I am a Java newbie trying to learn network programming and concurrency, and I thought I'd try out writing a simple chat server where input from a client is echoed to all the clients. That's not happening. I added a couple print statements so that the program will announce that it is waiting for connections and each time it receives a connection. I am using Telnet locally to connect to the port on my machine.
The program announces success for the first and second concurrent connections but then does not announce success for subsequent connections until I close all connections. So, for example, I'll connect from five separate terminals, and the program will announce "Connection 1" and "Connection 2" but will not announce "Connection 3", 4, and 5 until I close all the terminals.
I'm looking for help figuring out where my errors lie as well as general advice for how to approach debugging a situation like this.
In a nutshell, my program has
A Main class, which starts the other three threads
A ClientListener class, which uses a SocketReader to listen for connections and stores the Sockets inputstreams and outputstreams in two Sets.
A MessageReader, which iterates over the inputstreams. If it finds a message, it puts it in a SynchronousQueue and waits for the
MessageWriter to remove it. The MessageWriter sends the message to all the outputstreams.
The code is below. Thanks for any help!
public class Main {
public static void main(String[] args) {
ClientListener clientListener = new ClientListener();
Thread clientListenerThread = new Thread(clientListener);
clientListenerThread.setPriority(Thread.MAX_PRIORITY);
clientListenerThread.start();
MessageReader messageReader = new MessageReader(clientListener);
Thread messageReaderThread = new Thread(messageReader);
messageReaderThread.setPriority(Thread.MIN_PRIORITY);
messageReaderThread.start();
MessageWriter messageWriter = new MessageWriter(messageReader, clientListener);
Thread messageWriterThread = new Thread(messageWriter);
messageWriterThread.setPriority(Thread.NORM_PRIORITY);
messageWriterThread.start();
}
}
public class ClientListener implements Runnable {
private static final int DEFAULT_PORT = 5000;
private Set<Scanner> clientIn = Collections.synchronizedSet(
new LinkedHashSet<Scanner>());
private Set<PrintWriter> clientOut = Collections.synchronizedSet(
new LinkedHashSet<PrintWriter>());
public Set<Scanner> getClientIn() {
return clientIn;
}
public Set<PrintWriter> getClientOut() {
return clientOut;
}
#Override
public void run() {
try {
ServerSocket server = new ServerSocket(DEFAULT_PORT);
System.out.println("Listening for connections...");
int connectionNum = 0;
while(true) {
Socket socket = server.accept();
connectionNum++;
System.out.format("Connection %s%n", connectionNum);
Scanner in = new Scanner(socket.getInputStream());
PrintWriter out = new PrintWriter(socket.getOutputStream());
clientIn.add(in);
clientOut.add(out);
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
public class MessageReader implements Runnable {
private ClientListener clientListener;
private BlockingQueue<String> messages = new SynchronousQueue<String>();
public MessageReader(ClientListener clientListener) {
this.clientListener = clientListener;
}
#Override
public void run() {
while(true) {
Set<Scanner> clients = clientListener.getClientIn();
synchronized (clients) {
for(Scanner client: clients) {
if(client.hasNext()) {
try {
messages.put(client.next());
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
}
}
public String getMessage() throws InterruptedException {
return messages.take();
}
}
public class MessageWriter implements Runnable {
private ClientListener clientListener;
private MessageReader messageReader;
public MessageWriter(
MessageReader messageReader,
ClientListener clientListener) {
this.messageReader = messageReader;
this.clientListener = clientListener;
}
#Override
public void run() {
try {
while(true) {
String message = messageReader.getMessage();
Set<PrintWriter> clients = clientListener.getClientOut();
synchronized (clients) {
for(PrintWriter client: clients) {
client.println(message);
}
}
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
I'm not a threading expert, but in class MessageReader there is this line
if(client.hasNext())
Javadoc for Scanner.hasNext() say's "This method may block while waiting for input to scan. The scanner does not advance past any input."
If the scanner is still in wait the synchronized method never proceeds and block all other inputs. And as said in my earlier comment the line which says clientIn.add(in); in class ClientListener probably gets blocked given that its a synchronized Set, but since the print statment is written before it, it might give the impression that Connection 2 was succesfully established.
Related
im making a networked game that has a server which creates a clientHandler thread every time a client joins. I want to ask the first client that joined if it wants to start the game every time a new client joins, giving it the current number of players connected. Writting through the clientHandlers printwritter gives a nullPointerException, even though ive started the thread before doing this. what could be the problem?
Here is the server code:
`public class Server implements Runnable{
private ArrayList<ClientHandler> handlers = new ArrayList<>();
private ArrayList<Player> players = new ArrayList<>();
private Game game;
private boolean start;
public static void main(String[] args) {
Server server = new Server();
Thread s = new Thread(server);
s.start();
}
public void login(String name){
//todo
for (ClientHandler c : handlers){
if (c.getName().equals(name)){
alreadyTaken(name);//todo
}
else{
players.add(new HumanPlayer(name,c));//todo
}
}
}
public void setStart(){
start = true;
}
private void alreadyTaken(String name) {
}
public void setTurn(ServerHandler sh){
//todo
}
public void updateView(){
}
public String hello() {
return "Hello"; //?
}
public void place(String s){
}
#Override
public void run() {
ServerSocket serverSocket;
try {
serverSocket = new ServerSocket(1800);
} catch (IOException e) {
throw new RuntimeException(e);
}
System.out.println("----Server----");
while (!serverSocket.isClosed()) {
try {
Socket socket = serverSocket.accept();
ClientHandler handler = new ClientHandler(socket,handlers,this);
handlers.add(handler);
Thread h = new Thread(handler);
h.start();
System.out.println("A new client has connected");
System.out.println(handlers.get(0));
handlers.get(0).out.println("START? "+ handlers.size());
if (start){
System.out.println("start request works");
}
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
}
`
And here's the client handler code:
`public class ClientHandler implements Runnable{
private Socket socket;
private ArrayList<ClientHandler> handlers;
private Server server;
public PrintWriter out;
private BufferedReader in;
private String name;
public ClientHandler(Socket socket, ArrayList<ClientHandler> handlers, Server server){
this.socket = socket;
this.handlers = handlers;
this.server = server;
}
public void broadcastMessage(String msg){
System.out.println("Broadcasting");
for (ClientHandler s : this.handlers){
s.out.println("Player: " + msg);
}
}
public static String removePrefix(String s, String prefix)
{
if (s != null && s.startsWith(prefix)) {
return s.split(prefix, 2)[1];
}
return s;
}
public String getName(){
return name;
}
#Override
public void run() {
try {
out = new PrintWriter(new OutputStreamWriter(socket.getOutputStream()),true);
in = new BufferedReader(new InputStreamReader(socket.getInputStream()));
new Thread(() -> {
while(socket.isConnected()){
String msg;
try {
msg = in.readLine();
while(msg!=null){
switch (msg.split(" ")[0]){
case "LOGIN":
name = removePrefix(msg,"LOGIN ");
server.login(name);//todo
break;
case "HELLO":
server.hello();//todo
break;
case "PLACE":
server.place(removePrefix(msg,"PLACE "));
break;
case "QUIT":
//todo
break;
case "STOP":
//todo
break;
case "START":
server.setStart();
default:
broadcastMessage(msg);
break;
}
msg = in.readLine();
}
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}).start();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}`
I tried making a method in the client handler class which does the same thing. The server would just call that instead of writting directing through the PrintWriter, but i got the same error.
Starting a thread does not mean it is guaranteed to actually finish executing the first statement in its run() method before start() returns. In fact,
Usually it won't - starting a thread takes some time, and start() returns as soon as it can.
A JVM that runs a few statements in the thread you just started before start() returns is 'correct' - that is fine. A JVM that doesn't is also fine. Generally you don't want threads, because nothing is predictable anymore. At the very least you want to keep 'inter-thread comms' down to a minimum. Anytime a single field is used from more than one thread, things get very tricky.
What you need is synchronized or other tools to insert predictability in this code.
First, fix a bug
Your ClientHandler's run() code starts another thread for no reason. Take all that out, your run() method in ClientHandler should set up out and in and then immediately do while (socket.isConnected())
Synchronizing
At the very basic level, make a locker object and use notify/wait:
private final Object lock = new Object();
#Override public void run() {
try {
synchronized (lock) {
out = ...;
in = ...;
lock.notifyAll();
}
while (socket.isConnected()) { ... }
out definitely cannot be public here, you can't refer to a stream from multiple threads and expect things to work out!
Just 'fixing' your code involves then using something like:
public OutputStream getOutputStream() {
synchronized (lock) {
while (out == null) {
lock.wait();
}
}
return out;
}
Which will ensure that any thread that wants the out will wait for the other thread to get far enough, but, really, this is just setting you up for another 20 threading problems down the line. Instead, you want one object responsibile for all communication (both outgoing and incoming), and a concurrency-capable queue (there are various collections in the java.util.concurrent package good for this). Then:
Any other threads that want to just send data dump their message in the queue.
You have either 1 thread doing all comms, or 2 (one doing incoming, and one doing outgoing), both dedicated. The outgoing one just loops forever, grabbing objects from the queue and sending them.
If a thread wants to send a message and wait for the response, you need to use .wait() or nicer API from e.g. java.util.concurrent, or, use callback hell - you pass a closure with the code to run once the result is received.
So I'm working on a server that handles a few commands and one small problem is trying to remove the list of active clients when a user decides to log out. Each client is handled in a thread and once the command is done this active client gets removed however its not removing.
Below is an example of removing an active client, this thread is
public class serverHandlerThread implements Runnable
{
private Socket socket;
//private BufferedWriter clientOut;
private ObjectOutputStream toClient;
private MainServer server;
private Users user;
//Constructor
serverHandlerThread(MainServer server, Socket socket)
{
this.server = server;
this.socket = socket;
}
private ObjectOutputStream getWriter()
{
return toClient;
}
private void deleteClient(serverHandlerThread obj)
{
synchronized (server.clients)
{
server.clients.remove(obj);
}
}
#Override
public void run ()
{
try
{
//Setup I/O
toClient = new ObjectOutputStream(socket.getOutputStream());
ObjectInputStream fromClient = new ObjectInputStream(socket.getInputStream());
while(!socket.isClosed())
{
//If server has received a message
if(fromClient.available() > 0)
{
//Reads message and objects from client
String input = fromClient.readUTF();
Object obj = fromClient.readObject();
//logger(input);
switch (input)
{
//Logout the user
case ".logout":
//Set the user to being logged out and print the log
user = (Users) obj;
deleteClient(this);
for (int i = 0; i < server.usersList.size(); i++)
{
if (user.getUserName().equals(server.usersList.get(i).getUserName()))
{
server.usersList.get(i).setLoggedIn(false);
logger(user.getUserName() + " has logged out");
}
}
break;
//Push message received to other clients
default:
logger("Sending message to clients");
user = (Users) obj;
deleteClient(this);
logger("clients size is: " + String.valueOf(server.clients.size()));
for (serverHandlerThread thatClient : server.getClients())
{
ObjectOutputStream thatClientOut = thatClient.getWriter();
if (thatClientOut != null)
{
thatClientOut.writeUTF(user.getUserName() + ": " + input + "\r\n");
thatClientOut.flush();
}
}
break;
}
}
}
}
catch (IOException | ClassNotFoundException e)
{
e.printStackTrace();
}
}
}
server is of type MainServer which contains the list of clients and is written as List<ServerHandlerThread> clients. MainServer calls serverHandlerThread when a new client is accepted ie. making the server multithread.
The problem is when the clients requests to logout it should delete the user from the active client list. It doesn't and so when the server tries to push messages to all clients it also tried to write a message to the client who's socket has been closed(user who logged out) and so the server spits out a broken pipe error. Any ideas?
*Edit
More information on the mainServer class, omitted a few things but this should be enough information
public class MainServer
{
//Static variables
private static final int portNumber = 4444;
//Variables
private int serverPort;
private List<serverHandlerThread> clients;
/**
* Very basic logger that prints out
* the current time and date
* #param msg used when printing the log
*/
private void logger(String msg)
{
System.out.println(LocalDate.now()+ " " +LocalTime.now() + " - " +msg);
}
private List<serverHandlerThread> getClients()
{
return clients;
}
//Starts the server and begins accepting clients
private void startServer()
{
clients = new ArrayList<>();
ServerSocket serverSocket;
try
{
serverSocket = new ServerSocket(serverPort);
acceptClients(serverSocket);
}
catch (IOException e)
{
logger("Could not listen on port: " + serverPort);
System.exit(1);
}
}
//Continuously accept clients
private void acceptClients(ServerSocket serverSocket)
{
logger("Server starts port = " + serverSocket.getLocalSocketAddress());
while (true)
{
try
{
Socket socket = serverSocket.accept();
//logger("Accepts: " + socket.getRemoteSocketAddress());
serverHandlerThread client = new serverHandlerThread(this, socket);
Thread thread = new Thread(client);
thread.setDaemon(true);
thread.start();
synchronized(clients)
{
clients.add(client);
}
}
catch (IOException e)
{
System.err.println("Accept failed on:" + serverPort);
}
}
}
public MainServer(int portNumber)
{
this.serverPort = portNumber;
}
public static void main(String[] args)
{
MainServer server = new MainServer(portNumber);
server.startServer();
}
}
*Edit 2
So I've made a little method that synchronizes the client list accross all threads and edited the mainServer to do this as-well but the problem persists
private void deleteClient(serverHandlerThread obj)
{
synchronized (server.clients)
{
server.clients.remove(obj);
}
}
You should probably refactor your code using a client manager pattern to avoid the problem you currently have:
You are managing your clients from N threads, one of which being the server.
You have access to one list with various form of synchronization which may be lead to synchronization issues because the code is all over.
Given this pattern, here is an example (I used synchronized, but other form of synchronization may work):
class ClientManager {
private final List<Client> clients;
public ClientManager() {
this.clients = new ArrayList<>();
}
public synchronized void add(Client client) {
this.clients.add(client);
}
public synchronized void remove(Client client) {
this.clients.remove(client);
}
public synchronized List<Client> list() {
return new ArrayList<>(this.clients);
}
}
Both Client (ServerHandlerThread) and Server (MainServer) will play the ClientManager: my point is that this class is doing all the synchronization work and not the Server/Client.
I use a copy of the list to minimize the lock time (otherwise, client would wait for other thread calling list()). This means that a Client logout may occurs here when you send your message: you'll need to use a flag (alive, etc) indicating if the Client is still there.
You may also check it in the sendMessage and return a status indicating if the message was sent or not.
class Server {
private final ClientManager manager = new ClientManager();
// register new client
Client newClient() {
Client client = new Client(manager);
manager.add(client);
return client;
}
void sendMessageToAll(String msg) {
for (Client client : manager.list()) {
// isAlive returns true except if the client was logged out.
// It should probably be synchronized too.
if (client.isAlive()) {
client.sendMessage(msg);
}
}
}
}
class Client {
private final ClientManager manager;
public Client(ClientManager manager) {
this.manager = manager;
}
public void logoff() {
manager.remove(this);
}
}
Edit: to answer your comment, I added an example of the Client and how server and client use the manager.
Just to clarify you discuss the client having a play in the client
manager which confuses me. My server accepts a client (socket =
serversocket.accept() ) and sends this socket to a new thread, this
thread handles all communication with the client (messaging and
commands). After the thread is started the thread is added to the
client list. The problem is in the thread when the client sends a
command the thread should run the command then delete itself from the
client list (clientlist.remove(this)). Will your solution still work
here? Cause you discussion about Client confused me
Briefly, yes.
Simple: you are using a List, which is by default not synchronized (you could use a Vector or Collections::synchronizedList for that). Because you do that in several thread, there are synchronization issues (aka "random effect" :)).
Instead of using directly the list, you should rather use a class dedicated to this usage: that's what the ClientManager is for. An object which will manage a list of Client.
This has also another advantages: instead of having several synchronized blocks across your code, all code are in one place.
everybody.
Hope you can help me with this one:
I have two threads, which are tasked with handling connections from a client.
This is my code
ServerSocket loginSocket = new ServerSocket(8000);
ServerSocket fileSocket = new ServerSocket(7000);
while (running) {
new LoginThread(loginSocket.accept(),loginInormation).start();
new LoaderThread(fileSocket.accept()).start();
}
When I try to connect to the loginSocket two times, the server will block and stop working, blocking the client, but this doesn't happen if I delete this:
new LoginThread(loginSocket.accept(),loginInormation).start();
I'm not getting any error messages, so why is this happening and how can I fix this?
The accept() method is a blocking method, which means that your program won't continue until a connection is made with loginSocket().
When you're creating your LoginThread, the program waits a connection to set the first parameter of your object, and it will not continue the execution until a connection is made.
The line new LoginThread(loginSocket.accept(),loginInormation).start(); contains the method call loginSocket.accept(), which will be called before this thread is created. This method call will block until a client logs in. (In addition, the second thread will be blocked by fileSocket.accept()).
As for a solution, I would move the accept() calls to inside each of the Threads. You will need to pass the sockets to the threads for them to do this.
Start fileSocket and login socket in different threads
package com.ca.training.task.app;
import java.io.IOException;
import java.net.ServerSocket;
public class App {
public void execute() {
LoginRunnable loginRunnable = new LoginRunnable();
loginRunnable.setLoginInformation(new Object());//Login information
FileRunnable fileRunnable = new FileRunnable();//Data for loaded runnable.
fileRunnable.setParams(new Object());
startLoginThread(loginRunnable);
startFileThread(fileRunnable);
}
private static void startLoginThread(LoginRunnable loginRunnable) {
Thread loginThread = new Thread(loginRunnable);
loginThread.start();
}
private static void startFileThread(FileRunnable fileRunnable) {
Thread loadedThread = new Thread(fileRunnable);
loadedThread.start();
}
class LoginRunnable implements Runnable {
private Object loginInformation;
#Override
public void run() {
try {
ServerSocket loginSocket = new ServerSocket(8000);
loginSocket.accept();
} catch (IOException e) {
e.printStackTrace();
}
}
public Object getLoginInformation() {
return loginInformation;
}
public void setLoginInformation(Object loginInformation) {
this.loginInformation = loginInformation;
}
}
class FileRunnable implements Runnable {
private Object params;
#Override
public void run() {
try {
ServerSocket fileSocket = new ServerSocket(7000);
} catch (IOException e) {
e.printStackTrace();
}
}
public Object getParams() {
return params;
}
public void setParams(Object params) {
this.params = params;
}
}
}
So I'm trying to create a client/server program. I want to know when my client disconnects of his own accord, so I've setup a heartbeat system. Every 6 seconds my client sends a ping to my server, if the client doesn't send a ping for a total of 30 seconds the client is considered disconnected and removed from the current connections list (for which I plan to implement a GUI). Or at least, that's the plan.
ConnectionManager.java
public class ConnectionManager implements Runnable{
static Socket connection;
private ArrayList<Thread> allConnections;
private ArrayList<Connection> allConnectionList;
private ServerSocket server;
private int id = 0;
public ConnectionManager() {
allConnections = new ArrayList<Thread>();
allConnectionList = new ArrayList<Connection>();
}
#Override
public void run() {
try {
server = new ServerSocket(5555);
System.out.println("Server is running!");
while(true) {
connection = server.accept();
Connection a = new Connection(connection, id);
Runnable runnable = a;
allConnectionList.add(a);
allConnections.add(new Thread(runnable));
allConnections.get(allConnections.size() - 1).start();
id++;
}
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public void removeConnection(int id) {
allConnections.remove(id);
allConnectionList.remove(id);
}
Connection.java
public class Connection implements Runnable {
private Socket a;
public boolean amIActive;
private int id;
public Connection(Socket a, int id) {
amIActive = true;
this.a = a;
this.id = id;
}
public void onConnect() {
try {
String TimeStamp = new java.util.Date().toString();
String formattedAddress = a.getInetAddress().toString().replace("/", "");
System.out.println("Received connection from: " + formattedAddress + " at " + TimeStamp);
Runnable runnable = new ConnectionListener(this);
Thread connectionThread = new Thread(runnable);
connectionThread.start();
String returnCode = "Server repsonded to " + a.getInetAddress().toString().replace("/", "") + " at "+ TimeStamp + (char) 13;
BufferedOutputStream os = new BufferedOutputStream(a.getOutputStream());
OutputStreamWriter osw = new OutputStreamWriter(os, "US-ASCII");
osw.write(returnCode);
osw.flush();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
#Override
public void run() {
onConnect();
System.out.println("We got this far!");
while(amIActive) {
whileTrue();
}
System.out.println("This code never gets run because we get stuck in the while loop above");
Main.b.removeConnection(id);
System.out.println("Connection was closed from " + a.getInetAddress());
}
public void setOffline(boolean state) {
this.amIActive = state;
}
public void whileTrue() {
}
public Socket getSocket() {
return a;
}
ConnectionListener.java
public class ConnectionListener implements Runnable{
public Connection myConnection;
public boolean receivedHeartbeat;
public int missedHeartbeats = 0;
public ConnectionListener(Connection a) {
this.myConnection = a;
}
#Override
public void run() {
Runnable runnable = new Heartbeat(this);
Thread thread = new Thread(runnable);
thread.start();
while(myConnection.amIActive) {
try {
BufferedInputStream is;
is = new BufferedInputStream(myConnection.getSocket().getInputStream());
InputStreamReader isr = new InputStreamReader(is);
StringBuffer process = new StringBuffer();
int character;
while((character = isr.read()) != 13) { //GETTING STUCK HERE BECAUSE STUPID.
if(character == -1) {
myConnection.setOffline(true);
} else {
process.append((char)character);
}
}
handleInput(process);
} catch (Exception e) {
e.printStackTrace();
}
}
}
public void handleInput(StringBuffer process) {
String messageSent = process.toString();
if(messageSent.equals("Ping!")) {
receivedHeartbeat = true;
}
}
Heartbeat.java
public class Heartbeat implements Runnable{
private ConnectionListener b;
public Heartbeat(ConnectionListener a) {
b = a;
}
#Override
public void run() {
while(true) {
try {
Thread.sleep(1000);
if(b.missedHeartbeats > 5) {
b.myConnection.amIActive = false;
System.out.println("Setting amIActiveToFalse!");
}
if(b.receivedHeartbeat) {
b.receivedHeartbeat = false;
} else {
b.missedHeartbeats++;
}
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
My console is spammed with System.out.println("Setting amIActiveToFalse!"); from Heartbeat.java. But the while loop in Connection.java keeps running. I believe this might be something to do with my threading, but I can't figure it out.
When you have a non-volatile variable, there is no guarentee of visability of a change in one thread to another. In particular, if the JVM detects that a thread doesn't alter a boolean it can inline it, meaning you will never see the value change.
The simple solution is to make the boolean volatile and it will not be inlined and one thread will see when another changes it.
For more details http://vanillajava.blogspot.com/2012/01/demonstrating-when-volatile-is-required.html
The trivial answer to this is: make the variable volatile.
Without this, it is allowed for the thread changing the value to basically keep its updates in cache, committing them to main memory some time later.
This allows threaded code to run much faster, since it can keep its variables in cache rather than having to fetch from main memory. However, the consequence of this is that other threads don't see the update.
Making the variable volatile prevents this from happening: a thread always reads the value from main memory, and writes are immediately committed.
I say that this is the trivial answer because it doesn't necessarily fix all of your problems. There may also be an atomicity issue: in between one thread reading the variable and writing it again, another thread might sneak in and change its value, which may or may not put the first thread into an undefined state from the perspective of its invariants.
Specifically:
if(b.receivedHeartbeat) { b.receivedHeartbeat = false;
It is possible that some other thread can change b.receivedHeartbeat to false after this thread evaluates it to true, so this iteration is erroneously counted as a "non-missed" heartbeat.
This can be fixed by making the variable a (non-volatile) AtomicBoolean, on which there is an atomic compare-and-set method, which avoids such race conditions.
Java Concurrency In Practice is a great reference on these issues, I wholeheartedly recommend it. Look for the topics "visibility" and "atomicity".
Also read the advanced chapter on the Java Memory Model. That made me doubt myself at first, but made me a much stronger programmer after I digested it.
There are a couple issues I saw while debugging the code you posted, but I was able to successfully get the heartbeat functionality working.
In the Connection Listener class I don't think the if statement with .equals("Ping!") will match, because of the newline character at the end of each line.
In the Connection Listener class I would probably put the socket's Input Stream at the top of the loop not inside the loop. (I don't think this will break it but it's probably nicer this way)
ConnectionListener Updates:
public void run() {
Runnable runnable = new Heartbeat(this);
Thread thread = new Thread(runnable);
thread.start();
BufferedReader br = null;
try {
//is = new BufferedInputStream(myConnection.getSocket().getInputStream());
br = new BufferedReader(new InputStreamReader(myConnection.getSocket().getInputStream()));
} catch (IOException e1) {
// TODO Auto-generated catch block
e1.printStackTrace();
}
while(myConnection.amIActive) {
try {
String processLine = br.readLine();
System.out.println("handleInput:" + processLine);
handleInput(processLine);
} catch (Exception e) {
System.out.println("Exception!");
e.printStackTrace();
}
}
}
public void handleInput(String messageSent) {
if(messageSent.startsWith("Ping!")) { //Need to use startsWith, or add newline character
receivedHeartbeat = true;
System.out.println("receivedHeartbeat!");
}
}
Also, in your Heartbeat class make sure you reset the missedHeartbeats counter to 0 on true:
if(b.receivedHeartbeat) {
b.receivedHeartbeat = false;
b.missedHeartbeats = 0;
} else {
b.missedHeartbeats++;
}
Im facing one problem in streaming data capture for reading the broadcast data during multithreading, pls help or suggest,
Actually there is one class which is reading data from one of the udp socket. Another class accepts the tcp connection from every client request, creates a thread for every client and request the same udp class for data. The thing is working with 1st thread which gets created. But when i request with another client from another pc/ip the packets get losted to the 2nd client/thread
I have made a workaround by creating a list where im storing the Threads outputstream object
and looping it to send the data to all the client. But this is just temporary as it ll delay the packets if clients/connections gets increased.
code for reading UDP Data
public class EventNotifier
{
private InterestingEvent ie;
public DatagramSocket clientSocket;
public String[] split_str;
byte[] receiveData;
HashMap<String, String> secMap = new HashMap<String, String>();
public EventNotifier(InterestingEvent event)
{
ie = event;
clientSocket = new DatagramSocket(9050);
receiveData = new byte[500];
}
public String getDataFeed(String client_id)
{
try
{
DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length);
clientSocket.receive(receivePacket);
String s = new String(receivePacket.getData());
String split_str = s.split(",");
if(secMap.containsValue(split_str[0]))
return s;
else
return "";
} catch(Exception e3) {}
}
}// end of eventNotifier class
code for multithreading handling client requests
public class multiServer
{
static protected List<PrintWriter> writers = new ArrayList<PrintWriter>();
static String client_id = "";
public static void main(String[] args)
{
try
{
ServerSocket servsock = new ServerSocket(8858);
Socket incoming;
while(true)
{
incoming = servsock.accept();
multiServerThread connection = new multiServerThread(incoming);
Thread t1 = new Thread(connection);
t1.start();
}
}
catch(IOException e)
{
System.out.println("couldnt make socket");
}
}
}
class multiServerThread extends Thread implements InterestingEvent
{
Socket incoming;
PrintWriter out=null;
PrintWriter broad=null;
BufferedReader in = null;
String cliString=null;
private EventNotifier en;
int id;
public static String udp_data;
public void interestingEvent(String str1)
{
this.udp_data = str1;
}
public String getUdpData()
{
String _udp_data = this.udp_data;
return _udp_data;
}
multiServerThread(Socket incoming)
{
this.incoming=incoming;
en = new EventNotifier(this);
}
public void run()
{
try
{
out = new PrintWriter(incoming.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(incoming.getInputStream()));
cliString = in.readLine();
multiServer.writers.add(out);
while(true)
{
try
{
udp_data = en.getDataFeed(cliString);
if(udp_data!=null && udp_data.length()>0)
{
//workaround for serving the data to all cleints who are connected
for (int i=0; i<multiServer.writers.size();i++)
{
broad=multiServer.writers.get(i);
broad.println(udp_data.trim());
}
//else will directly write to the outputstream object for every thread which is connected
// out.println(udp_data.trim());
}
}
catch (Exception e)
{
System.out.println("exception "+e);
}
Thread.sleep(1);
}
} catch(IOException e)
{
System.out.print("IO Exception :: "+ e);
}
catch(InterruptedException e)
{
System.out.print("exception "+ e);
}
}
}
You need mutual exclusion (or a different design).
For example, what will happen if two threads call multiServer.writers.add(out); concurrently?
From the ArrayList Javadocs
Note that this implementation is not synchronized. If multiple threads access an ArrayList instance concurrently, and at least one of the threads modifies the list structurally, it must be synchronized externally. (A structural modification is any operation that adds or deletes one or more elements, or [...])
Another problem is two calling udp_data = en.getDataFeed(cliString); concurrently. The second thread might overwrite the result of the first. You'll loose data!
What happens if one thread calls for (int i=0; i<multiServer.writers.size();i++) while another thread is busy doing multiServer.writers.add(out);? The size may have increased, before out has actually been added to the list!
public class multiServer
{
private List<PrintWriter> writers = new ArrayList<PrintWriter>();
public synchronized void addWriter(PrintWrite out) {
writers.add(out);
}
public synchronized void serveAllWriters(String data) {
for (int i=0; i<multiServer.writers.size();i++)
{
broad=multiServer.writers.get(i);
broad.println(data);
}
}
}
Now when a thread tries to add a writer, the synchronizeds will make sure no other thread is adding or printing. So multiServerThread should be fixed to use the new methods:
class multiServerThread extends Thread implements InterestingEvent
{
//...
private String udp_data;
//...
myMultiServer.addWriter(out);
//...
udp_data = en.getDataFeed(cliString);
if(udp_data!=null && udp_data.length()>0)
myMultiServer.serveAllWriters(udp_data.trim());
//...
}
There might be more problems, not sure I don't fully understand your code. The question you must ask yourself is, can another thread read and/or write the same data or object? Yes? Then you'll need proper synchronization.