Reusing of components in Java not properly trimming un-reused ones - java

I have a javax.swing.JPanel called calcResPanel (using a java.awt.GridLayout with 1 column and indefinite (0) rows) which is to receive and display a set of BHSelectableLabels (which extend javax.swing.JTextField) with collectively represent the text stored in the list of Strings called results. I figured that I might as well give it the following behavior:
The first time, it will only add new ones
Following times, it will:
Change the text of as many labels that are already added as possible to be that of as many of the values in results as possible
If there are any labels left that haven't been changed, remove those, as they are not necessary. Else, add as many new labels as needed.
This makes sense to me. If this algorithm is not what I should be doing, then stop reading now and post an answer with a better algorithm. However, if you agree, then tell me what I've done wrong with my code:
int i, r, l;
for (i=0, r = results.length(), l = calcResPanel.getComponentCount(); i < r; i++)
if (i < l)
((BHSelectableLabel)calcResPanel.getComponent(i)).setText(results.get(i));
else
calcResPanel.add(new BHSelectableLabel(results.get(i)));
for (;i < l; i++)//If there are excess, unused lables, remove them
calcResPanel.remove(i);
The problem with this code is that it inconsistently leaves excess labels in calcResPane. If you think this algorithm is good in concept, then please tell me what is wrong with my code that makes it leave excess labels?
Answer
Such a simple answer, too. I feel SO smart ^^;
int i, r, l;
for (i=0, r = results.length(), l = calcResPanel.getComponentCount(); i < r; i++)
if (i < l)
((BHSelectableLabel)calcResPanel.getComponent(i)).setText(results.get(i));
else
calcResPanel.add(new BHSelectableLabel(results.get(i)));
for (;i < l; i++)//If there are excess, unused lables, remove them
calcResPanel.remove(r);

for (;i < l; i++)//If there are excess, unused lables, remove them
calcResPanel.remove(i);
You can never do a remove like that because you skip every 2nd item. Lets say you have 5 items and you try to delete them all:
The first time through the loop i = 0, so you remove item 0 and you are left with 1, 2, 3, 4.
Next time throught the loop i = 1, so you remove item 2 and you are left with 1, 3, 4.
I hope you get the pattern.
The solution is to remove items from the end, one at a time.

Related

looping through List and removing element skipps certain elements

If have a workflow that removes elements of a List by a certain criteria. However certain items are skipped? Why is this happening?
List<Integer> listWithAge = new ArrayList<>();
int randomNumber = 100;
for (int i = 0; i < randomNumber; i++) {
listWithAge.add(i);
}
// this is my loop
for (int i = 0; i < listWithAge.size(); i++) {
System.out.println(i);
if ((listWithAge.get(i) % 3) == 2) listWithAge.remove(i);
}
Above code is my loop. I replaced my condition with something simpler. If I run this code my second loop only runs for 67 turns instead of 100.
It is problematic to iterate over a list and remove elements while iterating over it.
If you think about how the computer has to reconcile it, it makes sense...
Here's a thought experiment for you to go through.
If you have a list that is size 10 and you want to remove elements 1, 5, and 9 then you would think maybe the following would work:
List<String> listOfThings = ...some list with 10 things in it...;
list.remove(0);
list.remove(4);
list.remove(8);
However, after the first remove command, the list is only size 9.. Then after the second command, it's size has become 8. At this point, it hardly even makes sense to do list.remove(8) anymore because you're looking at an 8-element list and the largest index is 7.
You can also see now that the 2nd command didn't even remove the element now that you wanted.
If you want to keep this style of "remove as I go" syntax, the more appropriate way is to use Iterators. Here's an SO that talks about it and shows you the syntax you would need (see the question). It's easy to read up on elsewhere too.
How Iterator's remove method actually remove an object
Skipping a value would be the result of your list getting out of sync with your loop index because the list is reduced in size. This causes you to hop over some locations since the reduction in size affects future locations that have not been reached.
So the first thing you could do is simply correct the synchronization by decrementing i when you remove a value from the list. This will keep index at the same spot as the list shifts "left" caused by the removal.
for (int i = 0; i < listWithAge.size(); i++) {
if ((listWithAge.get(i) % 3) == 2) listWithAge.remove(i--);
}
The other option is to loop thru the list backwards.
for (int i = listWithAge.size()-1; i >= 0; i--) {
if ((listWithAge.get(i) % 3) == 2) {
listWithAge.remove(i);
}
}
This way, no values should be skipped since the removing of the element does affect the loop index's future positions relative to the changing size of the list.
But the best way would be to use an iterator as has already been mentioned by
Atmas
As a side note, I recommend you always use blocks {} even for single statements as I did above in the if block. It will save you some serious debugging time in the future when you decide you need to add additional statements and then wonder why things are no longer working.
And deleting like this from a list is very expensive, especially for large lists. I would suggest that if you don't have duplicate values, you use a Set. Otherwise, instead of deleting matching values, add the non-matching to a second list.
List<Integer> listWithAge = new ArrayList<>();
int randomNumber = 100;
for (int i = 0; i < randomNumber; i++) {
listWithAge.add(i);
}
// this is my loop
List<Integer> itemsToBeDeleted = new ArrayList<>();
for (int i = 0; i < listWithAge.size(); i++) {
System.out.println(i);
if ((listWithAge.get(i) % 3) == 2) {
itemsToBeDeleted.add(i);
}
//delete all outside the loop
//deleting inside the loop messes the indexing of the array
listWithAge.removeAll(itemsToBeDeleted);

Trouble understanding dynamic programming

I came across this problem. Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
This is an example of dynamic programming. But a very difficult or confusing concept for me when i come an exercise. I have watched videos and read tutorials online and it seems pretty easy at first but when i approach a problem then i'm totally lost.
So i found a solution online and that uses a bottom approach:
public init minmumTotal(ArrayList<ArrayList<Integer>> triangle) {
if (triangle.size() == 0 || triangle == null)
return 0;
int[] dp = new int[triangle.size()+1]; // store each index’s total
for (int i = triangle.size()-1; i >=0; i--) {
for (int j = 0; j < triangle.get(i).size(); j++) {
// first round: dp[j], dp[j+1] are both 0
dp[j] = Math.min(dp[j], dp[j+1]) + triangle.get(i).get(j);
}
}
return dp[0];
}
Seems easy after going through the solution. But can this be done using a top down approach? And could someone explain why the bottom approach is better than the top down approach? Also when is it appropriate to use either top down or bottom up? And also since the question mentioned that each "Each step you may move to adjacent numbers on the row below." Does that mean for each row iterate the whole column before i step into the next row?
I'm not sure if this solution counts as dynamic programming, but I think it is very efficient.
You can start at the bottom of the triangle, and then collapse it by moving upwards in the triangle. For each number in the next row, add the lowest number of the two numbers below it. When you get to the top, you will only have one number, which would be your result. So you would get this:
Start:
2
3 4
6 5 7
4 1 8 3
Step 1:
2
3 4
7 6 10
Step 2:
2
9 10
Step 3:
11
A little off topic but the first if-statement in that solution needs to be turned around if you really want to handle NullPointerExceptions the right way.
So I tried myself at a top down approach and there are a couple of problems.
First, like marstran already said, you have more numbers in the end and need to do a minimum search.
Second, the bottom up approach used an additional array field to make sure it wouldn't run into IndexOutOfBound Exceptions. I didn't really find a good way to do that in top down (the bottom up approach has the advantage that you always know you have two numbers to look at (left child and right child) with the top down approach a lot of nodes don't have a right or left parent). So there's a couple of additional if-statements.
public static int minimumTotal(ArrayList<ArrayList<Integer>> triangle) {
if (triangle == null || triangle.isEmpty()) return 0;
int[] results = new int[triangle.size()];
for (int i = 0; i < triangle.size(); i++) {
ArrayList<Integer> line = triangle.get(i);
for (int j = line.size() - 1; j >= 0; j--) {
if (j == 0) results[j] = line.get(j) + results[j];
else if (j >= i) results[j] = line.get(j) + results[j - 1];
else results[j] = line.get(j) + Math.min(results[j], results[j - 1]);
}
}
int minimum = results[0];
for (int i = 1; i < results.length; i++) {
if (results[i] < minimum) {
minimum = results[i];
}
}
return minimum;
}
Anyway this is as close to the given solution as I could get with a top down approach.
Keep in mind though that nobody is forcing you to only use a 1d array for your results. If that concept is too difficult to just come up with, you could simply use a 2d array. It will increase the amount of code you need to write, but maybe be a little easier to come up with.

ArrayLinkedList Insertion Sort

I have to do an Array List for an insertion sort and my teacher sent this back to me and gave me an F, but says I can make it up before Friday.
I do not understand why this isn't an A.L insertion sort.
Can someone help me fix this so it hits his criteria?
Thanks.
HE SAID:
After checking your first insertion sort you all did it incorrectly. I specifically said to shift the numbers and move the number into its proper place and NOT SWAP THE NUMBER INTO PLACE. In the assignment in MySA I said if you do this you will get a 0 for the assignment.
import java.util.ArrayList;
public class AListINSSORT {
private static void insertionSort(ArrayList<Integer> arr) {
insertionSort();
}
private static void insertionSort() {
ArrayList<Integer> swap = new ArrayList<Integer>();
swap.add(1);
swap.add(2);
swap.add(3);
swap.add(4);
swap.add(5);
int prior = 0;
int latter = 0;
for (int i = 2; i <= latter; i++)
{
for (int k = i; k > prior && (swap.get(k - 1) < swap.get(k - 2)); k--)
{
Integer temp = swap.get(k - 2);
swap.set(k - 2, swap.get(k - 1));
swap.set(k - 1, temp);
}
}
System.out.println(swap);
}
}
First of all, it seems your teacher asked you to use a LinkedList instead of an ArrayList. There is quite a difference between them.
Secondly, and maybe more to the point. In your inner loop you are saving a temp variable and swapping the elements at position k - 2 and k - 1 with each other. From the commentary this is not what your teacher intended. Since he wants you to solve the problem with element insertion, I recommend you look at the following method definition of LinkedList.add(int i, E e): https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html#add(int,%20E).
This should point you in the right direction.
As far as I see, your code does nothing at all.
The condition of the outer for loop
for (int i = 2; i <= latter; i++)
is not fulfilled.
As you start with i = 2 and as latter = 0, it never holds i <= latter.
Thus, you never run through the outer for loop and finally just give back the input values.
If you add the input values to swap in a different order (not already ordered), you will see that your code does not re-order them.
There's a lot of stuff wrong here.
Firstly, your method:
private static void insertionSort(ArrayList<Integer> arr) {
insertionSort();
}
takes an ArrayList and completely ignores it. This should presumably be the List which requires sorting.
Then in insertionSort() you create a new ArrayList, insert some numbers already in order, and then attempt something which looks nothing like insertion sort, but slightly more like bubble sort.
So, when you call insertionSort(List) it won't actually do anything to the list at all, all the work in insertionSort() happens to a completely different List!
Since on SO we don't generally do people's homework for them, I suggest looking at the nice little animated diagram on this page
What you should have then is something like:
public void insertionSort(LinkedList<Integer> numbers) {
//do stuff with numbers, using get() and add()
}

How to quickly insert an element into array with duplicates after all of the equal elements?

I have an ArrayList, which contains game objects sorted by their 'Z' (float) position from lower to higher. I'm not sure if ArrayList is the best choice for it but I have come up with such a solution to find an index of insertion in a complexity faster than linear (worst case):
GameObject go = new GameObject();
int index = 0;
int start = 0, end = displayList.size(); // displayList is the ArrayList
while(end - start > 0)
{
index = (start + end) / 2;
if(go.depthZ >= displayList.get(index).depthZ)
start = index + 1;
else if(go.depthZ < displayList.get(index).depthZ)
end = index - 1;
}
while(index > 0 && go.depthZ < displayList.get(index).depthZ)
index--;
while(index < displayList.size() && go.depthZ >= displayList.get(index).depthZ)
index++;
The catch is that the element has to be inserted in a specific place in the chain of elements with equal value of depthZ - at the end of this chain. That's why I need 2 additional while loops after the binary search which I assume aren't too expensive becouse binary search gives me some approximation of this place.
Still I'm wondering if there's some better solution or some known algorithms for such problem which I haven't heard of? Maybe using different data structure than ArrayList? At the moment I ignore the worst case insertion O(n) (inserting at the begining or middle) becouse using a normal List I wouldn't be able to find an index to insert using method above.
You should try to use balanced search tree (red-black tree for example) instead of array. First you can try to use TreeMap witch uses a red-black tree inside to see if it's satisfy your requirements. Possible implementation:
Map<Float, List<Object>> map = new TreeMap<Float, List<Object>>(){
#Override
public List<Object> get(Object key) {
List<Object> list = super.get(key);
if (list == null) {
list = new ArrayList<Object>();
put((Float) key, list);
}
return list;
}
};
Example of usage:
map.get(0.5f).add("hello");
map.get(0.5f).add("world");
map.get(0.6f).add("!");
System.out.println(map);
One way to do it would to do a halving search, where the first search is half way thru your list (list.size()/2), then for the next one you can do half of that, and so on. With this exponential method, instead of having to do 4096 searches when you have 4096 objects, you only need 12 searches
sorry for the complete disregard for technical terms, I am not the best at terms :P
Unless I overlook something, your approach is essentially correct (but there's an error, see below), in the sense that your first while tries to compute the insert-index such that it will be placed after all lower OR EQUAL Z: there's correctly an equal sign in your first test (updating "start" if it yields TRUE).
Then, of course, there's no need to worry anymore about its position among equals. However, your follow-up while destroys this nice situation: the test in the first follow-up while yields always TRUE (one time) and so you move back; and then you need the second follow-up while to undo that. So, you should remove BOTH follow-up whiles and you're done...
However, there's a little problem with your first while, such that it doesn't always exactly do what the purpose is. I guess that the faulty outcomes triggered you to implement the follow-up whiles to "repair" that.
Here's the issue in your while. Suppose you have a try-index (start+end)/2 that points to a larger Z, but the one just before it has value Z. You then get into your second test (elseif) and set "end" to the position where that Z-value resides. Finally you wind up with precisely that position.
The remedy is simple: in your elseif assignment, put "end = index" (without the -1). Final remark: the test in the elseif is unnecessary, just else is sufficient.
So, all in all you get
GameObject go = new GameObject();
int index = 0;
int start = 0, end = displayList.size(); // displayList is the ArrayList
while(end - start > 0)
{
index = (start + end) / 2;
if(go.depthZ >= displayList.get(index).depthZ)
start = index + 1;
else
end = index;
}
(I hope I haven't overlooked something trivial...)
Add 1 to the least significant byte of the key (with carry); binary search for that insert position; and insert it there.
Your binary search has to be so constructed as to end at the leftmost of a sequence of duplicates, but this is trivial given an understanding of the various Binary search algorithms.

Problem with recursive backtracking

Hey guys, recently posted up about a problem with my algorithm.
Finding the numbers from a set which give the minimum amount of waste
Ive amended the code slightly, so it now backtracks to an extent, however the output is still flawed. Ive debugged this considerablychecking all the variable values and cant seem to find out the issue.
Again advice as opposed to an outright solution would be of great help. I think there is only a couple of problems with my code, but i cant work out where.
//from previous post:
Basically a set is passed to this method below, and a length of a bar is also passed in. The solution should output the numbers from the set which give the minimum amount of waste if certain numbers from the set were removed from the bar length. So, bar length 10, set includes 6,1,4, so the solution is 6 and 4, and the wastage is 0. Im having some trouble with the conditions to backtrack though the set. Ive also tried to use a wastage "global" variable to help with the backtracking aspect but to no avail.
SetInt is a manually made set implementation, which can add, remove, check if the set is empty and return the minimum value from the set.
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
package recursivebacktracking;
/**
*
* #author User
*/
public class RecBack {
int WASTAGE = 10;
int BESTWASTAGE;
int BARLENGTH = 10;
public void work()
{
int[] nums = {6,1,2,5};
//Order Numbers
SetInt ORDERS = new SetInt(nums.length);
SetInt BESTSET = new SetInt(nums.length);
SetInt SOLUTION = new SetInt(nums.length);
//Set Declarration
for (int item : nums)ORDERS.add(item);
//Populate Set
SetInt result = tryCutting(ORDERS, SOLUTION, BARLENGTH, WASTAGE);
result.printNumbers();
}
public SetInt tryCutting(SetInt possibleOrders, SetInt solution, int lengthleft, int waste)
{
for (int i = 0; i < possibleOrders.numberInSet(); i++) // the repeat
{
int a = possibleOrders.min(); //select next candidate
System.out.println(a);
if (a <= lengthleft) //if accecptable
{
solution.add(a); //record candidate
lengthleft -= a;
WASTAGE = lengthleft;
possibleOrders.remove(a); //remove from original set
if (!possibleOrders.isEmpty()) //solution not complete
{
System.out.println("this time");
tryCutting(possibleOrders, solution, lengthleft, waste);//try recursive call
BESTWASTAGE = WASTAGE;
if ( BESTWASTAGE <= WASTAGE )//if not successfull
{
lengthleft += a;
solution.remove(a);
System.out.println("never happens");
}
} //solution not complete
}
} //for loop
return solution;
}
}
Instead of using backtracking, have you considered using a bitmask algorithm instead? I think it would make your algorithm much simpler.
Here's an outline of how you would do this:
Let N be number of elements in your set. So if the set is {6,1,2,5} then N would be 4. Let max_waste be the maximum waste we can eliminate (10 in your example).
int best = 0; // the best result so far
for (int mask = 1; mask <= (1<<N)-1; ++mask) {
// loop over each bit in the mask to see if it's set and add to the sum
int sm = 0;
for (int j = 0; j < N; ++j) {
if ( ((1<<j)&mask) != 0) {
// the bit is set, add this amount to the total
sm += your_set[j];
// possible optimization: if sm is greater than max waste, then break
// out of loop since there's no need to continue
}
}
// if sm <= max_waste, then see if this result produces a better one
// that our current best, and store accordingly
if (sm <= max_waste) {
best = max(max_waste - sm);
}
}
This algorithm is very similar to backtracking and has similar complexity, it just doesn't use recursion.
The bitmask basically is a binary representation where 1 indicates that we use the item in the set, and 0 means we don't. Since we are looping from 1 to (1<<N)-1, we are considering all possible subsets of the given items.
Note that running time of this algorithm increases very quickly as N gets larger, but with N <= around 20 it should be ok. The same limitation applies with backtracking, by the way. If you need faster performance, you'd need to consider another technique like dynamic programming.
For the backtracking, you just need to keep track of which element in the set you are on, and you either try to use the element or not use it. If you use it, you add it to your total, and if not, you proceeed to the next recursive call without increasing your total. Then, you decrement the total (if you incremented it), which is where the backtracking comes in.
It's very similar to the bitmask approach above, and I provided the bitmask solution to help give you a better understanding of how the backtracking algorithm would work.
EDIT
OK, I didn't realize you were required to use recursion.
Hint1
First, I think you can simplify your code considerably by just using a single recursive function and putting the logic in that function. There's no need to build all the sets ahead of time then process them (I'm not totally sure that's what you're doing but it seems that way from your code). You can just build the sets and then keep track of where you are in the set. When you get to the end of the set, see if your result is better.
Hint2
If you still need more hints, try to think of what your backtracking function should be doing. What are the terminating conditions? When we reach the terminating condition, what do we need to record (e.g. did we get a new best result, etc.)?
Hint3
Spoiler Alert
Below is a C++ implementation to give you some ideas, so stop reading here if you want to work on it some more by yourself.
int bestDiff = 999999999;
int N;
vector< int > cur_items;
int cur_tot = 0;
int items[] = {6,1,2,5};
vector< int > best_items;
int max_waste;
void go(int at) {
if (cur_tot > max_waste)
// we've exceeded max_waste, so no need to continue
return;
if (at == N) {
// we're at the end of the input, see if we got a better result and
// if so, record it
if (max_waste - cur_tot < bestDiff) {
bestDiff = max_waste - cur_tot;
best_items = cur_items;
}
return;
}
// use this item
cur_items.push_back(items[at]);
cur_tot += items[at];
go(at+1);
// here's the backtracking part
cur_tot -= items[at];
cur_items.pop_back();
// don't use this item
go(at+1);
}
int main() {
// 4 items in the set, so N is 4
N=4;
// maximum waste we can eliminiate is 10
max_waste = 10;
// call the backtracking algo
go(0);
// output the results
cout<<"bestDiff = "<<bestDiff<<endl;
cout<<"The items are:"<<endl;
for (int i = 0; i < best_items.size(); ++i) {
cout<<best_items[i]<<" ";
}
return 0;
}

Categories