I need to create a 100 or more static final constants in my application and I can achieve this is following two ways as per my understanding:
Creating a simple java class and create static final field in that
Creating an interface an put all variable in that because all field in an interface is implicitly static final
I have these question in above approach:
Which one is right approach to achieve this?
Which one is memory efficient approach?
Is there any design pattern to achieve this?
You can refer to many books about the topic.
I will quote a good one: "Effective Java"
Item 19: Use interfaces only to define types
The constant interface pattern is a poor use of interfaces. That a
class uses some constants internally is an implementation detail.
Implementing a constant interface causes this implementation detail to
leak into the class’s exported API. It is of no consequence to the
users of a class that the class implements a constant interface
you can even check where JDK mostly constants are declared..
Math.PI for example is declared in the class Math and not in an interface
and as an exception you can see constants like in the java.io.ObjectStreamConstants but again the Books are there to help:
From effective java again:
There are several constant interfaces in the Java platform libraries...
These interfaces should be
regarded as anomalies and should not be emulated.
I would not be thinking should they be in an interface or class, but more about the constants and their meaning.
I would not recommend putting all your constants in one place for the sake of keeping them together. If for instance a constant is directly related to a class then would say put it in that class. I have worked with code where all the constants ate bundled into one class, and I don't thing it is a good approach.
Have you considered approach with ENUM or it doesn't fit in your case?
I think, the approach with ENUM can gives you some benefits over constants.
Why use Enums instead of Constants?
I think that convenient way is to keep them in one place, if they are have common nature. Anyway, they should be grouped by some attribute. You can create class for them like this:
public final class Consts {
public static class GroupA {...}
public static class GroupB {...}
//and so on
}
With groups this class becomes much readable and a little bit better manageable. About memory consumption, try to use primitives for your constants, because they do not require additional space for meta information.
You can create Final or static constraint much as you like just by declaring field inside interface class so i would like to go with your option number 2
I am reading a book about Java and it says that you can declare the whole class as final. I cannot think of anything where I'd use this.
I am just new to programming and I am wondering if programmers actually use this on their programs. If they do, when do they use it so I can understand it better and know when to use it.
If Java is object oriented, and you declare a class final, doesn't it stop the idea of class having the characteristics of objects?
First of all, I recommend this article: Java: When to create a final class
If they do, when do they use it so I can understand it better and know when to use it.
A final class is simply a class that can't be extended.
(It does not mean that all references to objects of the class would act as if they were declared as final.)
When it's useful to declare a class as final is covered in the answers of this question:
Good reasons to prohibit inheritance in Java?
If Java is object oriented, and you declare a class final, doesn't it stop the idea of class having the characteristics of objects?
In some sense yes.
By marking a class as final you disable a powerful and flexible feature of the language for that part of the code. Some classes however, should not (and in certain cases can not) be designed to take subclassing into account in a good way. In these cases it makes sense to mark the class as final, even though it limits OOP. (Remember however that a final class can still extend another non-final class.)
In Java, items with the final modifier cannot be changed!
This includes final classes, final variables, and final methods:
A final class cannot be extended by any other class
A final variable cannot be reassigned another value
A final method cannot be overridden
One scenario where final is important, when you want to prevent inheritance of a class, for security reasons. This allows you to make sure that code you are running cannot be overridden by someone.
Another scenario is for optimization: I seem to remember that the Java compiler inlines some function calls from final classes. So, if you call a.x() and a is declared final, we know at compile-time what the code will be and can inline into the calling function. I have no idea whether this is actually done, but with final it is a possibility.
The best example is
public final class String
which is an immutable class and cannot be extended.
Of course, there is more than just making the class final to be immutable.
If you imagine the class hierarchy as a tree (as it is in Java), abstract classes can only be branches and final classes are those that can only be leafs. Classes that fall into neither of those categories can be both branches and leafs.
There's no violation of OO principles here, final is simply providing a nice symmetry.
In practice you want to use final if you want your objects to be immutable or if you're writing an API, to signal to the users of the API that the class is just not intended for extension.
Relevant reading: The Open-Closed Principle by Bob Martin.
Key quote:
Software Entities (Classes, Modules,
Functions, etc.) should be open for
Extension, but closed for
Modification.
The final keyword is the means to enforce this in Java, whether it's used on methods or on classes.
The keyword final itself means something is final and is not supposed to be modified in any way. If a class if marked final then it can not be extended or sub-classed. But the question is why do we mark a class final? IMO there are various reasons:
Standardization: Some classes perform standard functions and they are not meant to be modified e.g. classes performing various functions related to string manipulations or mathematical functions etc.
Security reasons: Sometimes we write classes which perform various authentication and password related functions and we do not want them to be altered by anyone else.
I have heard that marking class final improves efficiency but frankly I could not find this argument to carry much weight.
If Java is object oriented, and you declare a class final, doesn't it
stop the idea of class having the characteristics of objects?
Perhaps yes, but sometimes that is the intended purpose. Sometimes we do that to achieve bigger benefits of security etc. by sacrificing the ability of this class to be extended. But a final class can still extend one class if it needs to.
On a side note we should prefer composition over inheritance and final keyword actually helps in enforcing this principle.
final class can avoid breaking the public API when you add new methods
Suppose that on version 1 of your Base class you do:
public class Base {}
and a client does:
class Derived extends Base {
public int method() { return 1; }
}
Then if in version 2 you want to add a method method to Base:
class Base {
public String method() { return null; }
}
it would break the client code.
If we had used final class Base instead, the client wouldn't have been able to inherit, and the method addition wouldn't break the API.
A final class is a class that can't be extended. Also methods could be declared as final to indicate that cannot be overridden by subclasses.
Preventing the class from being subclassed could be particularly useful if you write APIs or libraries and want to avoid being extended to alter base behaviour.
In java final keyword uses for below occasions.
Final Variables
Final Methods
Final Classes
In java final variables can't reassign, final classes can't extends and final methods can't override.
Be careful when you make a class "final". Because if you want to write an unit test for a final class, you cannot subclass this final class in order to use the dependency-breaking technique "Subclass and Override Method" described in Michael C. Feathers' book "Working Effectively with Legacy Code". In this book, Feathers said, "Seriously, it is easy to believe that sealed and final are a wrong-headed mistake, that they should never have been added to programming languages. But the real fault lies with us. When we depend directly on libraries that are out of our control, we are just asking for trouble."
If the class is marked final, it means that the class' structure can't be modified by anything external. Where this is the most visible is when you're doing traditional polymorphic inheritance, basically class B extends A just won't work. It's basically a way to protect some parts of your code (to extent).
To clarify, marking class final doesn't mark its fields as final and as such doesn't protect the object properties but the actual class structure instead.
TO ADDRESS THE FINAL CLASS PROBLEM:
There are two ways to make a class final. The first is to use the keyword final in the class declaration:
public final class SomeClass {
// . . . Class contents
}
The second way to make a class final is to declare all of its constructors as private:
public class SomeClass {
public final static SOME_INSTANCE = new SomeClass(5);
private SomeClass(final int value) {
}
Marking it final saves you the trouble if finding out that it is actual a final, to demonstrate look at this Test class. looks public at first glance.
public class Test{
private Test(Class beanClass, Class stopClass, int flags)
throws Exception{
// . . . snip . . .
}
}
Unfortunately, since the only constructor of the class is private, it is impossible to extend this class. In the case of the Test class, there is no reason that the class should be final. The Test class is a good example of how implicit final classes can cause problems.
So you should mark it final when you implicitly make a class final by making it's constructor private.
One advantage of keeping a class as final :-
String class is kept final so that no one can override its methods and change the functionality. e.g no one can change functionality of length() method. It will always return length of a string.
Developer of this class wanted no one to change functionality of this class, so he kept it as final.
The other answers have focused on what final class tells the compiler: do not allow another class to declare it extends this class, and why that is desirable.
But the compiler is not the only reader of the phrase final class. Every programmer who reads the source code also reads that. It can aid rapid program comprehension.
In general, if a programmer sees Thing thing = that.someMethod(...); and the programmer wants to understand the subsequent behaviour of the object accessed through the thing object-reference, the programmer must consider the Thing class hierarchy: potentially many types, scattered over many packages. But if the programmer knows, or reads, final class Thing, they instantly know that they do not need to search for and study so many Java files, because there are no derived classes: they need study only Thing.java and, perhaps, it's base classes.
Yes, sometimes you may want this though, either for security or speed reasons. It's done also in C++. It may not be that applicable for programs, but moreso for frameworks.
http://www.glenmccl.com/perfj_025.htm
think of FINAL as the "End of the line" - that guy cannot produce offspring anymore. So when you see it this way, there are ton of real world scenarios that you will come across that requires you to flag an 'end of line' marker to the class. It is Domain Driven Design - if your domain demands that a given ENTITY (class) cannot create sub-classes, then mark it as FINAL.
I should note that there is nothing stopping you from inheriting a "should be tagged as final" class. But that is generally classified as "abuse of inheritance", and done because most often you would like to inherit some function from the base class in your class.
The best approach is to look at the domain and let it dictate your design decisions.
As above told, if you want no one can change the functionality of the method then you can declare it as final.
Example: Application server file path for download/upload, splitting string based on offset, such methods you can declare it Final so that these method functions will not be altered. And if you want such final methods in a separate class, then define that class as Final class. So Final class will have all final methods, where as Final method can be declared and defined in non-final class.
Let's say you have an Employee class that has a method greet. When the greet method is called it simply prints Hello everyone!. So that is the expected behavior of greet method
public class Employee {
void greet() {
System.out.println("Hello everyone!");
}
}
Now, let GrumpyEmployee subclass Employee and override greet method as shown below.
public class GrumpyEmployee extends Employee {
#Override
void greet() {
System.out.println("Get lost!");
}
}
Now in the below code have a look at the sayHello method. It takes Employee instance as a parameter and calls the greet method hoping that it would say Hello everyone! But what we get is Get lost!. This change in behavior is because of Employee grumpyEmployee = new GrumpyEmployee();
public class TestFinal {
static Employee grumpyEmployee = new GrumpyEmployee();
public static void main(String[] args) {
TestFinal testFinal = new TestFinal();
testFinal.sayHello(grumpyEmployee);
}
private void sayHello(Employee employee) {
employee.greet(); //Here you would expect a warm greeting, but what you get is "Get lost!"
}
}
This situation can be avoided if the Employee class was made final. Just imagine the amount of chaos a cheeky programmer could cause if String Class was not declared as final.
Final class cannot be extended further. If we do not need to make a class inheritable in java,we can use this approach.
If we just need to make particular methods in a class not to be overridden, we just can put final keyword in front of them. There the class is still inheritable.
Final classes cannot be extended. So if you want a class to behave a certain way and don't someone to override the methods (with possibly less efficient and more malicious code), you can declare the whole class as final or specific methods which you don't want to be changed.
Since declaring a class does not prevent a class from being instantiated, it does not mean it will stop the class from having the characteristics of an object. It's just that you will have to stick to the methods just the way they are declared in the class.
Android Looper class is a good practical example of this.
http://developer.android.com/reference/android/os/Looper.html
The Looper class provides certain functionality which is NOT intended to be overridden by any other class. Hence, no sub-class here.
I know only one actual use case: generated classes
Among the use cases of generated classes, I know one: dependency inject e.g. https://github.com/google/dagger
Object Orientation is not about inheritance, it is about encapsulation. And inheritance breaks encapsulation.
Declaring a class final makes perfect sense in a lot of cases. Any object representing a “value” like a color or an amount of money could be final. They stand on their own.
If you are writing libraries, make your classes final unless you explicitly indent them to be derived. Otherwise, people may derive your classes and override methods, breaking your assumptions / invariants. This may have security implications as well.
Joshua Bloch in “Effective Java” recommends designing explicitly for inheritance or prohibiting it and he notes that designing for inheritance is not that easy.
In his book Effective Java, Joshua Bloch recommends against using Interfaces to hold constants,
The constant interface pattern is a poor use of interfaces. That a class uses some constants internally is an implementation detail. Implementing a constant interface causes this implementation detail to leak into the class’s exported API. It is of no consequence to the users of a class that the class implements a constant interface. In fact, it may even confuse them. Worse, it represents a commitment: if in a future release the class is modified so that it no longer needs to use the con-stants, it still must implement the interface to ensure binary compatibility. If a nonfinal class implements a constant interface, all of its subclasses will have their namespaces polluted by the constants in the interface.
His reasoning makes sense to me and it seems to be the prevailing logic whenever the question is brought up but it overlooks storing constants in interfaces and then NOT implementing them.
For instance,
public interface SomeInterface {
public static final String FOO = "example";
}
public class SomeOtherClass {
//notice that this class does not implement anything
public void foo() {
thisIsJustAnExample("Designed to be short", SomeInteface.FOO);
}
}
I work with someone who uses this method all the time. I tend to use class with private constructors to hold my constants, but I've started using interfaces in this manner to keep our code a consistent style. Are there any reasons to not use interfaces in the way I've outlined above?
Essentially it's a short hand that prevents you from having to make a class private, since an interface can not be initialized.
I guess it does the job, but as a friend once said: "You can try mopping a floor with an octopus; it might get the job done, but it's not the right tool".
Interfaces exist to specify contracts, which are then implemented by classes. When I see an interface, I assume that there are some classes out there that implement it. So I'd lean towards saying that this is an example of abusing interfaces rather than using them, simply because I don't think that's the way interfaces were meant to be used.
I guess I don't understand why these values are public in the first place if they're simply going to be used privately in a class. Why not just move them into the class? Now if these values are going to be used by a bunch of classes, then why not create an enum? Another pattern that I've seen is a class that just holds public constants. This is similar to the pattern you've described. However, the class can be made final so that it cannot be extended; there is nothing that stops a developer from implementing your interface. In these situations, I just tend to use enum.
UPDATE
This was going to be a response to a comment, but then it got long. Creating an interface to hold just one value is even more wasteful! :) You should use a private constant for that. While putting unrelated values into a single enum is bad, you could group them into separate enums, or simply use private constants for the class.
Also, if it appears that all these classes are sharing these unrelated constants (but which make sense in the context of the class), why not create an abstract class where you define these constants as protected? All you have to do then is extend this class and your derived classes will have access to the constants.
I don't think a class with a private constructor is any better than using an interface.
What the quote says is that using implements ConstantInterface is not best pratice because this interface becomes part of the API.
However, you can use static import or qualified names like SomeInteface.FOO of the values from the interface instead to avoid this issue.
Constants are a bad thing anyway. Stuffing a bunch of strings in a single location is a sign that your application has design problems from the get go. Its not object oriented and (especially for String Constants) can lead to the development of fragile API's
If a class needs some static values then they should be local to that class. If more classes need access to those values they should be promoted to an enumeration and modeled as such. If you really insist on having a class full of constants then you create a final class with a private no args constructor. With this approach you can at least ensure that the buck stops there. There are no instantiations allowed and you can only access state in a static manner.
This particular anti-pattern has one serious problem. There is no mechanism to stop someone from using your class that implements this rouge constants interface.Its really about addressing a limitation of java that allows you to do non-sensical things.
The net out is that it reduces the meaningfulness of the application's design because the grasp on the principles of the language aren't there. When I inherit code with constants interfaces, I immediately second guess everything because who knows what other interesting hacks I'll find.
Creating a separate class for constants seems silly. It's more work than making an enum, and the only reason would be to do it would be to keep unrelated constants all in one place just because presumably they all happen to be referenced by the same chunks of code. Hopefully your Bad Smell alarm goes of when you think about slapping a bunch of unrelated stuff together and calling it a class.
As for interfaces, as long as you're not implementing the interface it's not the end of the world (and the JDK has a number of classes implementing SwingConstants for example), but there may be better ways depending on what exactly you're doing.
You can use enums to group related constants together, and even add methods to them
you can use Resource Bundles for UI text
use a Map<String,String> passed through Collections.unmodifiableMap for more general needs
you could also read constants from a file using java.util.Properties and wrap or subclass it to prevent changes
Also, with static imports there's no reason for lazy people to implement an interface to get its constants when you can be lazy by doing import static SomeInterface.*; instead.
I am working with a Class that contains constants or parameter values that all classes can reference for example;
public class Parameters {
public static final String JUMP_TO_VALUE = "Parameters.JUMP_TO_VALUE";
public static final String EXCEPTION_ID = "Parameters.EXCEPTION_ID";
}
Some of the foundation classes in my application will use the parameter values in the Parameters class like so:
mapOfValues.put( Parameters.JUMP_TO_VALUE, "some_value")
This is simple enough I have some basic values in Parameters that most of my base classes will use them. There will be many situations where I will need to add addition parameters to the Parameters class, but I don't want to over populate or pollute the Parameters class ever time a new parameter is identified. I would rather create some subclass of Parameters like:
public class NetworkParameters extends Parameters {
public static final String HOST_NAME = "NetworkParameters.HOST_NAME";
public static final String POST_NUM = "NetworkParameters.PORT_NUM";
}
Some of my specific classes will use the values that are contained in this class versus putting them in the Parameters class.
These specific classes that need HOST_NAME for example I don't want them to reference the NetworkParameters class but rather the Parameters class.
I am sure people have done this before but I am looking for advice on how best to implement this design.
It is simply not possible, in the exact way you describe it.
When you reference static objects, you refer to the class that those objects are declared in. Quite simply, if you declare a constant in the NetworkParameters class, it does not exist in the Parameters class and is not accessible as such.
Separating vast numbers of parameters into different containing classes (which don't need to be subtypes of each other as this achieves nothing) is quite good practice and often used. Why do you have such an aversion to just using NetworkParameters.POST_NUM, as this is the name of the parameter and sounds completely sensible to me?
One thing that may help you (depending on your own tastes) is to use Java 5's static import feature. If, at the top of a class file, you declare
import static the.package.name.Parameters.*;
import static other.package.NetworkParameters.*;
then you will be able to use all of the constant names from both classes without any prefix at all. This is often quite nice when it's obvious what comes from where - but it can become a nightmare if you're statically importing from a few classes, especially if you don't have an IDE to work out the reference for you.
But again - why do you want to reference them as Parameters.FOO, but want them to live in a separate class? Either approach (everything in one file, different constants in different files) is good and fine if you do it completely, but you can't magically change the laws of Java references because you don't like the look of them. :-)
I don't think you would be overdoing it by putting a lot of constants in a single file. Just keep it well organized with good formatting and documentation. I dont think subclassing is want here. A subclass implies a certain relationship among objects. First off, you aren't really creating an object, so creating a subclass does not really fit the model here. Also, using a subclass here may just complicate things. For example, you will have to import multiple java files if you want to use several types of constants in another class.
Are you sure you want to be embedding these values in your code?
They sound to me like the kind of data you want to place in a configuration file, so they can be change easily without the code needing to be recompiled. A simple hash of name-value pairs from a configuration file, wrapped to be accessible in the way you need them to, might be a more flexible approach to the same problem.