Should my classes restrict developers from doing wrong things with them? - java

I am trying to understand where good contracts end and paranoia starts.
Really, I just have no idea what good developer should care about and what shall he leave out :)
Let's say I have a class that holds value(s), like java.lang.Integer. Its instances are aggregated by other objects (MappedObjects), (one-to-many or many-to-many), and often used inside MappedObjects' methods. For performance reasons, I also track these relationships in TreeMap (guava MultiMap, doesn't matter) in addition, to be able to get fast iterations over MappedObjects bound to some range of Integer keys.
So, to keep system in consistent state, I should modify MappedObject.bind(Integer integer) method to update my Map like:
class MappedObject {
public void bind (Integer integer) {
MegaMap.getInstance().remove(fInteger, this);
fInteger = integer;
MegaMap.getInstance().add(fInteger, this);
}
...
private Integer fInteger;
}
I could just make abstract MappedObject class with this final method, forcing other to inherit from it, but it is rude. If I will define MappedObject as interface with method bind() and provide skeletal implementation -- other developer might later just forget to include it in object and implement method by himself without Map updating.

Yes, you should force people to do the right thing with your code. A great example of letting people do the wrong thing is the servlet method init( ServletConfig config ) that expected you would store the servlet config yourself but, obviously, a lot of people forgot to store the config and when running their servlets just failed to work.
When defining APIs, you should always follow the open-closed principle, your class should be open for extension and closed for modification. If your class has to work like this, you should only open extension points where they make sense, all the other functionality should not be available for modification, as it could lead to implementation issues in the future.

Try to focus on functionality first and leave all unnecessary things behind. Btw you can't prohibit reflection so don't worry too much on misuse. On the other hand your API should be clear and straightforward so users will have clear idea, what they should and what they shouldn't do with it.

I'd say your classes should be designed for as simple use as possible.
If you allow a developer to override methods you definitely should document the contract as good as possible. In that case the developer opts to override some basic functionality and thus is responsible to provide an implementation that adheres to the contract.
In cases where you don't want the developer to override parts of the functionality - for security reasons, if there is no sensible alternative etc. - just make that part final. In your case, the bind method might look like this:
class MappedObject {
public final void bind (Integer integer) {
MegaMap.getInstance().remove(fInteger);
internalBind( integer );
MegaMap.getInstance().add(fInteger);
}
protected void internalBind( Integer integer ) {
fInteger = integer;
}
...
private Integer fInteger;
}
Here you'd allow the developer to override the internalBind() method but ensure that bind() will do the mapping.
To summarize: Make using and extending classes as easy as (sensibly) possible and don't have the developer to copy lots of boiler plate code (like the map updates in your case) in case he just wants to override some basic functionality (like the actual binding).

At least you should do really everything that prevents bugs but cost no effort.
For example: use primitive types (int) instead of wrappers (Integer) if the variable is not allowed to be null.
So in your bind method. If you not have intended to bind null, then use int instead of Integer as parameter type.

If you think your API users are stupid, you should prohibit wrong usage. Otherwise you should not stand in their way to do things they need to do.
Domumentation and good naming of classes and methods should indicate how to use your API.

Related

how can I return an object by giving only an interface [duplicate]

when programming in Java I practically always, just out of habit, write something like this:
public List<String> foo() {
return new ArrayList<String>();
}
Most of the time without even thinking about it. Now, the question is: should I always specify the interface as the return type? Or is it advisable to use the actual implementation of the interface, and if so, under what circumstances?
It is obvious that using the interface has a lot of advantages (that's why it's there). In most cases it doesn't really matter what concrete implementation is used by a library function. But maybe there are cases where it does matter. For instance, if I know that I will primarily access the data in the list randomly, a LinkedList would be bad. But if my library function only returns the interface, I simply don't know. To be on the safe side I might even need to copy the list explicitly over to an ArrayList:
List bar = foo();
List myList = bar instanceof LinkedList ? new ArrayList(bar) : bar;
but that just seems horrible and my coworkers would probably lynch me in the cafeteria. And rightfully so.
What do you guys think? What are your guidelines, when do you tend towards the abstract solution, and when do you reveal details of your implementation for potential performance gains?
Return the appropriate interface to hide implementation details. Your clients should only care about what your object offers, not how you implemented it. If you start with a private ArrayList, and decide later on that something else (e.g., LinkedLisk, skip list, etc.) is more appropriate you can change the implementation without affecting clients if you return the interface. The moment you return a concrete type the opportunity is lost.
For instance, if I know that I will
primarily access the data in the list
randomly, a LinkedList would be bad.
But if my library function only
returns the interface, I simply don't
know. To be on the safe side I might
even need to copy the list explicitly
over to an ArrayList.
As everybody else has mentioned, you just mustn't care about how the library has implemented the functionality, to reduce coupling and increasing maintainability of the library.
If you, as a library client, can demonstrate that the implementation is performing badly for your use case, you can then contact the person in charge and discuss about the best path to follow (a new method for this case or just changing the implementation).
That said, your example reeks of premature optimization.
If the method is or can be critical, it might mention the implementation details in the documentation.
Without being able to justify it with reams of CS quotes (I'm self taught), I've always gone by the mantra of "Accept the least derived, return the most derived," when designing classes and it has stood me well over the years.
I guess that means in terms of interface versus concrete return is that if you are trying to reduce dependencies and/or decouple, returning the interface is generally more useful. However, if the concrete class implements more than that interface, it is usually more useful to the callers of your method to get the concrete class back (i.e. the "most derived") rather than aribtrarily restrict them to a subset of that returned object's functionality - unless you actually need to restrict them. Then again, you could also just increase the coverage of the interface. Needless restrictions like this I compare to thoughtless sealing of classes; you never know. Just to talk a bit about the former part of that mantra (for other readers), accepting the least derived also gives maximum flexibility for callers of your method.
-Oisin
Sorry to disagree, but I think the basic rule is as follows:
For input arguments use the most generic.
For output values, the most specific.
So, in this case you want to declare the implementation as:
public ArrayList<String> foo() {
return new ArrayList<String>();
}
Rationale:
The input case is already known and explained by everyone: use the interface, period. However, the output case can look counter-intuitive.
You want to return the implementation because you want the client to have the most information about what is receiving. In this case, more knowledge is more power.
Example 1: the client wants to get the 5th element:
return Collection: must iterate until 5th element vs return List:
return List: list.get(4)
Example 2: the client wants to remove the 5th element:
return List: must create a new list without the specified element (list.remove() is optional).
return ArrayList: arrayList.remove(4)
So it's a big truth that using interfaces is great because it promotes reusability, reduces coupling, improves maintainability and makes people happy ... but only when used as input.
So, again, the rule can be stated as:
Be flexible for what you offer.
Be informative with what you deliver.
So, next time, please return the implementation.
In OO programming, we want to encapsulate as much as possible the data. Hide as much as possible the actual implementation, abstracting the types as high as possible.
In this context, I would answer only return what is meaningful. Does it makes sense at all for the return value to be the concrete class? Aka in your example, ask yourself: will anyone use a LinkedList-specific method on the return value of foo?
If no, just use the higher-level Interface. It's much more flexible, and allows you to change the backend
If yes, ask yourself: can't I refactor my code to return the higher-level interface? :)
The more abstract is your code, the less changes your are required to do when changing a backend. It's as simple as that.
If, on the other hand, you end up casting the return values to the concrete class, well that's a strong sign that you should probably return instead the concrete class. Your users/teammates should not have to know about more or less implicit contracts: if you need to use the concrete methods, just return the concrete class, for clarity.
In a nutshell: code abstract, but explicitly :)
In general, for a public facing interface such as APIs, returning the interface (such as List) over the concrete implementation (such as ArrayList) would be better.
The use of a ArrayList or LinkedList is an implementation detail of the library that should be considered for the most common use case of that library. And of course, internally, having private methods handing off LinkedLists wouldn't necessarily be a bad thing, if it provides facilities that would make the processing easier.
There is no reason that a concrete class shouldn't be used in the implementation, unless there is a good reason to believe that some other List class would be used later on. But then again, changing the implementation details shouldn't be as painful as long as the public facing portion is well-designed.
The library itself should be a black box to its consumers, so they don't really have to worry about what's going on internally. That also means that the library should be designed so that it is designed to be used in the way it is intended.
It doesn't matter all that much whether an API method returns an interface or a concrete class; despite what everyone here says, you almost never change the implementiation class once the code is written.
What's far more important: always use minimum-scope interfaces for your method parameters! That way, clients have maximal freedom and can use classes your code doesn't even know about.
When an API method returns ArrayList, I have absolutely no qualms with that, but when it demands an ArrayList (or, all to common, Vector) parameter, I consider hunting down the programmer and hurting him, because it means that I can't use Arrays.asList(), Collections.singletonList() or Collections.EMPTY_LIST.
As a rule, I only pass back internal implementations if I am in some private, inner workings of a library, and even so only sparingly. For everything that is public and likely to be called from the outside of my module I use interfaces, and also the Factory pattern.
Using interfaces in such a way has proven to be a very reliable way to write reusable code.
The main question has been answered already and you should always use the interface. I however would just like to comment on
It is obvious that using the interface has a lot of advantages (that's why it's there). In most cases it doesn't really matter what concrete implementation is used by a library function. But maybe there are cases where it does matter. For instance, if I know that I will primarily access the data in the list randomly, a LinkedList would be bad. But if my library function only returns the interface, I simply don't know. To be on the safe side I might even need to copy the list explicitly over to an ArrayList.
If you are returning a data structure that you know has poor random access performance -- O(n) and typically a LOT of data -- there are other interfaces you should be specifying instead of List, like Iterable so that anyone using the library will be fully aware that only sequential access is available.
Picking the right type to return isn't just about interface versus concrete implementation, it is also about selecting the right interface.
You use interface to abstract away from the actual implementation. The interface is basically just a blueprint for what your implementation can do.
Interfaces are good design because they allow you to change implementation details without having to fear that any of its consumers are directly affected, as long as you implementation still does what your interface says it does.
To work with interfaces you would instantiate them like this:
IParser parser = new Parser();
Now IParser would be your interface, and Parser would be your implementation. Now when you work with the parser object from above, you will work against the interface (IParser), which in turn will work against your implementation (Parser).
That means that you can change the inner workings of Parser as much as you want, it will never affect code that works against your IParser parser interface.
In general use the interface in all cases if you have no need of the functionality of the concrete class. Note that for lists, Java has added a RandomAccess marker class primarily to distinguish a common case where an algorithm may need to know if get(i) is constant time or not.
For uses of code, Michael above is right that being as generic as possible in the method parameters is often even more important. This is especially true when testing such a method.
You'll find (or have found) that as you return interfaces, they permeate through your code. e.g. you return an interface from method A and you have to then pass an interface to method B.
What you're doing is programming by contract, albeit in a limited fashion.
This gives you enormous scope to change implementations under the covers (provided these new objects fulfill the existing contracts/expected behaviours).
Given all of this, you have benefits in terms of choosing your implementation, and how you can substitute behaviours (including testing - using mocking, for example). In case you hadn't guessed, I'm all in favour of this and try to reduce to (or introduce) interfaces wherever possible.

Java - Is it good practice to return interface or abstract types from methods? [duplicate]

when programming in Java I practically always, just out of habit, write something like this:
public List<String> foo() {
return new ArrayList<String>();
}
Most of the time without even thinking about it. Now, the question is: should I always specify the interface as the return type? Or is it advisable to use the actual implementation of the interface, and if so, under what circumstances?
It is obvious that using the interface has a lot of advantages (that's why it's there). In most cases it doesn't really matter what concrete implementation is used by a library function. But maybe there are cases where it does matter. For instance, if I know that I will primarily access the data in the list randomly, a LinkedList would be bad. But if my library function only returns the interface, I simply don't know. To be on the safe side I might even need to copy the list explicitly over to an ArrayList:
List bar = foo();
List myList = bar instanceof LinkedList ? new ArrayList(bar) : bar;
but that just seems horrible and my coworkers would probably lynch me in the cafeteria. And rightfully so.
What do you guys think? What are your guidelines, when do you tend towards the abstract solution, and when do you reveal details of your implementation for potential performance gains?
Return the appropriate interface to hide implementation details. Your clients should only care about what your object offers, not how you implemented it. If you start with a private ArrayList, and decide later on that something else (e.g., LinkedLisk, skip list, etc.) is more appropriate you can change the implementation without affecting clients if you return the interface. The moment you return a concrete type the opportunity is lost.
For instance, if I know that I will
primarily access the data in the list
randomly, a LinkedList would be bad.
But if my library function only
returns the interface, I simply don't
know. To be on the safe side I might
even need to copy the list explicitly
over to an ArrayList.
As everybody else has mentioned, you just mustn't care about how the library has implemented the functionality, to reduce coupling and increasing maintainability of the library.
If you, as a library client, can demonstrate that the implementation is performing badly for your use case, you can then contact the person in charge and discuss about the best path to follow (a new method for this case or just changing the implementation).
That said, your example reeks of premature optimization.
If the method is or can be critical, it might mention the implementation details in the documentation.
Without being able to justify it with reams of CS quotes (I'm self taught), I've always gone by the mantra of "Accept the least derived, return the most derived," when designing classes and it has stood me well over the years.
I guess that means in terms of interface versus concrete return is that if you are trying to reduce dependencies and/or decouple, returning the interface is generally more useful. However, if the concrete class implements more than that interface, it is usually more useful to the callers of your method to get the concrete class back (i.e. the "most derived") rather than aribtrarily restrict them to a subset of that returned object's functionality - unless you actually need to restrict them. Then again, you could also just increase the coverage of the interface. Needless restrictions like this I compare to thoughtless sealing of classes; you never know. Just to talk a bit about the former part of that mantra (for other readers), accepting the least derived also gives maximum flexibility for callers of your method.
-Oisin
Sorry to disagree, but I think the basic rule is as follows:
For input arguments use the most generic.
For output values, the most specific.
So, in this case you want to declare the implementation as:
public ArrayList<String> foo() {
return new ArrayList<String>();
}
Rationale:
The input case is already known and explained by everyone: use the interface, period. However, the output case can look counter-intuitive.
You want to return the implementation because you want the client to have the most information about what is receiving. In this case, more knowledge is more power.
Example 1: the client wants to get the 5th element:
return Collection: must iterate until 5th element vs return List:
return List: list.get(4)
Example 2: the client wants to remove the 5th element:
return List: must create a new list without the specified element (list.remove() is optional).
return ArrayList: arrayList.remove(4)
So it's a big truth that using interfaces is great because it promotes reusability, reduces coupling, improves maintainability and makes people happy ... but only when used as input.
So, again, the rule can be stated as:
Be flexible for what you offer.
Be informative with what you deliver.
So, next time, please return the implementation.
In OO programming, we want to encapsulate as much as possible the data. Hide as much as possible the actual implementation, abstracting the types as high as possible.
In this context, I would answer only return what is meaningful. Does it makes sense at all for the return value to be the concrete class? Aka in your example, ask yourself: will anyone use a LinkedList-specific method on the return value of foo?
If no, just use the higher-level Interface. It's much more flexible, and allows you to change the backend
If yes, ask yourself: can't I refactor my code to return the higher-level interface? :)
The more abstract is your code, the less changes your are required to do when changing a backend. It's as simple as that.
If, on the other hand, you end up casting the return values to the concrete class, well that's a strong sign that you should probably return instead the concrete class. Your users/teammates should not have to know about more or less implicit contracts: if you need to use the concrete methods, just return the concrete class, for clarity.
In a nutshell: code abstract, but explicitly :)
In general, for a public facing interface such as APIs, returning the interface (such as List) over the concrete implementation (such as ArrayList) would be better.
The use of a ArrayList or LinkedList is an implementation detail of the library that should be considered for the most common use case of that library. And of course, internally, having private methods handing off LinkedLists wouldn't necessarily be a bad thing, if it provides facilities that would make the processing easier.
There is no reason that a concrete class shouldn't be used in the implementation, unless there is a good reason to believe that some other List class would be used later on. But then again, changing the implementation details shouldn't be as painful as long as the public facing portion is well-designed.
The library itself should be a black box to its consumers, so they don't really have to worry about what's going on internally. That also means that the library should be designed so that it is designed to be used in the way it is intended.
It doesn't matter all that much whether an API method returns an interface or a concrete class; despite what everyone here says, you almost never change the implementiation class once the code is written.
What's far more important: always use minimum-scope interfaces for your method parameters! That way, clients have maximal freedom and can use classes your code doesn't even know about.
When an API method returns ArrayList, I have absolutely no qualms with that, but when it demands an ArrayList (or, all to common, Vector) parameter, I consider hunting down the programmer and hurting him, because it means that I can't use Arrays.asList(), Collections.singletonList() or Collections.EMPTY_LIST.
As a rule, I only pass back internal implementations if I am in some private, inner workings of a library, and even so only sparingly. For everything that is public and likely to be called from the outside of my module I use interfaces, and also the Factory pattern.
Using interfaces in such a way has proven to be a very reliable way to write reusable code.
The main question has been answered already and you should always use the interface. I however would just like to comment on
It is obvious that using the interface has a lot of advantages (that's why it's there). In most cases it doesn't really matter what concrete implementation is used by a library function. But maybe there are cases where it does matter. For instance, if I know that I will primarily access the data in the list randomly, a LinkedList would be bad. But if my library function only returns the interface, I simply don't know. To be on the safe side I might even need to copy the list explicitly over to an ArrayList.
If you are returning a data structure that you know has poor random access performance -- O(n) and typically a LOT of data -- there are other interfaces you should be specifying instead of List, like Iterable so that anyone using the library will be fully aware that only sequential access is available.
Picking the right type to return isn't just about interface versus concrete implementation, it is also about selecting the right interface.
You use interface to abstract away from the actual implementation. The interface is basically just a blueprint for what your implementation can do.
Interfaces are good design because they allow you to change implementation details without having to fear that any of its consumers are directly affected, as long as you implementation still does what your interface says it does.
To work with interfaces you would instantiate them like this:
IParser parser = new Parser();
Now IParser would be your interface, and Parser would be your implementation. Now when you work with the parser object from above, you will work against the interface (IParser), which in turn will work against your implementation (Parser).
That means that you can change the inner workings of Parser as much as you want, it will never affect code that works against your IParser parser interface.
In general use the interface in all cases if you have no need of the functionality of the concrete class. Note that for lists, Java has added a RandomAccess marker class primarily to distinguish a common case where an algorithm may need to know if get(i) is constant time or not.
For uses of code, Michael above is right that being as generic as possible in the method parameters is often even more important. This is especially true when testing such a method.
You'll find (or have found) that as you return interfaces, they permeate through your code. e.g. you return an interface from method A and you have to then pass an interface to method B.
What you're doing is programming by contract, albeit in a limited fashion.
This gives you enormous scope to change implementations under the covers (provided these new objects fulfill the existing contracts/expected behaviours).
Given all of this, you have benefits in terms of choosing your implementation, and how you can substitute behaviours (including testing - using mocking, for example). In case you hadn't guessed, I'm all in favour of this and try to reduce to (or introduce) interfaces wherever possible.

Using an untyped wrapper class around objects stored in XML, is this bad?

class MyThing {
protected HashMap<String,Object> fields;
protected MyThing(HashMap<String,Object> newFields){
fields.putAll(newFields);
}
protected Object get(String key){
return fields.get(key);
}
}
Now a little background. I am using this class as a super class to a bunch of different classes which represent objects from an XML file. This is basically an implementation of an API wrapper and I am using this as an adapter between the parsed XML from an API and a database. Casting is delegated to the caller of the get method. If the subclasses need to do something when they are created or when they return a variable, they just call super and then manipulate what gets returned afterwards. eg.:
class Event extends MyThing {
public Event(HashMap<String,Object> newFields){
super(newFields);
// Removes anything after an # symbol in returned data
Pattern p = Pattern.compile("\\#.*$");
Matcher m = p.matcher((String)fields.get("id"));
boolean result = m.find();
if (result)
fields.put("id", m.replaceFirst(""));
}
}
public Object get(String key){
Object obj = super(key);
if (key.equals("name")){
return "Mr./Mrs. " + ((String)obj);
}
}
}
The reason I feel like I should do this is so I don't have to write getId, getName, getWhatever methods for every single subclass just because they have different attributes. It would save time and it is pretty self explanatory.
Now this is obviously "unJavalike" and more like a ducktyped language way of doing things, but is there a logical reason why I should absolutely not be doing this?
If you're going to this level of complexity and mucking up your object model just because you don't want to have getters and setters, do it in Groovy instead.
Groovy is a duck typed dynamic language on the JVM that accepts 98% of valid Java code, so you already know most of the language (you don't lose functionality)...there are "more idiomatic" ways of doing things, but you can pick those up with time. It also already has a built in XmlSlurper, which probably does most of what you're trying to do anyway.
As for the "reasons why you shouldn't", you're introducing all types of maintainability concerns.
New classes will always have to derive from the base class.
They will have to implement a constructor that always calls a base constructor
They will have to override get() [which you're basically using to encapsulate your getters and setters anyway, why not just add that method and delegate to those other methods] and write specific logic which is likely to degrade with time.
Why shouldn't you? It'll work, right? Sure. But it's poor engineering in that you're either creating a maintenance nightmare, or reinventing the wheel and likely to do it wrong.
Obviously, it's not type safe.
Future maintainers won't know what the types are supposed to be and will get generally confused as to why you're not using POJOs.
Instead of constant time, space complexity and performance you have the characteristics of a HashMap.
It become very difficult to write non-trivial getters/setters in future.
Most data binding systems are designed to work with POJOs/Beans (JAXB, JPA, Jackson, etc).
I'm sure there are more, but this will do. Try using some proper OXM libraries and you'll be much better off.

When NOT to use the static keyword in Java?

When is it considered poor practice to use the static keyword in Java on method signatures? If a method performs a function based upon some arguments, and does not require access to fields that are not static, then wouldn't you always want these types of methods to be static?
Two of the greatest evils you will ever encounter in large-scale Java applications are
Static methods, except those that are pure functions*
Mutable static fields
These ruin the modularity, extensibility and testability of your code to a degree that I realize I cannot possibly hope to convince you of in this limited time and space.
*A "pure function" is any method which does not modify any state and whose result depends on nothing but the parameters provided to it. So, for example, any function that performs I/O (directly or indirectly) is not a pure function, but Math.sqrt(), of course, is.
More blahblah about pure functions (self-link) and why you want to stick to them.
I strongly encourage you to favor the "dependency injection" style of programming, possibly supported by a framework such as Spring or Guice (disclaimer: I am co-author of the latter). If you do this right, you will essentially never need mutable static state or non-pure static methods.
One reason why you may not want it to be static is to allow it to be overridden in a subclass. In other words, the behaviour may not depend on the data within the object, but on the exact type of the object. For example, you might have a general collection type, with an isReadOnly property which would return false in always-mutable collections, true in always-immutable collections, and depend on instance variables in others.
However, this is quite rare in my experience - and should usually be explicitly specified for clarity. Normally I'd make a method which doesn't depend on any object state static.
In general, I prefer instance methods for the following reasons:
static methods make testing hard because they can't be replaced,
static methods are more procedural oriented.
In my opinion, static methods are OK for utility classes (like StringUtils) but I prefer to avoid using them as much as possible.
What you say is sort of true, but what happens when you want to override the behavior of that method in a derived class? If it's static, you can't do that.
As an example, consider the following DAO type class:
class CustomerDAO {
public void CreateCustomer( Connection dbConn, Customer c ) {
// Some implementation, created a prepared statement, inserts the customer record.
}
public Customer GetCustomerByID( Connection dbConn, int customerId ) {
// Implementation
}
}
Now, none of those methods require any "state". Everything they need is passed as parameters. So they COULD easily be static. Now the requirement comes along that you need to support a different database (lets say Oracle)
Since those methods are not static, you could just create a new DAO class:
class OracleCustomerDAO : CustomerDAO {
public void CreateCustomer( Connection dbConn, Customer c ) {
// Oracle specific implementation here.
}
public Customer GetCustomerByID( Connection dbConn, int customerId ) {
// Oracle specific implementation here.
}
}
This new class could now be used in place of the old one. If you are using dependancy injection, it might not even require a code change at all.
But if we had made those methods static, that would make things much more complicated as we can't simply override the static methods in a new class.
Static methods are usually written for two purposes. The first purpose is to have some sort of global utility method, similar to the sort of functionality found in java.util.Collections. These static methods are generally harmless. The second purpose is to control object instantiation and limit access to resources (such as database connections) via various design patterns such as singletons and factories. These can, if poorly implemented, result in problems.
For me, there are two downsides to using static methods:
They make code less modular and harder to test / extend. Most answers already addressed this so I won't go into it any more.
Static methods tend to result in some form of global state, which is frequently the cause of insidious bugs. This can occur in poorly written code that is written for the second purpose described above. Let me elaborate.
For example, consider a project that requires logging certain events to a database, and relies on the database connection for other state as well. Assume that normally, the database connection is initialized first, and then the logging framework is configured to write certain log events to the database. Now assume that the developers decide to move from a hand-written database framework to an existing database framework, such as hibernate.
However, this framework is likely to have its own logging configuration - and if it happens to be using the same logging framework as yours, then there is a good chance there will be various conflicts between the configurations. Suddenly, switching to a different database framework results in errors and failures in different parts of the system that are seemingly unrelated. The reason such failures can happen is because the logging configuration maintains global state accessed via static methods and variables, and various configuration properties can be overridden by different parts of the system.
To get away from these problems, developers should avoid storing any state via static methods and variables. Instead, they should build clean APIs that let the users manage and isolate state as needed. BerkeleyDB is a good example here, encapsulating state via an Environment object instead of via static calls.
That's right. Indeed, you have to contort what might otherwise be a reasonable design (to have some functions not associated with a class) into Java terms. That's why you see catch-all classes such as FredsSwingUtils and YetAnotherIOUtils.
when you want to use a class member independently of any object of that class,it should be declared static.
If it is declared static it can be accessed without an existing instance of an object of the class.
A static member is shared by all objects of that specific class.
An additional annoyance about static methods: there is no easy way to pass a reference to such a function around without creating a wrapper class around it. E.g. - something like:
FunctorInterface f = new FunctorInterface() { public int calc( int x) { return MyClass.calc( x); } };
I hate this kind of java make-work. Maybe a later version of java will get delegates or a similar function pointer / procedural type mechanism?
A minor gripe, but one more thing to not like about gratuitous static functions, er, methods.
Two questions here
1) A static method that creates objects stays loaded in memory when it is accessed the first time? Isnt this (remaining loaded in memory) a drawback?
2) One of the advantages of using Java is its garbage collection feature - arent we ignoring this when we use static methods?

When should I return the Interface and when the concrete class?

when programming in Java I practically always, just out of habit, write something like this:
public List<String> foo() {
return new ArrayList<String>();
}
Most of the time without even thinking about it. Now, the question is: should I always specify the interface as the return type? Or is it advisable to use the actual implementation of the interface, and if so, under what circumstances?
It is obvious that using the interface has a lot of advantages (that's why it's there). In most cases it doesn't really matter what concrete implementation is used by a library function. But maybe there are cases where it does matter. For instance, if I know that I will primarily access the data in the list randomly, a LinkedList would be bad. But if my library function only returns the interface, I simply don't know. To be on the safe side I might even need to copy the list explicitly over to an ArrayList:
List bar = foo();
List myList = bar instanceof LinkedList ? new ArrayList(bar) : bar;
but that just seems horrible and my coworkers would probably lynch me in the cafeteria. And rightfully so.
What do you guys think? What are your guidelines, when do you tend towards the abstract solution, and when do you reveal details of your implementation for potential performance gains?
Return the appropriate interface to hide implementation details. Your clients should only care about what your object offers, not how you implemented it. If you start with a private ArrayList, and decide later on that something else (e.g., LinkedLisk, skip list, etc.) is more appropriate you can change the implementation without affecting clients if you return the interface. The moment you return a concrete type the opportunity is lost.
For instance, if I know that I will
primarily access the data in the list
randomly, a LinkedList would be bad.
But if my library function only
returns the interface, I simply don't
know. To be on the safe side I might
even need to copy the list explicitly
over to an ArrayList.
As everybody else has mentioned, you just mustn't care about how the library has implemented the functionality, to reduce coupling and increasing maintainability of the library.
If you, as a library client, can demonstrate that the implementation is performing badly for your use case, you can then contact the person in charge and discuss about the best path to follow (a new method for this case or just changing the implementation).
That said, your example reeks of premature optimization.
If the method is or can be critical, it might mention the implementation details in the documentation.
Without being able to justify it with reams of CS quotes (I'm self taught), I've always gone by the mantra of "Accept the least derived, return the most derived," when designing classes and it has stood me well over the years.
I guess that means in terms of interface versus concrete return is that if you are trying to reduce dependencies and/or decouple, returning the interface is generally more useful. However, if the concrete class implements more than that interface, it is usually more useful to the callers of your method to get the concrete class back (i.e. the "most derived") rather than aribtrarily restrict them to a subset of that returned object's functionality - unless you actually need to restrict them. Then again, you could also just increase the coverage of the interface. Needless restrictions like this I compare to thoughtless sealing of classes; you never know. Just to talk a bit about the former part of that mantra (for other readers), accepting the least derived also gives maximum flexibility for callers of your method.
-Oisin
Sorry to disagree, but I think the basic rule is as follows:
For input arguments use the most generic.
For output values, the most specific.
So, in this case you want to declare the implementation as:
public ArrayList<String> foo() {
return new ArrayList<String>();
}
Rationale:
The input case is already known and explained by everyone: use the interface, period. However, the output case can look counter-intuitive.
You want to return the implementation because you want the client to have the most information about what is receiving. In this case, more knowledge is more power.
Example 1: the client wants to get the 5th element:
return Collection: must iterate until 5th element vs return List:
return List: list.get(4)
Example 2: the client wants to remove the 5th element:
return List: must create a new list without the specified element (list.remove() is optional).
return ArrayList: arrayList.remove(4)
So it's a big truth that using interfaces is great because it promotes reusability, reduces coupling, improves maintainability and makes people happy ... but only when used as input.
So, again, the rule can be stated as:
Be flexible for what you offer.
Be informative with what you deliver.
So, next time, please return the implementation.
In OO programming, we want to encapsulate as much as possible the data. Hide as much as possible the actual implementation, abstracting the types as high as possible.
In this context, I would answer only return what is meaningful. Does it makes sense at all for the return value to be the concrete class? Aka in your example, ask yourself: will anyone use a LinkedList-specific method on the return value of foo?
If no, just use the higher-level Interface. It's much more flexible, and allows you to change the backend
If yes, ask yourself: can't I refactor my code to return the higher-level interface? :)
The more abstract is your code, the less changes your are required to do when changing a backend. It's as simple as that.
If, on the other hand, you end up casting the return values to the concrete class, well that's a strong sign that you should probably return instead the concrete class. Your users/teammates should not have to know about more or less implicit contracts: if you need to use the concrete methods, just return the concrete class, for clarity.
In a nutshell: code abstract, but explicitly :)
In general, for a public facing interface such as APIs, returning the interface (such as List) over the concrete implementation (such as ArrayList) would be better.
The use of a ArrayList or LinkedList is an implementation detail of the library that should be considered for the most common use case of that library. And of course, internally, having private methods handing off LinkedLists wouldn't necessarily be a bad thing, if it provides facilities that would make the processing easier.
There is no reason that a concrete class shouldn't be used in the implementation, unless there is a good reason to believe that some other List class would be used later on. But then again, changing the implementation details shouldn't be as painful as long as the public facing portion is well-designed.
The library itself should be a black box to its consumers, so they don't really have to worry about what's going on internally. That also means that the library should be designed so that it is designed to be used in the way it is intended.
It doesn't matter all that much whether an API method returns an interface or a concrete class; despite what everyone here says, you almost never change the implementiation class once the code is written.
What's far more important: always use minimum-scope interfaces for your method parameters! That way, clients have maximal freedom and can use classes your code doesn't even know about.
When an API method returns ArrayList, I have absolutely no qualms with that, but when it demands an ArrayList (or, all to common, Vector) parameter, I consider hunting down the programmer and hurting him, because it means that I can't use Arrays.asList(), Collections.singletonList() or Collections.EMPTY_LIST.
As a rule, I only pass back internal implementations if I am in some private, inner workings of a library, and even so only sparingly. For everything that is public and likely to be called from the outside of my module I use interfaces, and also the Factory pattern.
Using interfaces in such a way has proven to be a very reliable way to write reusable code.
The main question has been answered already and you should always use the interface. I however would just like to comment on
It is obvious that using the interface has a lot of advantages (that's why it's there). In most cases it doesn't really matter what concrete implementation is used by a library function. But maybe there are cases where it does matter. For instance, if I know that I will primarily access the data in the list randomly, a LinkedList would be bad. But if my library function only returns the interface, I simply don't know. To be on the safe side I might even need to copy the list explicitly over to an ArrayList.
If you are returning a data structure that you know has poor random access performance -- O(n) and typically a LOT of data -- there are other interfaces you should be specifying instead of List, like Iterable so that anyone using the library will be fully aware that only sequential access is available.
Picking the right type to return isn't just about interface versus concrete implementation, it is also about selecting the right interface.
You use interface to abstract away from the actual implementation. The interface is basically just a blueprint for what your implementation can do.
Interfaces are good design because they allow you to change implementation details without having to fear that any of its consumers are directly affected, as long as you implementation still does what your interface says it does.
To work with interfaces you would instantiate them like this:
IParser parser = new Parser();
Now IParser would be your interface, and Parser would be your implementation. Now when you work with the parser object from above, you will work against the interface (IParser), which in turn will work against your implementation (Parser).
That means that you can change the inner workings of Parser as much as you want, it will never affect code that works against your IParser parser interface.
In general use the interface in all cases if you have no need of the functionality of the concrete class. Note that for lists, Java has added a RandomAccess marker class primarily to distinguish a common case where an algorithm may need to know if get(i) is constant time or not.
For uses of code, Michael above is right that being as generic as possible in the method parameters is often even more important. This is especially true when testing such a method.
You'll find (or have found) that as you return interfaces, they permeate through your code. e.g. you return an interface from method A and you have to then pass an interface to method B.
What you're doing is programming by contract, albeit in a limited fashion.
This gives you enormous scope to change implementations under the covers (provided these new objects fulfill the existing contracts/expected behaviours).
Given all of this, you have benefits in terms of choosing your implementation, and how you can substitute behaviours (including testing - using mocking, for example). In case you hadn't guessed, I'm all in favour of this and try to reduce to (or introduce) interfaces wherever possible.

Categories