I have an animation in which triggers an event. This event fires a lot of computing usage and thus stutters the UI.
What I need to do is keep the thread running smoothly. When the event happens it will pass a string down to the thread, perform calculations (including using the audioRecord class) and return a boolean variable.
I have looked around and it seems AsyncTask may be the best solution, but I wanted to see if any of you had any ideas? Considering performance, Is this the best way to go?
Thanks,
Ben
Generally AsyncTask is fine.
But if you dont need to acess the UI thread for your background operation you can simply use a new thread.
new Thread(new Runnable() {
public void run() {
//do stuff
}
}).start();
Related
Hopefully not a dupe, dug around as best I could and came up with nothing. All the suggestions in SO when I typed the title had less than 0 upvotes, so hopefully I'm not following the same path. My question, essentially, is what will happen if I do this on my main thread:
new Thread(new Runnable() {
#Override
public void run() {
runOnUiThread(new Runnable() {
#Override
public void run() {
startActivity(i);
}
});
}
}).start();
Assuming i is an intent, that I didn't screw anything else up, etc. Obviously this is a very trivial case. But I'm wondering if there's anything I need to do to/on the worker thread? Am I going to cause a memory leak or other issue if I do this? Do I need to make a call to something on the worker thread to tell it that I no longer need it? Will it understand on its own that it's no longer needed? Am I just completely misunderstanding something? Thanks!
Well I am not sure if that is going to work. But if you will go this way you might get memory leaks.
You can achieve activity creation posting an event from asynctask https://github.com/greenrobot/EventBus
, and subscribing to that event in your activities/fragments. You can create base class for multiple activities and subscribing inside it. So you will get event anywhere.
A java Thread will become Dead after finishing execution. You will have a short memory leak until the thread finishes it's task (because the thread is bound to the current activity and that activity is not destroyed until you finish your stuff).
Anyway I would suggest you to use AsynkTask if you want to update the ui after some background task.
If you are more advanced the best solution would be to use RxJava or Live Data. In android we don't use Thread too often since we have other wrappers that ease our communication between threads
I'm student and I'm working on project with few of my friends. My task is to make something like class library. Classes in this library should provide API for my friend who must make GUI part of application. GUI could be made by any toolkit (Swing, JavaFX, SWT, AWT, all should work, in fact, it should work even if there is no GUI). I need to make class that waits for data to arrive from network. I don't know when data will arrive, and UI must be responsive during waiting, so I put that in different thread. Now problem is how to make GUI respond when data arrive. Well, I tought that this is asynchronous event and GUI should register event handlers, and I should call that methods when event happens. I proposed this solution:
interface DataArrivedListener{
void dataArrived(String data);
}
class Waiter{
private DataArrivedListener dal;
public void setDataArrivedListener(DataArrivedListener dal){
this.dal = dal;
}
void someMethodThatWaitsForData(){
// some code goes here
data = bufRdr.readLine();
//now goes important line:
dal.dataArrived(data);
// other code goes here
}
}
My question is:
Should I replace "important" line with something like this:
java.awt.EventQueue.invokeLater(new Runnable(){
#Override
public void run(){
dal.dataArrived(data);
}
});
Or something like:
javafx.Platform.runLater(new Runnable(){
#Override
public void run(){
dal.dataArrived(data);
}
});
Or maybe I should do something completely different?
Problem is that I'm not sure which of this will work for any type of UI. If it's GUI, dataArrived() could potentialy make changes to GUI and no matter what type of GUI it is, this changes should be drawn on screen properly. I also think that it is better if I do "invoke this code later" so that my someMethodThatWaitsForData() method could trigger event and continue on with it's on work.
I appreciate your help.
Here's an Event Listener article I wrote a while back. The article explains how you write your own event listeners.
You're correct in that you want to write your own event listeners if you want your library to work with any GUI.
I'm most familiar with Swing, so yes, you'll have GUI code that looks like this:
button.addActionListener(new ActionListener(){
#Override
public void actionPerformed(ActionEvent event){
dal.buttonPressed(data);
}
});
If you want it to be completely agnostic to what GUI is being used the only real solution is to let the receiver handle it in dataArrived. Since every toolkit has its own implementation all you can really do to make it work with any toolkit is to disregard it. Otherwise what you will actually end up with is a list of "supported toolkits" and a case for each one.
If you just want dataArrived to be executed away from someMethodThatWaitsForData then you could make your own dispatch thread or make a new thread each time.
If you want to be truly independent of any front-end system, I would recommend creating two threads. The first is your Waiter, which will just listen for events and put them into a Queue of some sort (see the "All Known Implementing Classes" section). The second will invoke the data listener or listeners whenever the queue is not empty.
The concept of invoking a Runnable in the background is kind of deprecated since the invention of the concurrent package. The main reason that this was done in earlier days, is that the GUI code needs to be executed in a different thread, to guarantee that it stays responsive, even if the main thread is busy doing some calculations, but actual multi-threading was still in its very early days. The resulting invokeLater concept works, but comes with a strong creation overhead. This is especially annoying if you frequently have to do minor things, but each time you need to create an entire new Runnable, just to get that event into the Swing thread.
A more modern approach should use a thread-safe list, like a LinkedBlockingQueue. In this case any thread can just throw the event into the queue, and other listener/GUI-Event-handlers can take them out asynchronously, without the need of synchronization or background Runnables.
Example:
You initialize a new Button that does some heavy calculation once it is pressed.
In the GUI thread the following method is called once the button is clicked:
void onClick() {
executor.submit(this.onClickAction);
}
Where executor is an ExecutorService and the onClickAction a Runnable. As the onClickAction is a Runnable that was submitted once during Button creation, no new memory is accessed here. Let's see what this Runnable actually does:
void run() {
final MyData data = doSomeHeavyCalculation();
dispatcher.dispatch(myListeners, data);
}
The dispatcher is internally using the LinkedBlockingQueue as mentioned above (the Executor uses one internally as well btw), where myListeners is a fixed (concurrent) List of listeners and data the Object to dispatch. On the LinkedBlockingQueue several threads are waiting using the take() method. Now one is woken up as of the new event and does the following:
while (true) {
nextEvent = eventQueue.take();
for (EventTarget target : nextEvent.listeners) {
target.update(nextEvent.data);
}
}
The general idea behind all this, is that for once you utilize all cores for your code, and in addition you keep the amount of objects generated as low as possible (some more optimizations are possible, this is just demo code). Especially you do not need to instantiate new Runnables from scratch for frequent events, which comes with a certain overhead. The drawback is that the code using this kind of GUI model needs to deal with the fact that multi-threading is happening all the time. This is not difficult using the tools Java gives to you, but it is an entire different way of designing your code in the first place.
Sometime I feel that using AsyncTask is quite overkill for the task, I am looking for similar function like SwingUtilities.invokeLater in android. Because I just want to execute one line of code, no point to create a new class for that.
Maybe you're looking for:
Activity.runOnUiThread(Runnable action)
Activity.runOnUiThread(Runnable action);
The above method is slightly different than invokeLater of java because it checks if you are already on ui thread then it will run your Runnable immediately.
There is another way to make sure your Runnable gets called later and not immediately even if you are on UI thread. To do that you write following code while you are on the main thread.. if you call this when on backend thread your runnable will be exected on backend thread..
Handler h = new Handler();
h.post(new Runnable() {
#Override
public void run() {
//your code..
}
);
I don't remember exactly what invokeLater() does, but if you want to execute something delayed, you can use postDealayed(). That goes on the UI thread, so not fit for long running tasks, naturally.
There is actually more than 1 question.
Given Model View and Controller. (Mine are coupled a lot - View knows its Controller, and Controller knows View.)
Does new threads in Controller can be fired in basic manner - with the new Runnable(){ (...) run(){}} or it is required to do in some "swing way", to make it properly? Maybe with Timer or invokeLater()?
Second thing is - assuming that new thread has started - when it operates directly on view, setting some JTextFields (and so on) - do methods such as setThatTextFieldWithNewValue(msg) need to be synchronized as a result of being called from need thread? If so - is there any better approach that gives less coupling and less spend time thinking about needed synchronization?
there are a few ways how is possible to create, manage and notify MVC, for better help sooner post an SSCCE
Runnable#Thread is very confortable, stable and clear way, but I'd suggest to wrap all output to the Swing GUI into invokeLater, including thread safe methods as setText, append e.g. are ..
as Kumar Vivek Mitra (+1) metioned there is SwingWorker, but required deepest knowledge about Java essential classes, some trouble are there with exceptions recycle how to get exception from SwingWorker
about MVC maybe will help you my similair question
Swing is not Thread-Safe
1. The UI thread is the Event Dispatcher Thread, which is responsible for the Gui work.
2. Try working with Non-Ui threads outside the UI thread.
3. Yes offcourse you can fire a thread from within the UI thread, but its advisable to keep it out of
the UI thread, else the GUI may seems non-responsive.
(ie. the Non-UI work on the Non-UI thread OUT of the UI thread which is responsible for the UI Work)
4. Well there is a swing way too... use SwingWorker, this handles the synchronization between UI and Non-UI thread.
Edited part:
// PLEASE NOTE ITS NOT GOOD TO ADD COMPONENTS DIRECTLY ON THE FRAME/JFRAME, BUT I AM DOING THIS JUST TO SHOW, WHAT I MEANT.
public class MyClass extends JFrame{
private final JButton b;
public MyClass(){
this.setSize(300,300);
this.setComponent();
this.setHandler();
}
public void setComponent(){
b = new JButton("Click");
this.add(b);
}
public void setHandler(){
b.addActionListener(new ActionListener() {
#Override
public void actionPerformed(ActionEvent arg0) {
// Do whatever you want...
}
});
}
public static void main (String[] args) {
EventQueue.invokeLater(new Runnable(){ // UI THREAD
public void run(){
MyClass s = new MyClass();
s.setVisible(true);
}
});
}
}
Main method is short lived in Swing, The main method() schedules the Construction of GUI to the Event Dispatcher Thread (EDT), and then quits. So its EDT responsibility to handle the GUI. So its always advisable to keep the Non-UI work on the Non-UI thread away from EDT.
Anything in swing has to run on the EventQueue. If you have a method called from swing it will already be running there (as in an Action listener). If you don't know if you're on the event queue, EventQueue.isDispatchThread() will tell you. When you know you're not, reference a swing class or method using EventQueue.invokeLater() or invokeAndWait if you need to see results. (This must be done from the main method.)
Be very careful about this; you have to check your code. If not, my experience is that the swing UI will be just a little bit flakey, with the occasional unreproducable oddity. There's no easy way around eyeballing each line of code.
Actually, there is. Do everything on the EventQueue, then you won't have to worry. You're probably not doing a whole lot of work outside swing anyway. If you are, it's probably worth the loss of speed to avoid multithreading problems. If your non-swing work is extensive but simple, use the SwingWorker class. It gives you an extra thread under highly controlled conditions and should save you a lot of grief.
Your classes (View and Controller) are independent of threads, and should work just fine all running in one thread. Don't confuse classes and threads. (I'll admit, I'd be tempted to have the Controller firing off threads in all directions, but you have to be prepared to be very careful and know everything there is to know about multithreading.)
If you do multithread, the EventQueue can be a bit handy because you don't have to protect fields referenced only there--it's an island of single threading in a dangerous sea. On the other hand, don't do any synchronization there; you'll block your UI. You can launch threads from there and you may have to just to avoid blocking. (Once you start multithreading, it's hard to stop.)
The easiest way would be:
SwingUtilities.invokeLater(new Runnable() {
#Override
public void run() {
// Run your code here.
}
});
For more complex tasks (send process chunks to ui thread, respond to jobFinished):
new SwingWorker<String, String>() {
#Override
protected void done() {
}
#Override
protected void process(List<String> arg0) {
}
#Override
protected String doInBackground() throws Exception {
}
}.execute();
When I want to do something in background, if the action is very simple: Like do "something in background" and then update the UI, instead of using an AsyncTask I'm considering to use (just for faster coding):
new Thread(){
public void run(){
final ArrayList<myObjects> objects= myDatabase.queryObjects();
runOnUiThread(new Runnable() {
#Override
public void run() {
updateUIWith(objects);
}
});
}
}
But I really don't know if using "final" objects that way can result in memory leaks or have other kind of troubles.
Is using this method OK?
final only says to the compiler that you won't reallocate the objects variable in your code. There is no link between final and memory leaks.
If you use an anonymous inner class (the new Runnable...) you have to make objects final.
I am not very familiar with Android but if your updateUIWith() method does interact with UI objects, it might be an issue as I would assume UI updates need to run in a specific UI thread. If you don't update UI objects in that method then you code should be fine.
The question is: Is it a good idea to open a new thread for every little action? AsyncTask provides the convenience of the threads being managed by someone else, but when you declare a thread like you did, you're responsible for dealing with situation such as limitations on the number of threads.