So I'm learning java. I'm one month in and I just learned about constructors. But I don't see the whole purpose of creating one. Why and when would I ever want to use one? I get the whole idea that it does not have a main method and you can call a constructor from your main class. Anyone can enlighten me on this topic, it would help me a great deal.
Constructors are what you use to initialize/set up the instances of your classes.
If you have an object that needs some processing before it is usable (initializing members for instance), you should do that in the constructor.
Ideally, you should never have "partially built" objects (i.e. objects that are "live", that you hold a reference to, but that are not yet usable). Without constructors, you'd be permanently creating partially built objects, and that is very error-prone. (Theory and practice don't always match, but keep that idea in mind.)
You use a constructor to create new objects. Yes, you can write Java just using static methods - but then you're really not writing object-oriented code, and you'll have a hard time using much of the standard library, either.
Most of your time you should be working with and thinking in terms of objects - and they need to be constructed before they can be used... and that's where constructors come in. They create an object, often with parameters specifying the initial state or other important information about the object.
To be honest, it's probably not worth worrying about them just yet, if you don't see the point yet. It's likely that as you learn more, you'll naturally start using objects more (maybe collections to start with, for example) and you'll get the hang of it. Rest assured, it is important to have constructors in Java, but I'm sure you'll understand why in the course of time. (Of course, if this answer has helped you to appreciate their value already, I'm glad - but if not, don't worry :)
It might seem as if you're having trouble understanding the basic concepts of objects and object-oriented programming. An explanation by example; This class represents a type of thing, namely a car:
public class Car{
// Licence plate number. This is private, so it can
// not be accessed directly from outside the class.
private String hiddenRegNr = "";
private static String description = "This is a car".
// The constructor, which sets the value of hiddenRegNr
public Car(String regNr){
hiddenRegNr = regNr;
}
// Method for reading hiddenRegNr, the only
// way to access it after instantiation.
public String getRegNr(){
return hiddenRegNr;
}
// A static method. Can be used withouth instantiation.
public static String getDesc(){
return description;
}
}
From some other class, you could call this class, and make instances of it; actual representations of different cars. They represent different cars, but are based on the same "model", i.e., the class Car.
Car myFirstCar = new Car("SR12345");
Car myOtherCar = new Car("XZ54321");
Now you have two different cars, with two different registration numbers. These are independent instances of the type car. They exist in memory, and may contain different values (in this case, different registration numbers).
myFirstCar.getRegNr(); // Will return SR12345
mySecondCar.getRegNr(); // will return xz54321
The first thing to notice here, is that you can only specify the registration number once per car, namely upon creation. That is the point of the constructor: It sets values, and does other stuff that needs to be done when objects (instances) are created.
Now, note the difference between getRegNr() and getDesc(): The keyword "Static" means that the second method is related directly to the class, and not to each instance. This means that:
Calls to getDesc() is made on the class, not an instance:
Car.getDesc();
Calls to getDesc() will return the same value for all instances of the class car
The variable description (which is also static) will be the same for all instances of Car
The static method getDesc() CAN NOT access the variable hiddenRegNr, since that variable is related to a specific instance. Trying to refer to a variable in an instance from a static context (such as getDesc()) will cause an exception to be thrown. You might say that hiddenRegNr will not have been set when you call
Car.getDesc();
because the constructor was never called, so it was never given any value.
Constructors are used to initialize a class and give parameters to a class. What is important is that they let you set the class state on creation. This allows you to use specific instances of a class with different data field values instead of relying on purely static information. Take the following example:
class Obj {
private int state = 0;
public Obj(int state) {
this.state = state;
}
public Obj() {
state = 1;
}
}
Now in main (or wherever) you can have:
Obj obj1 = new Obj();
Obj obj2 = new Obj(2);
The two objects have different states (one is at state 1, the other is at state 2). If you were relying on static methods and members, the objects would share one state and would not be independent of each other.
It is also important to note that constructors (specifically the new keyword) allocate memory for a given object internally so you don't have to worry about using malloc and other memory management. So they are important in that sense as well.
It is used to create objects. Objects are the main concept in OOP, so creating them is an important step. The main class method is just an entry point to your program. If you don't create objects your program will be procedural rather than object-oriented. This is why to use a constructor.
And why to create a constructor - sometimes you need to construct an object with some required parameters. There is also a default no-argument constructor, but if you want to initialize your object with additional arguments - you create a constructor taking those arguments.
Actually constructor is needed IF you need to assign unique initial state to an instance of a class. In Java i only just realized (by a friend) that we can do this:
public class MyClass1 {
private class MyClass2 {}
private MyClass2 myobj2 = new MyClass2();
}
So no need for implicit constructor.
But if something like follows, you need constructor.
public class MyClass1 {
private class MyClass2 {
private int id_ = 0;
public MyClass2(int id) { id_ = id; } // how to reach this?
}
private MyClass2 myobj2 = new MyClass2(1); // (this doesn't work. Not unique)
public MyClass1(int id) { myobj2 = new MyClass2(id); } // by this!
}
MyClass1 obj1 = new MyClass1(100);
MyClass1 obj2 = new MyClass1(200);
I will give you an example, imagine you have a car class.. when you call the constructor of the car class you have an car object. on this car object is possible to use diffent methods. And you could create as many as car objects as you want.
Related
I am creating a simple, text-based interactive application, where the user is prompted for input. Each input corresponds to a specific command, which invokes a certain method. Because there are many methods, I have chosen to distribute them between different classes. So the application works like this:
The main class is responsible for reading the user input (using a Scanner object). The user input is then passed as a parameter to a method B in class B that decides which command the input corresponds to. After deciding, the method invokes the correct method, which can be in any of the other classes (in this example, method C in class C)
This means that I have to initialize object instances in order to avoid null pointer exception. One of the classes that I have to initialize an object from only has a constructor with parameters, but I don't actually want to initialize an object with values in this case, but only to use it as a reference pointer to the object so I can invoke methods from that class. Now I am using an empty constructor in order to solve this, but is there any alternative, better solution than declaring an empty constructor? I have written code that I think demonstrates my problem:
public class MainClass {
ClassB classB = new ClassB();
public void methodA {
classB.methodB(userInput);
}
}
public class ClassB {
ClassC classC = new ClassC();
public void methodB {
classC.methodC();
}
}
public class ClassC {
String name;
int age;
public ClassC(String name, int age) {
this.name = name;
this.age = age;
}
public ClassC() {
}
public void methodC() {
// Do something
}
}
The real answer is: don't do that. You see, if that ClassC is about storing details of a player ... first of call it Player (even when putting up examples: use meaningful names so people understand your intent).
As soon as we talk about players, it becomes clear: a Player object is probably supposed to model a (human or not) player. There are no humans "without" a name or age. That tells you: wrong approach. Your classes and models should reflect reality.
You don't create empty object upfront; you create them at that point in time when it makes sense (and then you provide the necessary information to them, so you can ideally make the objects immutable, by declaring all your fields to be final).
So, long story short: step back and rethink your design. If there is "something" to do that doesn't require the presence of a populated Player object, then that should probably be static method and it should probably not sit on the Player class.
but I don't actually want to initialize an object with values in this case, but only to use it as a reference pointer to the object so I can invoke methods from that class
The problem is that those methods normally need state of the object to make sense (i.e. the fields to be initialized). If in your case they don't, maybe it makes more sense to make the method static (and call ClassC.methodC()) or put these methods on some other class with a default constructor.
I've been given a coursework assignment where I have to build a prototype hotel booking system, in accordance with the specification, which is as follows:
You will need at least three classes:
Hotel
This should store all the essential information about a hotel,
including a name and some rooms.
Room
This should store the number of beds in a room.
Bed
This should store the size of a bed (i.e. single or double).
I'm totally confused about where to start!
I was under the impression that objects could not be contained within other objects.
For example, let's assume we instantiate a "Hotel" object. How would we then instantiate "Room" objects, and within that object, "Bed" objects?
How are these objects being stored? How do we interact with them indirectly, from another object?
Typically you don't need to nest classes into other classes, which are called inner classes, unless the work that a class takes care of can be chunked into small units that never need to be known outside it's parent class.
It sounds like the concept you want to look into is Composition. It's when an object holds a reference to another object.
public class Room {
private boolean isVacant;
public Room() {
isVacant = true; // The room starts vacant
}
// Pretend there is a way for clients to check in and out of the room
public boolean isVacant() {
return isVacant;
}
}
public class Hotel {
// Using composition, I can make an instance of one class
// available to the methods of another
private Room room101;
public Hotel(Room room101) {
this.room101 = room101;
}
public boolean isRoom101Vacant() {
return room101.isVacant();
}
}
Our hotel may not be very useful having only one room, but this example shows how you can "compose" one object into another. Methods of Hotel can now use methods of it's Room instance known as room101. You will want to think about how your rooms are structured, and how you want to represent it within your Hotel class. A few objects used to store collections of other objects include ArrayList and HashMap.
Edit:
this is a fairly difficult concept to understand before you understand what a class is compared to an instance of that class (an object). In the constructor of my sample Hotel class, I have a variable of type Room called room101. And outside of the constructor is an instance field of the same type and name.
Java will always refer to a variable or reference of the nearest scope. So if I have a method reference called room101, how can I refer to that other one declared outside the constructor, at instance level? That's where this comes in.
public class ThisExample {
// This is a separate variable at the instance level
// Lets call this global in the comments
private int a;
public ThisExample() {
// This is a separate variable in the method level,
// lets call this local in the comments
int a;
a = 5; // our local is now assigned 5
this.a = 10; // Our global is now assigned 10
this.a = a; // our global is now assigned to 5
a = this.a * 2; // our local is now assigned to 10
}
}
In short, this refers to "this" instance of a class. It's a way for an instance of a class to refer to itself as if from the outside. Just like how another object would refer to room101's method as room101.isVacant(). A method in the Room class would similarly do this.isVacant() for the same effect.
And as a final note, if there is only one declaration of a symbol within a class. The this keyword is implied. So Room can call it's own method just as well without it as long as there is no other conflicting symbols of the same name. (This doesn't occur with methods as much as with instance fields/local variables)
Hopefully this helps clear things up a bit!
Your assignment is how to model some real world concepts into code.
It appears that the core of your problem can be stated as a Guest can book a Room.
I don't want to do your work for you, so let me start by asking how you would write that in code? After that, we can address the "Hotel" and "Bed". Is this a major assignment or just a quick question? Your implementation would depend on this.
A rule to learn and apply is:
An action on an object in the real world, becomes a method of that object in an Object Oriented approach.
I am reading about the specific guidelines that needs to be followed while creating Immutable Class in Effective Java.
I read that In Immutable class method should not allowed to be overridden otherwise overridden method may change the behaviour of method. Following are the design approaches available in java to solve this problem :-
We can mark class final but as per my understanding, it has a one disadvantage that it makes the class inextensible.
Secondly is to make individual methods final but I can not get other disadvantage besides that we need to individually mark each method as final in order to prevent overridding.
As per book,better approach is to make the constructor private or package-private and provide public static factory method for creating object.
My question is: Even if we include private or default constructor in the class, it cannot be extended anymore in same package (in other package in case of package-private constructor), it has a same problem which the first one had. How is it considered as the better approach than the previous ones?
An immutable object should not be extensible. Why?
Because extending it will allow either direct access to fields (if they are protected which would allow writing methods that change them), or adding state which may be mutable.
Imagine we wrote a class FlexiblyRoundableDouble that extends Double, which has an additional field roundingMode that lets us choose a "rounding mode". You could write a setter for this field, and now your object is mutable.
You can argue that if all the methods are set as final, you cannot change the original behavior of the object. The only methods that could access your roundingMode field are new methods that are not polymorphically available if you assign your object to a Double variable. But when a class's contract says that it's immutable, you make decisions based on that. For example, if you write a clone() method or copy constructor for a class that has Double fields, you know that you don't need to deep-copy the Double fields, as they do not change their state, and can therefore be safely shared between the two clones.
Also, you can write methods that return the internal object without fearing that the caller will then change that object. If the object was mutable, you'd have to make a "defensive copy" of it. But if it's immutable, it's safe to return a reference to the actual internal object.
However, what happens if someone assigned a FlexiblyRoundableDouble to one of your Double fields? That object would be mutable. The clone() would assume it isn't, it will be shared between two objects, perhaps even returned by a method. The caller would then be able to cast it back as a FlexiblyRoundableDouble, change the field... and it will affect other objects that use that same instance.
Therefore, immutable objects should be final.
All this has nothing to do with the constructor issue. Objects can be safely immutable with public constructors (as demonstrated by String, Double, Integer and other standard Java immutables). The static factory method is simply a way utilizing the fact that the object is immutable, and several other objects can hold references to it safely, to create fewer objects with the same value.
Providing a static factory method gives you room to implement the Flyweight Pattern.
They're stating that you should hide the possibility of creating a new object using a constructor, and should rather make a call to a method which checks if an object with similar state exists in the "object pool" (a map filled with objects waiting to be re-used). Not re-using immutable objects is a waste of memory; this is why String literals are encouraged, and new String() is shunned (unless needed).
class ImmutableType {
private static final Map<Definition, ImmutableType> POOL = new HashMap<>();
private final Definition definition;
private ImmutableType(Definition def) {
definition = def;
}
public static ImmutableType get(Definition def) {
if(POOL.contains(def))
return POOL.get(def);
else {
ImmutableType obj = new ImmutableType(def);
POOL.put(def, obj);
return obj;
}
}
}
Definition stores the state of the ImmutableType. If a type with the same definition already exists in the pool, then re-use it. Otherwise, create it, add it to the pool then return it as the value.
As for the statement about marking the class final, immutable types should not be extensible in the first place (to avoid possibly modifying behavior). Marking every method final is just crazy for immutable classes.
When should I use a constructor and when should I use static method?
Can you explain above with small snippet? I skimmed through a few threads but I'm still not clear with this.
Joshua Bloch advises to favor static factory methods instead of constructors (which I think is a good practice). Couple of advantages and disadvantages :
Advantages of static factory methods :
unlike constructors, they have names
unlike constructors, they are not required to create a new object each time they're invoked (you can cache instances : e.g. Boolean.valueOf(..)
unlike constructors, they can return an object of any subtype of their return type (great flexibility)
Disadvantages of static factory methods :
They are not really distiguishable from other static methods (it's hard to find out how to initialize an object if you are not familiar with the API)
The main disadvantage (if you use only static factory methods, and make constructors private) is that you cannot subclass that class.
Use a public constructor when you only ever want to return a new object that type and you want simplicity.
A good example is StringBuilder as it's mutable and you are likely to want a new object each time.
public String toString() {
StringBuilder sb = new StringBuilder();
// append fields to the sb
return sb.toString();
}
Use a static factor method when you might want to re-use objects (esp if immutable), you might want to return a sub-class or you want descriptice construction. A good example is EnumSet which has a number of static factories which do different things even though some have the same arguments.
EnumSet.noneOf(RetentionPolicy.class);
// has the same arguments, but is not the same as
EnumSet.allOf(RetentionPolicy.class);
In this case, using a static factory makes it clear what the difference between these two ways of construction the set.
Also EnumSet can return two different implementations, one optimised for enums with a small number of values (<= 64) RegularEnumSet and another for many values called JumboEnumSet
Always use a constructor if your class has a state (even for a single instance; singleton pattern ).
Only use static for utility methods like in java.lang.Math
Example:
public static int max(int a, int b) {
return (a >= b) ? a : b;
}
Doesn't change any state (instance variables) of an object, thus it can be declared static.
Use constructor when you need an object and other stuffs like functions and variables having one copy for every object.
when you want to do something without creating object then use static method.
Example:
public class Test {
public int value;
public static int staticValue;
public int getValue() {
return ++value;
}
public static int getStaticValue() {
return ++staticValue;
}
}
public class TestClass {
public static void main(String[] args) {
Test obj = new Test();
Test obj1 = new Test();
S.o.p(obj.getValue());
S.o.p(obj1.getValue));
S.o.p(Test.getStaticValue());
S.o.p(Test.getStaticValue());
}
}
Static factory methods have names, constructors don't. Thus factory methods can carry natural documentation about what they do that constructors can't. For example, see the factory methods in the Guava Libraries, like ImmutableMap.copyOf(otherMap). While this might have little effect on behaviour of construction, it has a huge effect on readability of the code. Definitely consider this if you're publishing an API.
Also you can use a factory when you need to do any more complicated configuration of the object you're creating, especially if you need to publish to other threads (registering in pools, exposing as an MBean, all manner of other things...) to avoid racy publication. (See e.g. Java Concurrency In Practice section 3.2)
Static methods that do something (e.g. Math.min) are not really the same thing as static factories, which can be considered direct replacements for constructors, with added flexibility, evolvability and (often) clarity.
Whenever you need to create an instance of an object you will have to use the constructor.
So, if you want to create a Car object, then you will need a constructor for that.
The keyword static means, that your method can be called without creating an instance.
class Car
{
private int num_of_seats;
public Car(int number_of_seats)
{
this.num_of_seats = number_of_seats;
}
// You want to get the name of the class that has to do with
// this class, but it's not bounded with any data of the class
// itself. So you don't need any instance of the class, and
// you can declare it as static.
static String getClassName()
{
return "[Car]";
}
}
In general you will use static class with data that are not correlated with the instance of the object.
Another example is:
class Ring
{
private List nodes;
public Ring(List nodes)
{
this.nodes = nodes;
}
// You want to calculate the distance of two ids on the ring, but
// you don't care about the ring. You care only about the ids.
// However, this functionality logical falls into the notion of
// the ring, that's why you put it here and you can declare it
// as static. That way you don't have to manage the instance of
// ring.
static double calculateDistance(int id_1, int id_2)
{
return (id_1 - id_2)/383; // The divisor is just random just like the calculation.
}
}
As the posts above say, it's just a matter of what you want to do and how you want to do it. Also, don't try to understand everything rightaway, write some code then try different approaches of that code and try to understand what your code does. Examples are good, but you need to write and then understand what you did. I think it's the only way you will figure out
why you do staff the way you have to do.
Static methods do not have to instantiate new objects everytime. Since object instantiation is expensive it allows instances to be cached within the object. So, it can improve performance.
This is the explanation from the Effective Java :
This allows immutable classes (Item 15) to use preconstructed
instances, or to cache instances as they’re constructed, and dispense
them repeatedly to avoid creating unnecessary duplicate objects. The
Boolean.valueOf(boolean) method illustrates this technique: it never
creates an object. This technique is similar to the Flyweight pattern
[Gamma95, p. 195]. It can greatly improve performance if equivalent
objects are requested often, especially if they are expensive to
create.
i.e. if you want to use a singleton, which means that you have only one instance of the object, which might be shared with others, then you need a static method, which will internally will call the constructor. So, every time someone wants an instance of that object you will return always the same, thus you will consume memory only for one. You always need a constructor in object oriented programming, in every OO language. In java an in many other languages the default constructor of an object is implied, and built automatically. But you need some custom functionality you have to make your own.
Above you see a few good examples of the usage. However, if you have something specific in your mind, please let us know. I mean if you have a specific case where you are not sure if you should use a static method or a constructor. Anyhow, you will definitely need a constructor, but I am not sure about the static method.
Despite Java tutorials, Wikipedia searches, stackoverflow trolling, and hours of reading code samples, constructors still confuse the crap out of me. I've got three related questions that I've been trying to answer to help ME understand constructors a little better.
First, I've been under the impression that constructors need to be named the same as their classes. Consider:
public class Money {
public Money(long l) {
this.value = l;
}
public Money(String s) {
this.value = toLong(s);
}
public long getLong() {
return this.value;
}
public String getString() {
return toString(this.value);
}
}
I see this as four constructors...correct? So it appears that constructors not named the same as the class which contains them allowable. Can someone confirm that?
Second, I seem to have a block against understanding the set and get methods. Consider:
public class GetSetSample {
public int getFoo() {
return int Foo;
}
public void setFoo(int fooValue) {
int Foo = fooValue;
}
}
Why can't I just do this:
public class getFoo(int fooValue){
foo=fooValue;
}
and use foo = getFoo(12) from some other class/method?
The third question is a little more esoteric, but will help me conceive of the bigger picture...which is my learning style, and conducive to my ability to trace program flow when debugging. The get and set methods suggest a "to" and "from" relationship to me. e.g., Passing a value "to" a constructor, receiving the result "from" the get method. It seems to me though that the "to" and "from" will change depending on your perspective. I think that any setMethod is setting parameters for an object, even though the variable comes FROM another class or method, and the GetMethod is getting the resulting object (say, this.foo) with the appropriately set parameter. No matter where the get or set is used, in a main method or a standalone class with a single constructor, 'set' is always associated with sending a parameter and get is always associated with receiving an object with that parameter. Is that a good understanding? or am I missing a vital part?
Question 1:
I see this as four constructors...correct?
No, that class has two constructors and two methods. (getLong and getString are the methods.)
Question 2:
Why can't I just do this:
public class getFoo(int fooValue){
foo=fooValue;
}
Well, that's trying to declare a class with parameters, and also you're setting a value in a get method, which would be extremely weird. It's not clear what you're trying to achieve here, but that code is thoroughly invalid.
Question 3:
The get and set methods suggest a "to" and "from" relationship to me.
Well it's not really a relationship IMO. A relationship suggests something longer term than either of these methods. A setter typically changes the state of an object in some way, and a getter typically just returns some aspect of the state of an object. It's not really clear what the rest of your explanation meant, because you're playing somewhat fast and loose with terminology. For example: "get is always associated with receiving an object with that parameter" doesn't really make sense to me. Objects don't have parameters, methods/constructors do - and getters can fetch primitive values or references...
I suspect you would benefit from reading the "Classes" part of the Java tutorial, which talks about constructors and methods.
Regarding the first answer, there's only 2 constructors. The difference is on how they are going to be called (called using a string will use the construction having a string has a parameter and called using a long will use the other one). So to answer, yes a constructor has the same name as the class.
The two constructors :
public Money(long l) {
this.value = l;
}
public Money(String s) {
this.value = toLong(s);
}
Regarding the second answer, getters ans setters are not meant to be classes. They are supposed to be within the class itself.
Consider this example which uses getter and setters to get ans set value for the printer class :
public class Printer {
#Inject #Informal Greeting greeting;
private String name;
private String salutation;
public void createSalutation() {
this.salutation = greeting.greet(name);
}
public String getSalutation() {
return salutation;
}
public void setName(String name) {
this.name = name;
}
public String getName() {
return name;
}
}
A good read of this link could definitly help you out !
Java oriented-object principles
You've shown 2 constructors, which do need to have the same name as the class.
You've also shown two "getter" methods, which return the value of the class variable in the form requested by the user. You can also create "setter" methods, which are used to transfer values into class variables.
You use a constructor to create an object of a particular class, and optionally to set some or all of its internal state (that is, its member variables).
You use setters and getters to isolate the class variables from the outside world, so you don't need to allow other code to access them directly. Why? Because, before a setter updates a variable, it can verify that the new value is valid, and that the operation doesn't violate any or the rules (the "business logic") that are required for the class to work properly.
So you could add a setter and update the constructor to use it:
public Money(long l) {
setValue(l);
}
public Money(String s) {
setValue(toLong(s));
}
// Example setter that validates `l` by prohibiting negative values
public Money setValue(long l) {
if (l < 0) {
// Warn about negative values
}
this.value = l;
return this; // Return the current object to allow chaining; see below.
}
Note that a setter usually doesn't need to return a value (that is, it can be type void), but it's often helpful to return the object itself. That allows you to write code like this:
Money earnings = new Money().setValue(4).setOtherField("foo");
This creates an object of type Money, sets various attributes, and stores it in the variable earnings. Clearly, this isn't terribly useful for a simple class like this, but it can be very helpful for more complex classes:
Paycheck check = new Paycheck("MyCompany")
.setEmployee("YourName")
.setSalary(50,000)
.setPaySchedule(Schedule.BIWEEKLY)
.setAccountNumber("1234567")
.setDefaultTaxRate();
I would like to try to answer your implied conceptual questions -- you've already got plenty of examples of this and that, so I'm just going to try to explain. I have no doubt you have heard most of this -- maybe all of this -- before, but am not sure and not sure which parts.
Object-oriented programming centers mostly around objects; an object is an amalgamation of code and data. You define objects by writing a class, and you create one or more copies of the object defined by that class with the class constructor (called instantiating the class).
A parallel in other languages: you can have a data structure of related items and a set of subroutines that operate on that data structure. Think of a class as a way of collecting the items in that data structure and the subroutines that operate on it into one unit.
After you have invoked a constructor, you have a copy of the data defined in that class and a way to refer to that copy. By referring to that instance when you invoke a class method, you operate on that copy of the data with the methods defined in that class.
If you were to do this in a non-OO language, you could have a routine that created a copy of the data structure in memory and then only use the methods prescribed for it on that data structure. You could have a pointer to the copy in memory and pass that pointer as a parameter to every subroutine that operated on it, and in fact that's the way some pre-OO systems were programmed.
A constructor is similar to a method call that returns a value; it involves (or can involve) the execution of statements, and it always returns an object of that class. There are also differences between a constructor and a method; until the constructor completes, for instance, the object is not fully created and shouldn't have some methods invoked on it.
So I hope that helped; if there are conceptual things you still have questions about, perhaps something in here will help you form a specific question so we can explain things further.
Many people have found that if they have spent years learning languages such as COBOL and FORTRAN then changing to OO programming involves unlearning the old languages. I certainly found this when I first tackled C++ 20 years ago. From your description you are clearly struggling with the concepts and I sympathize.
I don't think there is a simple recipe. Practice at the simple examples and don't be disheartened. Don't be afraid to ask on SO - if the questions are clearly asked you will get a useful answer.
Get a good IDE (Eclipse, Netbeans, etc.) which allows you to "look inside" objects with the debugger. Hopefully at some stage things will click!
Question 1 - Basic Java Classes:
There's pretty much only 3 things you're going to find in a Java class
Field/attribute (Depending on your language of origin)
Method
Constructor (Which looks like a special kind of method)
Every class is going to have a class name that shares the name of the file it's located in. So to expand Money out a bit:
Money.java
----------
public class Money {
// This is a field/attribute
Long value;
// This is a constructor
public Money() {
this.value = Long(0L);
}
// This is a method
public Long getValue() {
return value;
}
// Another method
public void makeMoney(Long moreMoney) {
this.value = this.value + moreMoney;
}
} // Everything in here is part of the Money class
The only distinction between a constructor and a method is that a constructor has no specified return value, which is declared as a type right before the name of a potential method. Constructors do have to be named the same as the class they are contained in, but why is implied in how they are written.
Another way of looking at it is if you remove all of the non-type related Java keywords (public, private etc., but not things like float and int) from the front of the method you're looking at (A list of which you can find here), is there anything left in front of the method?
With the Money we have at the moment, it would look like this:
Money()
Long getValue()
void makeMoney()
The constructor is the one that has no type for the return value, because it is implied in the declaration.
Question 2/3 - Get/Set methods:
I'm going to say something potentially controversial, but don't worry about these yet. Get/Set are essentially patterns for Object Oriented development, and generally good Java style, but they aren't required (Last I checked, Android development actually discourages their use when possible for optimization reasons). Moreover, not all fields in your objects will be accessible or mutable so writing them isn't mandatory.
If you declare all of your fields as public (Like the 'value' field is implied to be right now), you simple can do this:
Money myMoney = new Money(new Long(40L));
System.out.println(myMoney.value) // 40
myMoney.value = new Long(20L);
System.out.println(myMoney.value) // 20
Aside from that, the notion of get() and set() are just methods. There is nothing special about them at all. The main reason they exist is because for general Object-Oriented programming, you shouldn't have to directly modify the internal workings of an object (This is the principle of Encapsulation). Everything you should need to affect state or get something out of it should be handled by a method.
In a pithy one-liner: If you need to know the fields of an object to use it, you designed it incorrectly.
Big Picture
So what get() and set() really are is a pair of commonly written methods that happen to affect a field in an object in an extremely simple way (get() is a simple access to a field, set() is assignment to that field). It's just that other methods you write will happen to do more complicated stuff than that.