Marker interface or annotations? - java

I need to mark some classes as Invokable - just to tell I can invoke methods of the class using reflection. But I don't like the idea of having an empty interface just for this purpose. Can this be done with annotations and still preserve behaviour on the example below? (I have never created my own annotations, so I'm not familiar with them in depth)
Example
class ClassOne implements Invokable {
}
class ClassTwo implements Invokable {
}
void someMethod(Invokable inv) {
}

Because of someMethod, you can't use annotations. Perhaps later you'll find that Invokable may need useful methods anyway.
Also, be sure to check out already existing interfaces like Callable, Future etc. before you re-invent the wheel.

You can get the annotations of a class mit Class.getAnnotations() and search for your Invokable annotation. Then you can get the method you want to invoke, and invoke it.

the decision would depend on how you are going to use these classes. if you have many classes some Invokable and some not, you may be better off with annotations, just pass the objects/ classes and check for the annotation. if you know the classes you would be passing would all be Invokable, you could go with a marker interface.
i.e. assuming you only want to preserve the behaviour and not the method :-)

Related

Optional methods without cluttering extending types

This is a Best Practices kind of question.
Let's say I have an abstract class Screen that implements some interfaces.
Now the thing is, the interfaces add a ton of methods and I'm sure not all screen implementations will make use of them.
I'm wondering what's the most-common and cleaner way to do this.
Just leave them abstract
Adds clutter in extending classes
protected abstract void onFocus();
Add empty body
Not good for someone not familiar with the extended class, they perhaps may worry if it's okay to override them.
protected void onFocus() {
// no impl
}
Make some description annotation?
I'm not sure this is a good use for them tho.
#NotImplemented
protected void onFocus() {
// no impl
}
What'd you consider best?
Only option two (Add empty body) keep requirement of 'optional' method. I would prefer to not force all extenders to implement all optional methods, this will make them not optional, right?. Probably you could write base abstract class/classes to provide some default behavior which will make using you API simpler. SpirngMVC is using this pattern to allow you executing some logic during different life cycles of controllers.

Preventing API users from using some methods

Hi I'm implementing a given design in java. Basically I have an abstract class which is called base and I have a number of concrete classes which are extending Base and implementing an interface from a different package. Each concrete class will be implementing a different interface. Now these interfaces contain both event-based and non event-based method signatures in them. My question here is; I'm only expected to implement non-event based methods in my concrete classes, however because of the implements keyword java forces me to insert an auto generated method body, which is basically return null. They might be implementing those event based methods later on but not at the moment. What would be an appropriate way to let the API user know that these methods do not contain an implementation. Here are my thoughts;
Use deprecated keyword
Create an exception class and throw that exception inside of the method and let the API user handle it.
I do not have the option of making changes to the existing architecture. Any idea really appreciated. Thank you.
According to Oracle, the reasons to deprecate an API include
It is insecure, buggy, or highly inefficient
It is going away in a future release
It encourages bad coding practices
neither of which actually fits your case.
Personally, I would favor throwing an UnsupportedOperationException which is already provided by the Standard Library in order to
indicate that the requested operation is not supported.
To me, this sounds more like what you actually want.
You can create your own interface which lists all the method you want users of your component to be able to access. Make this the only interface they use and additional public methods will not be visible.
Option (2) is good, but as you are following interfaces you'll want unchecked exceptions. And document the methods as unimplemented.
Deprecated implies a history, i.e., it works but should no longer be used. Since you are explicitly stating that the methods do not work, marking as deprecated will not prevent use nor indicate that the methods are unimplemented.
I would suggest use some mix bag of design patterns. That will help you solve this problem efficiently and make the code maintainable as well.
Based on my knowledge, you can use the Abstract Factory pattern here. See the design sketch below in the figure.
Method1 and method2 in subclass1 and subclass2 are the ones which are supposed to be exposed while method3 and method4 in subclass1 and subclass2 are the ones which we don't want to expose.
Create a Genericsubclass interface and create some methods in this interface depending upon the nature of methods you have in subclasses. For ex: i have create one method in this interface called nonEventbasedmethod1
Create a factory corresponding to every sub class and each factory will implement the GenericSubclass interface. Then implementation of nonEventbasedmethod1 method in subclass1Factory would be some thing like
nonEventbasedmethod1(){
subclass1.method1();
}
and implementation of nonEventbasedmethod1 method in subclass2Factory would be some thing like
nonEventbasedmethod1(){
subclass2.method3();
}
Then create a SubclassAbstract Factory which will return one of the subclass factories and then without worrying about which factory has been returned (that decision has already been taken in SubclassAbstractFactory before returning the appropriate factory) simply call the desired method from GenericSubclass interface and underneath one of the methods from the subclass1 or subclass2 will be invoked.
Hope this helps.
If you plain to throw an exception for "NotSupported" or "NotImplemented" Exception - consider the exception of NotImplementedException (at org.apache.commons).
However, I would reconsider to revisit your design and see if you can avoid having this - maybe you need to define another interface, which will hold the methods that are always implemented, and extend it in another interface (or provide an interface with no extension to the previous one) for the methods you not always implement.

OOP-Design: Interface-Methods with implementation-dependent parameters

The subject says it already:
I am thinking right now about following design-problem: I define an interface for a specific type of object that contains various methods.
Now i have the problem, that different implementations of this interface, need additional/different method-parameters (because the way they are implemented makes this necessary), which i cannot incorporate into the interface because they are not common to all interface-implementations.
Now i realize that interface implementations could come with their own property-files, loading their additional parameters from there, but what if these parameters need to be passed in at runtime?
Currently i can only think of passing in a Map<String, Object> parameters to overcome this problem - since JDK-Classes like DocumentBuilderFactory are doing something very similar by providing methods like setAttribute(String attName, Object attValue) this
seems like a feasible approach to solve this problem.
Nevertheless i would be interested in how others solve issues like this, alternative ideas?
I dont want to derive from the interface and add additional methods, since in my case i would then have to throw NotImplementException from the methods of the base interface.
UPDATE:
What could be eventual problems of the Map-approach? Implementing classes are free to ignore it completely if they cant make use of additional parameters.
Others might check if the Map contains the desired parameter-names, check the type of their values and use them if valid, throw an exception if not.
I have also seen this being used for the abstract class JAXBContext, so it seems to be a common approach..
UPDATE:
I decided to go for the map-approach, since i dont see any obvious disadvantages and it is being used in the JDK as well (yes, i know this does not necessarily mean much :)
Since i cannot accept an answer on this question, i will just upvote. Thanks for your input!
regards,
--qu
You should just initialize each inheritor with its own specific required parameters and let the interface method remain parameter-less, as in:
Interface Runnable:
public interface Runnable {
public abstract void run();
}
Implementation:
public class MyRunnable {
private final String myConcreteString;
public MyRunnable(String myConcreteString) {
this.myConcreteString = myConcreteString;
}
public void run() {
// do something with myConcreteString
}
}
The point of the interfaces is to have something that is common to all implementations. By trying to do this you destroy the whole reason why interfaces exists.
If you absolutely must do that there is a simple enough way that I have used before.
My answer is in C++ because I'm just not that fluent in other languages. I'm sure there are ways to implement this in java as well.
SomeMethod(void* parameterData);
void* parameterData is a pointer to a struct containing your data. In each implementation you know what you are receiving. You can even have a enum to tell you what kind of data you are receiving.
SSomeData* data = (SSomeData)parameterData
EDIT:
Another approach would be to create a new interface for the parameters: IParameterData.
Inside that interface you have 2 methods: GetParameter(name) and SetParameter(name).
For each implementation of your primary interface you create a implementation of IParameterData.
I hope it helps
couldn't you design subinterfaces that extend your (super)interface?
anyhow I see a design problem if you need a method with different parameters depending on the implementation!
edit: code to clarify
interface CommonBehaviour
{
void methodA(int aParam);
}
interface SpecificBehaviour extends CommonBehaviour
{
void methodB(int aParam, int anotherParam);
}
class SpecificBehaviourImpl implements SpecificBehaviour
{
void methodA(int aParam)
{
//do something common
}
void methodB(int aParam, int anotherParam)
{
//do something specific
}
}
CommonBehaviour myObj = new SpecificBehaviourImpl();
EDIT: You may benefit from the Command pattern:
"Using command objects makes it easier to construct general components that need to delegate, sequence or execute method calls at a time of their choosing without the need to know the owner of the method or the method parameters."
(source: wikipedia)
I don't think the Map approach to be any good, I may accept it as a fix of existing code that would allow you to have any parameter number and type, but without formal checks! You're trying to define a common behavior (interface methods) given a variable, runtime, state.
You should introduce parameter object representing a super-set of possible arguments.
In your place, I would consider finding appropriate design pattern to your problem, rather then try to bend the interface methods to suit your needs. Look into Strategy Pattern for starters.
Can you invert the problem, and implement an interface on the user of these objects which they can query for the additional parameters?
So, when you instantiate these objects implementing the common interface, you also pass in (e.g. to their constructor) an object which provides a way of accessing the additional parameters they might require.
Say your interface has a method 'doSomething' taking parameter 'a', but you have an implementation that needs to know what 'b' is inside this 'doSomething' method. It would call 'getB' on the object you provided to it's constructor to get this information.

Can I create static methods on #MappedSuperclasses?

I have an abstract TemporalModel class (annotated with #MappedSuperclass) that adds created and updated fields to all extending models. I want to add a getLatest() static method to it:
public static TemporalModel getLatest() {
return find("order by created").first();
}
When I put this method on the base class, and call it through a concrete class (Transaction.getLatest()), I get an error:
UnsupportedOperationException occured : Please annotate your JPA model
with #javax.persistence.Entity annotation.
I suspect this is because JPA doesn't in fact know I'm calling this method "through" the base class (there is no real static method inheritance in Java).
Is there another way to implement this method once, instead of repeating it on all entity classes?
Update - one way to achieve this (which I'm using in another heavier app) is described here (gist). In my current app, however, I wouldn't like to use repositories, and I wondered if there's another, lighter solution.
Constructors and static methods can never be abstract. The idea behind an abstract class
is to create blueprints of methods, that have to get worked out in the subclass(es). I suggest trying an interface TemporalModel instead of an abstract class, in which you create the method public static TemporalModel getLatest();
I haven't used this Play framework, so I'm not sure about the details here, but usually, when one does the stuff you want to do, in Java, one simply specifies the concrete class as a parameter to the static method in question. It's kind of ugly, of course, but it is Java.
I assume that this find method is a static method that is added somehow (by annotation processing?) by this framework on every extending class, right? In that case, I think your only recourse is to do something like this:
public static <T extends TemporalModel> T getLatest(Class<T> cl) {
try {
/* I don't know what type the find() method returns, so you'll have to fix the casting */
return(cl.cast(cl.getMethod("find", String.class).invoke("order by created").first()));
} catch(AllThosePeskyReflectionExceptions e) {
throw(new Error(e));
}
}
I think that's the best way available given the premises. I know it's ugly, so I'd be happy to be wrong. :)

Java: extending Object class

I'm writing (well, completing) an "extension" of Java which will help role programming.
I translate my code to Java code with javacc. My compilers add to every declared class some code. Here's an example to be clearer:
MyClass extends String implements ObjectWithRoles { //implements... is added
/*Added by me */
public setRole(...){...}
public ...
/*Ends of stuff added*/
...//myClass stuff
}
It adds Implements.. and the necessary methods to EVERY SINGLE CLASS you declare. Quite rough, isnt'it?
It will be better if I write my methods in one class and all class extends that.. but.. if class already extends another class (just like the example)?
I don't want to create a sort of wrapper that manage roles because i don't want that the programmer has to know much more than Java, few new reserved words and their use.
My idea was to extends java.lang.Object.. but you can't. (right?)
Other ideas?
I'm new here, but I follow this site so thank you for reading and all the answers you give! (I apologize for english, I'm italian)
If it is only like a "research" project in which you want to explore how such extension would work, you could provide your own implementation of the Object class. Simply copy the existing object implementation, add your setRole method etc, and give -Xbootclasspath:.:/usr/lib/jvm/java-6-sun/jre/lib/rt.jar as parameter to the java command. (I will look for api-classes in . before looking in the real rt.jar.)
You should consider using composition rather than inheritence to solve this problem; that way you can provide the functionality you need without using up your "one-shot" at inheritence.
For example, the JDK provides a class PropertyChangeSupport, which can be used to manage PropertyChangeListeners and the firing of PropertyChangeEvents. In situations where you wish to write a class that fires PropertyChangeEvents you could embed a PropertyChangeSupport instance variable and delegate all method calls to that. This avoids the need for inheritence and means you can supplement an existing class hierarchy with new functionality.
public class MyClass extends MySuperClass {
private final PropertyChangeSupport support;
public MyClass() {
this.support = new PropertyChangeSupport(this);
}
public void addPropertyChangeListener(PropertyChangeListener l) {
support.addPropertyChangeListener(l);
}
protected void firePropertyChangeEvent() {
PropertyChangeEvent evt = new ...
support.firePropertyChangeEvent(evt);
}
}
you can extend Object - every class extends it.
you seem to need something like multiple inheritance - there isn't such a thing in Java
if you want to add functionality, use object composition. I.e.,
YourClass extends Whatever implements ObjectWithRoles {
private RoleHandler roleHandler;
public RoleHandler getRoleHandler() {..} // defined by the interface
}
And then all of the methods are placed in the RoleHandler
If you're talking about adding a role to all your objects I would also consider an annotation-based solution. You'd annotate your classes with something like #Role("User"). In another class you can extract that role value and use it.
I think it would need an annotation with runtime retention and you can check, run-time, whether the annotation is present using reflection and get that annotation using getAnnotation. I feel that this would be a lot cleaner than extending all your classes automatically.
I believe there are some frameworks which use exactly such a solution, so there should be example code somewhere.
If you are doing what you are doing, then inheritance is probably not the correct idiom. You may want to consider the decorator pattern, whereby you construct a class that takes as its parameter some other class with less functionality, and adds some additional functionality to it, delegating to the existing class for functionality that already exists. If the implementation is common to many of your decorators, you may want to consider putting that functionality in class that can be shared and to which you can delegate for all your decorators. Depending on what you need, double-dispatch or reflection may be appropriate in order to make similar but not quite the same decorators for a large variety of classes.
Also, as has been pointed out in the comments, String is declared "final" and, therefore, cannot be extended. So, you should really consider a solution whereby you delegate/decorate objects. For example, you might have some object that wraps a string and provides access to the string via getString() or toString(), but then adds the additional functionality on top of the String class.
If you just want to associate some objects with additional attributes, use a Map (e.g. HashMap).
What you really want to do would be monkey patching, i.e. changing the behaviour of existing classes without modifying their code.
Unfortunately, Java does not support this, nor things like mixins that might be used alternatively. So unless you're willing to switch to a more dynamic language like Groovy, you'll have to live with less elegant solutions like composition.

Categories