in general programming and Java

I understand that due to the nature of a float/double one should not use them for precision important calculations. However, i'm a little confused on their limitations due to mixed answers on similar questions, whether or not floats and doubles will always be inaccurate regardless of significant digits or are only inaccurate up to the 16th digit.
I've ran a few examples in Java,
System.out.println(Double.parseDouble("999999.9999999999");
// this outputs correctly w/ 16 digits
System.out.println(Double.parseDouble("9.99999999999999");
// This also outputs correctly w/ 15 digits
System.out.println(Double.parseDouble("9.999999999999999");
// But this doesn't output correctly w/ 16 digits. Outputs 9.999999999999998
I can't find the link to another answer that stated that values like 1.98 and 2.02 would round down to 2.0 and therefore create inaccuracies but testing shows that the values are printed correctly. So my first question is whether or not floating/double values will always be inaccurate or is there a lower limit where you can be assured of precision.
My second question is in regards to using BigDecimal. I know that I should be using BigDecimal for precision important calculations. Therefore I should be using BigDecimal's methods for arithmetic and comparing. However, BigDecimal also includes a doubleValue() method which will convert the BigDecimal to a double. Would it be safe for me to do a comparison between double values that I know for sure have less than 16 digits? There will be no arithmetic done on them at all so the inherent values should not have changed.
For example, is it safe for me to do the following?
BigDecimal myDecimal = new BigDecimal("123.456");
BigDecimal myDecimal2 = new BigDecimal("234.567");
if (myDecimal.doubleValue() < myDecimal2.doubleValue()) System.out.println("myDecimal is smaller than myDecimal2");
Edit: After reading some of the responses to my own answer i've realized my understanding was incorrect and have deleted it. Here are some snippets from it that might help in the future.
"A double cannot hold 0.1 precisely. The closest representable value to 0.1 is 0.1000000000000000055511151231257827021181583404541015625. Java Double.toString only prints enough digits to uniquely identify the double, not the exact value." - Patricia Shanahan
Sources:
https://stackoverflow.com/a/5749978 - States that a double can hold up to 15 digits
I suggest you read this page:
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
Once you've read and understood it, and perhaps converted several examples to their binary representations in the 64 bit floating point format, then you'll have a much better idea of what significant digits a Double can hold.
As a side note, (perhaps trivial) a nice and reliable way to store a known precision of value is to simply multiply it by the relevant factor and store as some integral type, which are completely precise.
For example:
double costInPounds = <something>; //e.g. 3.587
int costInPence = (int)(costInPounds * 100 + 0.5); //359
Plainly some precision can be lost, but if a required/desired precision is known, this can save a lot of bother with floating point values, and once this has been done, no precision can be lost by further manipulations.
The + 0.5 is to ensure that rounding works as expected. (int) takes the 'floor' of the provided double value, so adding 0.5 makes it round up and down as expected.

Tan function in java [duplicate]

I came to know about the accuracy issues when I executed the following following program:
public static void main(String args[])
{
double table[][] = new double[5][4];
int i, j;
for(i = 0, j = 0; i <= 90; i+= 15)
{
if(i == 15 || i == 75)
continue;
table[j][0] = i;
double theta = StrictMath.toRadians((double)i);
table[j][1] = StrictMath.sin(theta);
table[j][2] = StrictMath.cos(theta);
table[j++][3] = StrictMath.tan(theta);
}
System.out.println("angle#sin#cos#tan");
for(i = 0; i < table.length; i++){
for(j = 0; j < table[i].length; j++)
System.out.print(table[i][j] + "\t");
System.out.println();
}
}
And the output is:
angle#sin#cos#tan
0.0 0.0 1.0 0.0
30.0 0.49999999999999994 0.8660254037844387 0.5773502691896257
45.0 0.7071067811865475 0.7071067811865476 0.9999999999999999
60.0 0.8660254037844386 0.5000000000000001 1.7320508075688767
90.0 1.0 6.123233995736766E-17 1.633123935319537E16
(Please forgive the unorganised output).
I've noted several things:
sin 30 i.e. 0.5 is stored as 0.49999999999999994.
tan 45 i.e. 1.0 is stored as 0.9999999999999999.
tan 90 i.e. infinity or undefined is stored as 1.633123935319537E16 (which is a very big number).
Naturally, I was quite confused to see the output (even after deciphering the output).
So I've read this post, and the best answer tells me:
These accuracy problems are due to the internal representation of floating > point numbers and there's not much you can do to avoid it.
By the way, printing these values at run-time often still leads to the correct results, at >least using modern C++ compilers. For most operations, this isn't much of an issue.
answered Oct 7 '08 at 7:42
Konrad Rudolph
So, my question is:
Is there any way to prevent such inaccurate results (in Java)?
Should I round-off the results? In that case, how would I store infinity i.e. Double.POSITIVE_INFINITY?
You have to take a bit of a zen* approach to floating-point numbers: rather than eliminating the error, learn to live with it.
In practice this usually means doing things like:
when displaying the number, use String.format to specify the amount of precision to display (it'll do the appropriate rounding for you)
when comparing against an expected value, don't look for equality (==). Instead, look for a small-enough delta: Math.abs(myValue - expectedValue) <= someSmallError
EDIT: For infinity, the same principle applies, but with a tweak: you have to pick some number to be "large enough" to treat as infinity. This is again because you have to learn to live with, rather than solve, imprecise values. In the case of something like tan(90 degrees), a double can't store π/2 with infinite precision, so your input is something very close to, but not exactly, 90 degrees -- and thus, the result is something very big, but not quite infinity. You may ask "why don't they just return Double.POSITIVE_INFINITY when you pass in the closest double to π/2," but that could lead to ambiguity: what if you really wanted the tan of that number, and not 90 degrees? Or, what if (due to previous floating-point error) you had something that was slightly farther from π/2 than the closest possible value, but for your needs it's still π/2? Rather than make arbitrary decisions for you, the JDK treats your close-to-but-not-exactly π/2 number at face value, and thus gives you a big-but-not-infinity result.
For some operations, especially those relating to money, you can use BigDecimal to eliminate floating-point errors: you can really represent values like 0.1 (instead of a value really really close to 0.1, which is the best a float or double can do). But this is much slower, and doesn't help you for things like sin/cos (at least with the built-in libraries).
* this probably isn't actually zen, but in the colloquial sense
You have to use BigDecimal instead of double. Unfortunately, StrictMath doesn't support BigDecimal, so you will have to use another library, or your own implementation of sin/cos/tan.
This is inherent in using floating-point numbers, in any language. Actually, it's inherent in using any representation with a fixed maximum precision.
There are several solutions. One is to use an extended-precision math package -- BigDecimal is often suggested for Java. BigDecimal can handle many more digits of precision, and also -- because it's a decimal representation rather than a 2's-complement representation -- tends to round off in ways that are less surprising to humans who are used to working in base 10. (That doesn't necessarily make them more correct, please note. Binary can't represent 1/3 exactly, but neither can decimal.)
There are also extended-precision 2's-complement floating-point representations. Java directly supports float and double (which are usually also supported by the hardware), but it's possible to write versions which support more digits of accuracy.
Of course any of the extended-precision packages will slow down your computations. So you shouldn't resort to them unless you actually need them.
Another may to use fixed-point binary rather than floating point. For example, the standard solution for most financial calculations is simply to compute in terms of the smallest unit of currency -- pennies, in the US -- in integers, converting to and from the display format (eg dollars and cents) only for I/O. That's also the approach used for time in Java -- the internal clock reports an integer number of milliseconds (or nanoseconds, if you use the nanotime call), which gives both more than sufficient precision and a more than sufficient range of values for most practical purposes. Again, this means that roundoff tends to happen in a way that matches human expectations... and again, that's less about accuracy than about not surprising the users. And these representations, because they process as integers or longs, allow fast computation -- faster than floating point, in fact.
There are yet other solutions which involve computing in rational numbers, or other variations, in an attempt to compromise between computational cost and precision.
But I also have to ask... Do you really NEED more precision than float is giving you? I know the roundoff is surprising, but in many cases it's perfectly acceptable to just let it happen, possibly rounding off to a less surprising number of fractional digts when you display the results to the user. In many cases, float or double are Just Fine for real-world use. That's why the hardware supports them, and that's why they're in the language.

Loss of precision after subtracting double from double [duplicate]

This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
Retain precision with Doubles in java
Alright so I've got the following chunk of code:
int rotation = e.getWheelRotation();
if(rotation < 0)
zoom(zoom + rotation * -.05);
else if(zoom - .05 > 0)
zoom(zoom - rotation * .05);
System.out.println(zoom);
Now, the zoom variable is of type double, initially set to 1. So, I would expect the results to be like 1 - .05 = .95; .95 - .05 = .9; .9 - .05 = .85; etc. This appears to be not the case though when I print the result as you can see below:
0.95
0.8999999999999999
0.8499999999999999
0.7999999999999998
0.7499999999999998
0.6999999999999997
Hopefully someone is able to clearly explain. I searched the internet and I read it has something to do with some limitations when we're storing floats in binary but I still don't quite understand. A solution to my problem is not shockingly important but I would like to understand this kind of behavior.
Java uses IEEE-754 floating point numbers. They're not perfectly precise. The famous example is:
System.out.println(0.1d + 0.2d);
...which outputs 0.30000000000000004.
What you're seeing is just a symptom of that imprecision. You can improve the precision by using double rather than float.
If you're dealing with financial calculations, you might prefer BigDecimal to float or double.
float and double have limited precision because its fractional part is represented as a series of powers of 2 e.g. 1/2 + 1/4 + 1/8 ... If you have an number like 1/10 it has to be approximated.
For this reason, whenever you deal with floating point you must use reasonable rounding or you can see small errors.
e.g.
System.out.printf("%.2f%n", zoom);
To minimise round errors, you could count the number of rotations instead and divide this int value by 20.0. You won't see a rounding error this way, and it will be faster, with less magic numbers.
float and double have precision issues. I would recommend you take a look at the BigDecimal Class. That should take care of precision issues.
Since decimal numbers (and integer numbers as well) can have an infinite number of possible values, they are impossible to map precisely to bits using a standard format. Computers circumvent this problem by limiting the range the numbers can assume.
For example, an int in java can represent nothing larger then Integer.MAX_VALUE or 2^31 - 1.
For decimal numbers, there is also a problem with the numbers after the comma, which also might be infinite. This is solved by not allowing all decimal values, but limiting to a (smartly chosen) number of possibilities, based on powers of 2. This happens automatically but is often nothing to worry about, you can interpret your result of 0.899999 as 0.9. In case you do need explicit precision, you will have to resort to other data types, which might have other limitations.

Problems with double

I'm storing a number as a double. It works well with small numbers but if the double is 1000000 and I try to add 10 to it, it doesn't work but I can add 100 to it. If the double is 100000 and I try to add 1 to it, it doesn't work but I can add 10 to it.
Is this a problem with using a double? What format should I be using for up to a 9 digit number?
Edit: I'm doing calculations on the number and putting it in a 0.00 decimal format. It works on small numbers but not on big. It might have something to do with the other calculations. Just seeing if maybe double was the problem.
I run into problems when I take 1000001 / 100 and put in 0.00 decimal format. But 1000100 / 100 put into a 0.00 dec format works.
Not sure what you mean by "it doesn't work", considering that it should:
System.out.println(1000000d + 10d); // 1000010.0
Cases where it wouldn't work are where there is a value that is more than about 15 digits from the most significant digit of the largest double involved:
System.out.println(Math.pow(10, 18) + 10d - Math.pow(10, 18)); // 0.0
System.out.println(Math.pow(10, 17) + 10d - Math.pow(10, 17)); // 16.0
System.out.println(Math.pow(10, 16) + 10d - Math.pow(10, 16)); // 10.0
An int is absolutely large enough to store a 9-digit number, since the maximum value stored by a (signed) integer is 2^31 - 1 = 2,147,483,647 which has 10 digits.
If you need a larger range, use a long.
Java Tutorial: Primitive Data Types
Yes, this is how floating point works in general. (Although, as others pointed out, this should be well within the actual capabilities of double.) It loses more and more precision as the number is getting bigger. And even with small numbers, it isn't guaranteed to be precise. For small integers it is, as a general rule, but in practice, relying on the precision of floating point is a bad idea.
For integers, long should be good enough, 263-1 is the biggest number you can store in it.
Otherwise BigDecimal is the answer. Not very convenient, but it is precise.
Judging by the update to your question, you want to store prices or something similar. In that case, you can either use a library dedicated to currency arithmetic (as there are often weird rules of rounding involved for example), or store pennies/cents in a long.
A double is actually able to hold that result. The most likely thing is probably that you're inspecting/printing out the number in such a way that appears like the number isn't different (could you post your test code?).
As a general rule of thumb, doubles give you ~16 digits of precision, and floats give you ~8 digits of precision.
What kind of 9-digit number do you need to keep? A double should have enough precision track 9 significant digits as would an int, but you need to know which type of number you need before you choose a type. If you need real values (i.e., they have digits to the right of the decimal), then choose double. If they are integers, choose int.
I don't think your exact problem is very clear. Are you using integer arithmetic? In which case you should expect an integer division to round down the answer.
int i = 1000001 / 100;
System.out.println(i);
double d = (double) 1000001 / 100;
System.out.println(d);
prints as expected
10000
10000.01
However, since you have't given a clear example of what does work and what you expect to happen, we are just guessing what your problem might be.
Nevertheless, there is something wrong. It should be possible to (ab)use a double (which is in 64bit IEEE format in Java) as an 48-bit-or so integer. 48 bt should be enough to store 9 decimal digits.

How do I round up currency values in Java?

Okay, here's my problem.
Basically I have this problem.
I have a number like .53999999.
How do I round it up to 54 without using any of the Math functions?
I'm guessing I have to multiply by 100 to scale it, then divide?
Something like that?
The issue is with money. let's say I have $50.5399999 I know how to get the $50, but I don't have how to get the cents. I can get the .539999 part, but I don't know how to get it to 54 cents.
I would use something like:
BigDecimal result = new BigDecimal("50.5399999").setScale(2, BigDecimal.ROUND_HALF_UP);
There is a great article called Make cents with BigDecimal on JavaWorld that you should take a look at.
You should use a decimal or currency type to represent money, not floating point.
Math with money is more complex than most engineers think (over generalization)
If you are doing currency calculations, I think you may be delving into problems that seem simple at their surface but are actually quite complex. For instance, rounding methods that are a result of business logic decisions that are repeated often can drastically affect the totals of calculations.
I would recommend looking at the Java Currency class for currency formatting.
Also having a look at this page on representing money in java may be helpful.
If this is homework, showing the teacher that you have thought through the real-world problem rather than just slung a bunch of code together that "works" - will surely be more impressive.
On a side note, I initially was going to suggest looking at the implementation of the Java math methods in the source code, so I took a look. I noticed that Java was using native methods for its rounding methods - just like it should.
However, a look at BigDecimal shows that there is Java source available for rounding in Java. So rather than just give you the code for your homework, I suggest that you look at the BigDecimal private method doRound(MathContext mc) in the Java source.
If 50.54 isn't representable in double precision, then rounding won't help.
If you're trying to convert 50.53999999 to a whole number of dollars and a whole number of cents, do the following:
double d = 50.539999; // or however many 9's, it doesn't matter
int dollars = (int)d;
double frac = d - dollars;
int cents = (int)((frac * 100) + 0.5);
Note that the addition of 0.5 in that last step is to round to the nearest whole number of cents. If you always want it to round up, change that to add 0.9999999 instead of 0.5.
Why would you not want to use any Math functions?
static long round(double a)
-Returns the closest long to the argument.
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Math.html
To represent money I would take the following advice instead of re-inventing the wheel:
http://www.javapractices.com/topic/TopicAction.do?Id=13
Try storing your currency as number of cents (you could abstract this to number of base curreny units) with a long.
Edit: Since this is homework, you may not have control over the types. Consider this a lesson for future projects
long money = 5054;
long cents = money % 100;
long dollars = money / 100; // this works due to integer/long truncation
System.out.printf("$%d.%02.d", dollars, cents);
You need to make the number .535 and compare that with your original number to see if you'll round up or down. Here's how you get .535 from .53999999 (should work for any number):
num = .53999999;
int_num = (int)(num * 100); // cast to integer, however you do it in Java
compare_num = (int_num + 0.5) / 100;
compare_num would be .535 in this case. If num is greater than or equal to compare_num, round up to int_num + 1. Otherwise round down simply to int_num.
Sean seems to have it, except, if you want to impose proper rules then you may want to throw in an if statement like so:
double value = .539999;
int result = (int) (value*100);
if(((value*100)%result)>.5)
result++;
I suggest you use long for rounding a double value. It won't matter for small numbers but could make a difference.
double d = 50.539999;
long cents = (long)(d * 100 + 0.5);
double rounded = cents/100;
What exactly are you trying to do? Are you always trying to go to two digits? Or are you always trying to fix things like 99999 at the end no matter what?
According to the comments, it is in fact the former: rounding to dollars and cents. So indeed just round(100*a)/100 is what you want. (The latter would be much more complicated...)
Finally, if you just want to extract the cents part, the following would work:
dollars_and_cents = round(100*a)/100
cents = (dollars_and_cents-(int)dollars_and_cents)*100
(or does java just have frac? In which case the last line would just be frac(dollars_and_cents)*100.

Categories