using interface to communicate between 2 java classes - java

I have 2 classes A and B.
class A implements Constants{
private int state;
}
class B implements Constants{
foo(){
//want to set state variable of class A like this
state = state1
}
}
interface Constants{
public final int state1;
public final int state2;
}
I don't want to have an instance of class A in class B. How should I do this?
If I have a function to set the variable in the interface, then both the classes must implement this function. That would be wrong right? Because then 2 definitions for the same function would conflict?

There is nothing called functions in java. They are methods.
You can have getters and setters in your classes for the properties to set and get them from external classes.
Your question is unclear.
If your B class extends the A class, then through the constructor of the B class, you can set the properties of the A class that is the super class.
Hope it helps!

Having an interface does not mean that the variable will be shared between the classes, it is more of a way to define classes that MUST override the functions in the interface. You can read the very basics on them here. To share a variable between two classes, you can either make the variable static and put it in another class that both your classes extend (in effect a global variable, which is bad practice and not thread safe), or have one of the classes have an instance of the other and call getters/setters.
EDIT: there is a similar question here that shows you what I mean about the static variable.

You generally want to avoid writing any method in a class that attempts to alter the internal state of another class. Whatever trick you come up with to accomplish such a thing, you are breaking the principle of encapsulation which is the whole reason for using classes in the first place.
If there is some state that you wish to have accessible from multiple classes, I would recommend breaking that state out into it's own class and have each of the two classes interact with it through getter/setter or utility methods.

Related

Is there a way to change the value of a variable declared in an Interface in other classes in JAVA? [duplicate]

Why are interface variables static and final by default in Java?
From the Java interface design FAQ by Philip Shaw:
Interface variables are static because Java interfaces cannot be instantiated in their own right; the value of the variable must be assigned in a static context in which no instance exists. The final modifier ensures the value assigned to the interface variable is a true constant that cannot be re-assigned by program code.
source
public: for the accessibility across all the classes, just like the methods present in the interface
static: as interface cannot have an object, the interfaceName.variableName can be used to reference it or directly the variableName in the class implementing it.
final: to make them constants. If 2 classes implement the same interface and you give both of them the right to change the value, conflict will occur in the current value of the var, which is why only one time initialization is permitted.
Also all these modifiers are implicit for an interface, you dont really need to specify any of them.
Since interface doesn't have a direct object, the only way to access them is by using a class/interface and hence that is why if interface variable exists, it should be static otherwise it wont be accessible at all to outside world. Now since it is static, it can hold only one value and any classes that implements it can change it and hence it will be all mess.
Hence if at all there is an interface variable, it will be implicitly static, final and obviously public!!!
(This is not a philosophical answer but more of a practical one). The requirement for static modifier is obvious which has been answered by others. Basically, since the interfaces cannot be instantiated, the only way to access its fields are to make them a class field -- static.
The reason behind the interface fields automatically becoming final (constant) is to prevent different implementations accidentally changing the value of interface variable which can inadvertently affect the behavior of the other implementations. Imagine the scenario below where an interface property did not explicitly become final by Java:
public interface Actionable {
public static boolean isActionable = false;
public void performAction();
}
public NuclearAction implements Actionable {
public void performAction() {
// Code that depends on isActionable variable
if (isActionable) {
// Launch nuclear weapon!!!
}
}
}
Now, just think what would happen if another class that implements Actionable alters the state of the interface variable:
public CleanAction implements Actionable {
public void performAction() {
// Code that can alter isActionable state since it is not constant
isActionable = true;
}
}
If these classes are loaded within a single JVM by a classloader, then the behavior of NuclearAction can be affected by another class, CleanAction, when its performAction() is invoke after CleanAction's is executed (in the same thread or otherwise), which in this case can be disastrous (semantically that is).
Since we do not know how each implementation of an interface is going to use these variables, they must implicitly be final.
Because anything else is part of the implementation, and interfaces cannot contain any implementation.
public interface A{
int x=65;
}
public interface B{
int x=66;
}
public class D implements A,B {
public static void main(String[] a){
System.out.println(x); // which x?
}
}
Here is the solution.
System.out.println(A.x); // done
I think it is the one reason why interface variable are static.
Don't declare variables inside Interface.
because:
Static : as we can't have objects of interfaces so we should avoid using Object level member variables and should use class level variables i.e. static.
Final : so that we should not have ambiguous values for the variables(Diamond problem - Multiple Inheritance).
And as per the documentation interface is a contract and not an implementation.
reference: Abhishek Jain's answer on quora
static - because Interface cannot have any instance. and final - because we do not need to change it.
Interface : System requirement service.
In interface, variable are by default assign by public,static,final access modifier.
Because :
public : It happen some-times that interface might placed in some other package. So it need to access the variable from anywhere in project.
static : As such incomplete class can not create object. So in project we need to access the variable without object so we can access with the help of interface_filename.variable_name
final : Suppose one interface implements by many class and all classes try to access and update the interface variable. So it leads to inconsistent of changing data and affect every other class. So it need to declare access modifier with final.
Java does not allow abstract variables and/or constructor definitions in interfaces. Solution: Simply hang an abstract class between your interface and your implementation which only extends the abstract class like so:
public interface IMyClass {
void methodA();
String methodB();
Integer methodC();
}
public abstract class myAbstractClass implements IMyClass {
protected String varA, varB;
//Constructor
myAbstractClass(String varA, String varB) {
this.varA = varA;
this.varB = VarB;
}
//Implement (some) interface methods here or leave them for the concrete class
protected void methodA() {
//Do something
}
//Add additional methods here which must be implemented in the concrete class
protected abstract Long methodD();
//Write some completely new methods which can be used by all subclasses
protected Float methodE() {
return 42.0;
}
}
public class myConcreteClass extends myAbstractClass {
//Constructor must now be implemented!
myClass(String varA, String varB) {
super(varA, varB);
}
//All non-private variables from the abstract class are available here
//All methods not implemented in the abstract class must be implemented here
}
You can also use an abstract class without any interface if you are SURE that you don't want to implement it along with other interfaces later. Please note that you can't create an instance of an abstract class you MUST extend it first.
(The "protected" keyword means that only extended classes can access these methods and variables.)
spyro
An Interface is contract between two parties that is invariant, carved in the stone, hence final. See Design by Contract.
In Java, interface doesn't allow you to declare any instance variables. Using a variable declared in an interface as an instance variable will return a compile time error.
You can declare a constant variable, using static final which is different from an instance variable.
Interface can be implemented by any classes and what if that value got changed by one of there implementing class then there will be mislead for other implementing classes. Interface is basically a reference to combine two corelated but different entity.so for that reason the declaring variable inside the interface will implicitly be final and also static because interface can not be instantiate.
Think of a web application where you have interface defined and other classes implement it. As you cannot create an instance of interface to access the variables you need to have a static keyword. Since its static any change in the value will reflect to other instances which has implemented it. So in order to prevent it we define them as final.
Just tried in Eclipse, the variable in interface is default to be final, so you can't change it. Compared with parent class, the variables are definitely changeable. Why? From my point, variable in class is an attribute which will be inherited by children, and children can change it according to their actual need. On the contrary, interface only define behavior, not attribute. The only reason to put in variables in interface is to use them as consts which related to that interface. Though, this is not a good practice according to following excerpt:
"Placing constants in an interface was a popular technique in the early days of Java, but now many consider it a distasteful use of interfaces, since interfaces should deal with the services provided by an object, not its data. As well, the constants used by a class are typically an implementation detail, but placing them in an interface promotes them to the public API of the class."
I also tried either put static or not makes no difference at all. The code is as below:
public interface Addable {
static int count = 6;
public int add(int i);
}
public class Impl implements Addable {
#Override
public int add(int i) {
return i+count;
}
}
public class Test {
public static void main(String... args) {
Impl impl = new Impl();
System.out.println(impl.add(4));
}
}
I feel like all these answers missed the point of the OP's question.
The OP did not ask for confirmation of their statement, they wanted to know WHY their statement is the standard.
Answering the question requires a little bit of information.
First, lets talk about inheretence.
Lets assume there is a class called A with an instance variable named x.
When you create a class A, it inhereits all the properties of the Object class. Without your knowledge when you instantiate A, you are instantiating an Object object as well, and A points to it as it's parent.
Now lets say you make a class B that inherits from A.
When you create a class B, you are also creating a class A and a Object.
B has access to the variable x. that means that B.x is really just the same thing as B.A.x and Java just hides the magic of grabbing A for you.
Not lets talk about interfaces...
An interface is NOT inheretence. If B were to implmement the interface Comparable, B is not making a Comparable instance and calling it a parent. Instead, B is promising to have the things that Comparable has.
Not lets talk a little bit of theory here... An interface is a set of functions you can use to interact with something. It is not the thing itself. For example, you interface with your friends by talking to them, sharing food with them, dancing with them, being near them. You don't inheret from them though - you do not have a copy of them.
Interfaces are similar. There is only one interface and all the objects associate with it. Since the interface exists only one time as a Class (as opposed to an instance of itself) it is not possible for each object that implements the interface to have their own copy of the interface. That means there is only one instance of each variable. That means the variables are shared by all the classes that use the interface (a.k.a. static).
As for why we make them public...
Private would be useless. The functions are abstract and cannot have any code inside them to use teh private variable. It will always be unused. If the variable is marked as protected, then only an inheritor of the class will be able to use the variables. I don't think you can inhereit from interfaces. Public is the only viable option then.
The only design decision left is the 'final'. It is possible that you intend to change the shared variable between multiple instances of a class. (E.G. Maybe you have 5 players playing Monopoly and you want one board to exist so you have all the players meet the interface and a single shared Board - it might be that you want to actually make the board change based on the player functions...) [I recommend against this design]
For multithreaded applicatiosn though, if you don't make the variable static you will have a difficult time later, but I won't stop you. Do it and learn why that hurts <3
So there you go. final public static variables

Public access only to class that owns an object

I've always wondered. I have this Vertex class that's part of a generic Graph class. This Vertex class owns an object that's an entity. In my system everything happens trough the Vertex, you can't directly access the entity object with a getter. I realized though that I had to create public methods in my entity class so they can be called from the Vertex class. Is there a way to only expose methods to a class that owns said object?
Because right now I can instantiate an Entity and use it's public methods, but it doesn't make sense outside of the Vertex class. I don't know if there's a pattern or something people do to only let owners use methods of whatever they hold.
I'm using Java right now, but C++ is fine too. I believe in C++ you can use the friend keyword.
//Vertex.java
public class Vertex
{
private NodeDrawable _node;
...
}
//NodeDrawable.java
public class NodeDrawable
{
private disable();
}
I'd like to make Vertex the only class that's allowed to access NodeDrawable methods. Inner classes are cool, but I don't like having multiple classes in a single file.
First, I would ask myself if it is feasible to expose the Entity class at all. After that, you can make the Entities methods private, your Vertex class can still access them and everybody else don't - compares to protected methods which could be accessed by classes in the same source code package.
Edit
You will have to choose the access modifiers out of the Java possibilities and Java does not enable you to specify a single "friend" class - the Java way of doing this are inner classes.
One should have minimal required access to the object and its elements. If you don't require access to entity and it makes sense to have it's access through Vertex only, Make all object handles and methods private within Vertex.
I think want you want is simulate the c++ friend modificator in java look at this this question. Hope it helps.
You can use an inner class. The inner class has access to its containing class' variables and methods, and vice-versa. If you would like only the outer class to have access to the inner class, you can make the inner class private. Then not even other classes in the same package could call Outer.Inner (or in your case, Vertex.Entity). See docs.oracle.com/javase/tutorial/java/javaOO/nested.html

Why do we need final class in java? [duplicate]

I am reading a book about Java and it says that you can declare the whole class as final. I cannot think of anything where I'd use this.
I am just new to programming and I am wondering if programmers actually use this on their programs. If they do, when do they use it so I can understand it better and know when to use it.
If Java is object oriented, and you declare a class final, doesn't it stop the idea of class having the characteristics of objects?
First of all, I recommend this article: Java: When to create a final class
If they do, when do they use it so I can understand it better and know when to use it.
A final class is simply a class that can't be extended.
(It does not mean that all references to objects of the class would act as if they were declared as final.)
When it's useful to declare a class as final is covered in the answers of this question:
Good reasons to prohibit inheritance in Java?
If Java is object oriented, and you declare a class final, doesn't it stop the idea of class having the characteristics of objects?
In some sense yes.
By marking a class as final you disable a powerful and flexible feature of the language for that part of the code. Some classes however, should not (and in certain cases can not) be designed to take subclassing into account in a good way. In these cases it makes sense to mark the class as final, even though it limits OOP. (Remember however that a final class can still extend another non-final class.)
In Java, items with the final modifier cannot be changed!
This includes final classes, final variables, and final methods:
A final class cannot be extended by any other class
A final variable cannot be reassigned another value
A final method cannot be overridden
One scenario where final is important, when you want to prevent inheritance of a class, for security reasons. This allows you to make sure that code you are running cannot be overridden by someone.
Another scenario is for optimization: I seem to remember that the Java compiler inlines some function calls from final classes. So, if you call a.x() and a is declared final, we know at compile-time what the code will be and can inline into the calling function. I have no idea whether this is actually done, but with final it is a possibility.
The best example is
public final class String
which is an immutable class and cannot be extended.
Of course, there is more than just making the class final to be immutable.
If you imagine the class hierarchy as a tree (as it is in Java), abstract classes can only be branches and final classes are those that can only be leafs. Classes that fall into neither of those categories can be both branches and leafs.
There's no violation of OO principles here, final is simply providing a nice symmetry.
In practice you want to use final if you want your objects to be immutable or if you're writing an API, to signal to the users of the API that the class is just not intended for extension.
Relevant reading: The Open-Closed Principle by Bob Martin.
Key quote:
Software Entities (Classes, Modules,
Functions, etc.) should be open for
Extension, but closed for
Modification.
The final keyword is the means to enforce this in Java, whether it's used on methods or on classes.
The keyword final itself means something is final and is not supposed to be modified in any way. If a class if marked final then it can not be extended or sub-classed. But the question is why do we mark a class final? IMO there are various reasons:
Standardization: Some classes perform standard functions and they are not meant to be modified e.g. classes performing various functions related to string manipulations or mathematical functions etc.
Security reasons: Sometimes we write classes which perform various authentication and password related functions and we do not want them to be altered by anyone else.
I have heard that marking class final improves efficiency but frankly I could not find this argument to carry much weight.
If Java is object oriented, and you declare a class final, doesn't it
stop the idea of class having the characteristics of objects?
Perhaps yes, but sometimes that is the intended purpose. Sometimes we do that to achieve bigger benefits of security etc. by sacrificing the ability of this class to be extended. But a final class can still extend one class if it needs to.
On a side note we should prefer composition over inheritance and final keyword actually helps in enforcing this principle.
final class can avoid breaking the public API when you add new methods
Suppose that on version 1 of your Base class you do:
public class Base {}
and a client does:
class Derived extends Base {
public int method() { return 1; }
}
Then if in version 2 you want to add a method method to Base:
class Base {
public String method() { return null; }
}
it would break the client code.
If we had used final class Base instead, the client wouldn't have been able to inherit, and the method addition wouldn't break the API.
A final class is a class that can't be extended. Also methods could be declared as final to indicate that cannot be overridden by subclasses.
Preventing the class from being subclassed could be particularly useful if you write APIs or libraries and want to avoid being extended to alter base behaviour.
In java final keyword uses for below occasions.
Final Variables
Final Methods
Final Classes
In java final variables can't reassign, final classes can't extends and final methods can't override.
Be careful when you make a class "final". Because if you want to write an unit test for a final class, you cannot subclass this final class in order to use the dependency-breaking technique "Subclass and Override Method" described in Michael C. Feathers' book "Working Effectively with Legacy Code". In this book, Feathers said, "Seriously, it is easy to believe that sealed and final are a wrong-headed mistake, that they should never have been added to programming languages. But the real fault lies with us. When we depend directly on libraries that are out of our control, we are just asking for trouble."
If the class is marked final, it means that the class' structure can't be modified by anything external. Where this is the most visible is when you're doing traditional polymorphic inheritance, basically class B extends A just won't work. It's basically a way to protect some parts of your code (to extent).
To clarify, marking class final doesn't mark its fields as final and as such doesn't protect the object properties but the actual class structure instead.
TO ADDRESS THE FINAL CLASS PROBLEM:
There are two ways to make a class final. The first is to use the keyword final in the class declaration:
public final class SomeClass {
// . . . Class contents
}
The second way to make a class final is to declare all of its constructors as private:
public class SomeClass {
public final static SOME_INSTANCE = new SomeClass(5);
private SomeClass(final int value) {
}
Marking it final saves you the trouble if finding out that it is actual a final, to demonstrate look at this Test class. looks public at first glance.
public class Test{
private Test(Class beanClass, Class stopClass, int flags)
throws Exception{
// . . . snip . . .
}
}
Unfortunately, since the only constructor of the class is private, it is impossible to extend this class. In the case of the Test class, there is no reason that the class should be final. The Test class is a good example of how implicit final classes can cause problems.
So you should mark it final when you implicitly make a class final by making it's constructor private.
One advantage of keeping a class as final :-
String class is kept final so that no one can override its methods and change the functionality. e.g no one can change functionality of length() method. It will always return length of a string.
Developer of this class wanted no one to change functionality of this class, so he kept it as final.
The other answers have focused on what final class tells the compiler: do not allow another class to declare it extends this class, and why that is desirable.
But the compiler is not the only reader of the phrase final class. Every programmer who reads the source code also reads that. It can aid rapid program comprehension.
In general, if a programmer sees Thing thing = that.someMethod(...); and the programmer wants to understand the subsequent behaviour of the object accessed through the thing object-reference, the programmer must consider the Thing class hierarchy: potentially many types, scattered over many packages. But if the programmer knows, or reads, final class Thing, they instantly know that they do not need to search for and study so many Java files, because there are no derived classes: they need study only Thing.java and, perhaps, it's base classes.
Yes, sometimes you may want this though, either for security or speed reasons. It's done also in C++. It may not be that applicable for programs, but moreso for frameworks.
http://www.glenmccl.com/perfj_025.htm
think of FINAL as the "End of the line" - that guy cannot produce offspring anymore. So when you see it this way, there are ton of real world scenarios that you will come across that requires you to flag an 'end of line' marker to the class. It is Domain Driven Design - if your domain demands that a given ENTITY (class) cannot create sub-classes, then mark it as FINAL.
I should note that there is nothing stopping you from inheriting a "should be tagged as final" class. But that is generally classified as "abuse of inheritance", and done because most often you would like to inherit some function from the base class in your class.
The best approach is to look at the domain and let it dictate your design decisions.
As above told, if you want no one can change the functionality of the method then you can declare it as final.
Example: Application server file path for download/upload, splitting string based on offset, such methods you can declare it Final so that these method functions will not be altered. And if you want such final methods in a separate class, then define that class as Final class. So Final class will have all final methods, where as Final method can be declared and defined in non-final class.
Let's say you have an Employee class that has a method greet. When the greet method is called it simply prints Hello everyone!. So that is the expected behavior of greet method
public class Employee {
void greet() {
System.out.println("Hello everyone!");
}
}
Now, let GrumpyEmployee subclass Employee and override greet method as shown below.
public class GrumpyEmployee extends Employee {
#Override
void greet() {
System.out.println("Get lost!");
}
}
Now in the below code have a look at the sayHello method. It takes Employee instance as a parameter and calls the greet method hoping that it would say Hello everyone! But what we get is Get lost!. This change in behavior is because of Employee grumpyEmployee = new GrumpyEmployee();
public class TestFinal {
static Employee grumpyEmployee = new GrumpyEmployee();
public static void main(String[] args) {
TestFinal testFinal = new TestFinal();
testFinal.sayHello(grumpyEmployee);
}
private void sayHello(Employee employee) {
employee.greet(); //Here you would expect a warm greeting, but what you get is "Get lost!"
}
}
This situation can be avoided if the Employee class was made final. Just imagine the amount of chaos a cheeky programmer could cause if String Class was not declared as final.
Final class cannot be extended further. If we do not need to make a class inheritable in java,we can use this approach.
If we just need to make particular methods in a class not to be overridden, we just can put final keyword in front of them. There the class is still inheritable.
Final classes cannot be extended. So if you want a class to behave a certain way and don't someone to override the methods (with possibly less efficient and more malicious code), you can declare the whole class as final or specific methods which you don't want to be changed.
Since declaring a class does not prevent a class from being instantiated, it does not mean it will stop the class from having the characteristics of an object. It's just that you will have to stick to the methods just the way they are declared in the class.
Android Looper class is a good practical example of this.
http://developer.android.com/reference/android/os/Looper.html
The Looper class provides certain functionality which is NOT intended to be overridden by any other class. Hence, no sub-class here.
I know only one actual use case: generated classes
Among the use cases of generated classes, I know one: dependency inject e.g. https://github.com/google/dagger
Object Orientation is not about inheritance, it is about encapsulation. And inheritance breaks encapsulation.
Declaring a class final makes perfect sense in a lot of cases. Any object representing a “value” like a color or an amount of money could be final. They stand on their own.
If you are writing libraries, make your classes final unless you explicitly indent them to be derived. Otherwise, people may derive your classes and override methods, breaking your assumptions / invariants. This may have security implications as well.
Joshua Bloch in “Effective Java” recommends designing explicitly for inheritance or prohibiting it and he notes that designing for inheritance is not that easy.

What are the purposes of inner classes

I am reviewing the concept of inner classes in java. so far from what I've understood and applied java inner classes has a link or access to the methods and fields of its outer/ enclosing class.
My Question:
When should create or define an inner class?
are inner classes considered to be called as "Helper classes" ?
What are the indicators for you to make an inner class and what's their other purpose?
Inner classes are best for the purpose of logically grouping classes that are used in one-place. For example, if you want to create class which is used by ONLY enclosing class, then it doesn't make sense to create a separate file for that. Instead you can add it as "inner class"
As per java tutorial:
Compelling reasons for using nested classes include the following:
It is a way of logically grouping classes that are only used in one
place.
It increases encapsulation.
It can lead to more readable and maintainable code.
A classic use for an inner class is the implementation of an iterator inside a container (ArrayList, for example - look for class Itr). All the container wants to expose to the rest of the world is an Iterator. However, it has to create some concrete implementation of that iterator, possibly familiar with the internals of the container. Using an inner class hides the implementation, while keeping it close to the container's implementation. And being inner (i.e. non-static), it is bound to a specific instance of that container, which lets it access private container members.
There are a few types of inner classes - non-static nested class, local classes and anonymous classes. Each one has a somewhat different purpose, so when asking about an inner class, you should specify what kind are you talking about.
Assuming you're referring to non-static inner classes, I'd say the reason to use them is the same as using regular classes (namely abstraction and dividing code into logical units), but there's no reason to make this use of classes visible to the rest of the world. You can also make nested classes public, of course, in which case you'd make them nested instead of independent in order to express their tight relation with the outer class.
See the Java tutorial for the main reasons.
If by "helper class" you mean something for internal use only, then no, not necessarily. You might want to do something like
class Outer {
private static class Inner implements InterestingInterface {
// whatever
}
public InterestingInterface make_something_interesting() {
return new Inner();
}
}
Here, Inner is not a "helper class" in the sense that the outside world does get to see instances of it, but its implementation is entirely hidden -- the outside world only knows it gets some object that implements InterestingInterface.
As a general rule, objects should be designed for a single responsibility (Highly cohesive). In other words, any object designed well, should perform a single coherent task. This would be considered best practice for object orientated design.
Sometimes, however, a developer may design a class that requires a separate specialized class in order to work. This separate specialized class could be considered a helper class.
If the helper class is not used by any other class, then it would be considered a prime candidate as an inner class
As elicited by ncmathsadist above, an example of inner class use would be in the implementation of Event handlers.
For example, in designing a graphical user interface (GUI), a developer may have created a button that performs a particular task after the user presses it.
The button would need an event handler which listens for when that particular button is pressed.
In this case, creating the event handler for the button as an inner class would be best practice as the inner class would not be utilized anywhere else other than with the specific button within the GUI class.
One purpose of inner classes is to attach listeners. For example, suppose you have a JMenuItem. You can make it quit your app as shown in this code:
JMenuItem quitItem = new JMenuItem("Quit");
quitItem.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent e)
{
//cleanup code before exiting
System.exit(0);
}
});
You may also want a class to have access to outer class state variables which is entirely subservient to that class. For example, consider writing a simple color calculator. It might have a text area into which you type a hex code. When you hit enter, you want a JPanel to display the color. Here is a crude outline of what you might do.
public class ColorCalc extends JPanel implements Runnable
{
Color displayedColor;
JTextArea colorEnterArea;
public ColorCalc()
{
displayedColor = Color.white
colorEnterArea = new JTextArea();
}
public void run()
{
//build GUI here
}
public static void main(String[] args)
{
ColorCalc cc = new ColorCalc();
javax.swing.SwingUtilities.invokeLater(cc);
}
//subservient inner class with access to outer class state variable.
class ColorPanel extends JPanel
{
public void paintComponent(Graphics g)
{
g.setColor(displayedColor);
g.fillRect(0,0,getWidth(), getHeight());
}
}
}
This is a style question. Anything that can be done with an inner class can also be done as a as series of external classes. Inner classes are especially useful for classes that are lightweight or tightly bound to the enclosing class. For example, a comparator is frequently both these things. It needs intimate knowledge of the implementation of the class, and may only be a few lines long. It may be an ideal candidate as an internal class.
If you find that there is enough code which could be better done by class as class provides us to specify stats and
behavior with fields and methods and you don't want this class needs to be used outside of enclosing class. you should use inner class.
Here the inner class is hidden from the outside world.
Inner class can access the private member of enclosing class which provides us encapsulation.
Let me give example..
Suppose you want to set the gear to cycle and you have a business rule like there are only up to 6 gears.
So you can create Inner Class Cycle which would have a method to set the gear.
That method has some validation which are checked before setting gear.like the cycle is running...gear number is less than 6...
best example is event handling code uses inner classes(sometimes anonymous inner classes) to create events and listeners without creating separate Event Object and Event Listener classes for your event..
The inner class used for grouping classes logic, for example, if you have class B and this class used only at class A, So it is better to put class B as an inner class at class A, as this will give readability and reusability for your code.
Happy code :)
Adding from my personal notes, for future visitors:
Sources: https://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html
Lets say you have a type and its a class, called OuterClass, in a package called "com.custom.classes".
Then here is how you begin to need an inner class or static class:
Case 1:
you need to package a group of classes
but also kind of need certain global variables exposed to all these classes at that package level
you understand you can do no such things with packages but realise that you could achieve this with inheritance, where the parent class members can act as global variables that become available for all of its child class instances.
but you don't like the idea that you need to inherit the parent class and also that you need to instantiate the child class to access the global variables. Thats like asking to buy a coffee shop in order to have a coffee.
and so you realise that you can create an OuterClass with the static members and house all the classes in this OuterClass as inner class or static class as needed and lo! The OuterClass static members become available as global variables for these nested classes and you could even access them without instantiating them.
This code should explain better
public class InnerClassTester{
public static void main(String []args){
// without the need to instantiate any class
// static class without instantiation
System.out.println(OuterClass.NestedStaticClass1.incrGlobalNum()); // outputs 1
// static class instantiated
OuterClass.NestedStaticClass2 koolObj = new OuterClass.NestedStaticClass2();
// works with instantiation as well
System.out.println(koolObj.incrGlobalNum()); // outputs 2
// inner classes always need to be instantiated
// and they can only be instantiated from within an instance of outer class
// think of them as instance member of outer class and this would make sense
OuterClass.NestedInnerClass1 koolObj2 = new OuterClass().new NestedInnerClass1();
// works with inner classes as well
System.out.println(koolObj2.incrGlobalNum()); // outputs 3
}
}
class OuterClass{
// global variable thats only accessible for select classes (or nested classes)
// we also learn a purpose for private static fields
private static int privateGlobalValue = 0;
// classes to be grouped
// static class
public static class NestedStaticClass1{
// no need to instantiate this class to access/update the global value
public static int incrGlobalNum(){
return ++privateGlobalValue;
}
}
public static class NestedStaticClass2{
// instantiate and still manipulate the global value
public int incrGlobalNum(){
return ++privateGlobalValue;
}
}
// inner class
public class NestedInnerClass1{
// instantiate and still manipulate the global value
public int incrGlobalNum(){
return ++privateGlobalValue;
}
}
}
Does this remind you of closures in Javascript ? :)
Most applications of nested classes see it being applied on basis of design decisions. What that means is, every case of a nested class can be replaced with other designs.
But having said that, it is also true that we can also replace the inheritance pattern with composition pattern (and it is gaining momentum lately) although an inheritance pattern is definitely better when the dependencies between the classes is so much so that composing the dependencies entirely would be ugly.
Case 2:
you need to implement 2 interfaces, IShark and IMosquito, with the same signature, a public bite method, on the OuterClass.
but you want to display 2 different messages since a shark's bite is a tad different from that of a mosquito's.
however you know that's not possible since only one bite method can be implemented
you know you can create 2 different classes in the same package that implement either interfaces and also implement separate bite methods and have them composed in OuterClass.
but you wanted to get it done within OuterClass because it was your design decision to encapsulate the bite behaviour within it, maybe because there was a dependency on a private variable within the class.
soon you realise you can implement both the interfaces via private static inner classes and make it appear to the outside world as though it was composed.
Take a look at this code:
// no additional classes in the package
public class InterfaceTester{
public static void main(String []args){
// same class returns 2 instances - both compliant to
// either interfaces and yet different output
IShark shark = OuterClass.getSharkInstance();
System.out.println(shark.bite()); // outputs "Die fast bosedk!"
IMosquito mosquito = OuterClass.getMosquitoInstance();
System.out.println(mosquito.bite()); // outputs "Die slow bosedk!"
}
}
interface IShark{
public String bite();
}
interface IMosquito{
public String bite();
}
class OuterClass implements IShark{
// dependency of inner class on private variable
private static String dieSlow = "Die slow bosedk!";
private static String dieFast = "Die fast bosedk!";
private static OuterClass outerInst;
private static InnerClass innerInst;
// private constructor to stop regular instantiation
private OuterClass(){}
// get a shark !
public static IShark getSharkInstance(){
return outerInst != null ? outerInst : new OuterClass();
}
// get a mosquito !
public static IMosquito getMosquitoInstance(){
return innerInst != null ? innerInst : new InnerClass();
}
// an implementation of bite
public String bite(){
return dieFast;
}
// inner class that implements the second interface
private static class InnerClass implements IMosquito{
// different implementation of bite
public String bite(){
return dieSlow;
}
}
}
These kind of design decision cases are numerous and all of the answers above list several such cases. So it would not be wrong to think that this feature was introduced more as a new pattern than as a feature or functionality.
Conceptually inner classes can be used to represent types in the universe that would not exist without that parent type. In other words, with a language that allows inner classes, the types are all 'type definers'. A type can then be considered something that explicitly or implicitly defines new types.
For example, imagine we have a universe where "Food" can be applied to anything. Even itself. Food is a fundamental concept in our universe. We introduce a subclass of Food called Meat. Without that concept, there is no such thing as "Meat Eater". So we can (note 'can') define a nested type "Meat.Eater" (which could implement an IEater interface) and define animals as being a containment structure of lists of different IEaters.
Once we remove Meat from the universe, Meat Eater disappears to.
This same philosophy applies neatly to more abstract and technically useful arrangements such as Mementos in the Memento Design Pattern , a configuration object defined as a nested class, and other type-specific behaviours or structures.
It also increases encapsulation because inner classes can be declared private.
I would just consider that this is just a feature of language. I would not recommend to use it if we adopt OOD and obey the SOLID principle.

Why are interface variables static and final by default?

Why are interface variables static and final by default in Java?
From the Java interface design FAQ by Philip Shaw:
Interface variables are static because Java interfaces cannot be instantiated in their own right; the value of the variable must be assigned in a static context in which no instance exists. The final modifier ensures the value assigned to the interface variable is a true constant that cannot be re-assigned by program code.
source
public: for the accessibility across all the classes, just like the methods present in the interface
static: as interface cannot have an object, the interfaceName.variableName can be used to reference it or directly the variableName in the class implementing it.
final: to make them constants. If 2 classes implement the same interface and you give both of them the right to change the value, conflict will occur in the current value of the var, which is why only one time initialization is permitted.
Also all these modifiers are implicit for an interface, you dont really need to specify any of them.
Since interface doesn't have a direct object, the only way to access them is by using a class/interface and hence that is why if interface variable exists, it should be static otherwise it wont be accessible at all to outside world. Now since it is static, it can hold only one value and any classes that implements it can change it and hence it will be all mess.
Hence if at all there is an interface variable, it will be implicitly static, final and obviously public!!!
(This is not a philosophical answer but more of a practical one). The requirement for static modifier is obvious which has been answered by others. Basically, since the interfaces cannot be instantiated, the only way to access its fields are to make them a class field -- static.
The reason behind the interface fields automatically becoming final (constant) is to prevent different implementations accidentally changing the value of interface variable which can inadvertently affect the behavior of the other implementations. Imagine the scenario below where an interface property did not explicitly become final by Java:
public interface Actionable {
public static boolean isActionable = false;
public void performAction();
}
public NuclearAction implements Actionable {
public void performAction() {
// Code that depends on isActionable variable
if (isActionable) {
// Launch nuclear weapon!!!
}
}
}
Now, just think what would happen if another class that implements Actionable alters the state of the interface variable:
public CleanAction implements Actionable {
public void performAction() {
// Code that can alter isActionable state since it is not constant
isActionable = true;
}
}
If these classes are loaded within a single JVM by a classloader, then the behavior of NuclearAction can be affected by another class, CleanAction, when its performAction() is invoke after CleanAction's is executed (in the same thread or otherwise), which in this case can be disastrous (semantically that is).
Since we do not know how each implementation of an interface is going to use these variables, they must implicitly be final.
Because anything else is part of the implementation, and interfaces cannot contain any implementation.
public interface A{
int x=65;
}
public interface B{
int x=66;
}
public class D implements A,B {
public static void main(String[] a){
System.out.println(x); // which x?
}
}
Here is the solution.
System.out.println(A.x); // done
I think it is the one reason why interface variable are static.
Don't declare variables inside Interface.
because:
Static : as we can't have objects of interfaces so we should avoid using Object level member variables and should use class level variables i.e. static.
Final : so that we should not have ambiguous values for the variables(Diamond problem - Multiple Inheritance).
And as per the documentation interface is a contract and not an implementation.
reference: Abhishek Jain's answer on quora
static - because Interface cannot have any instance. and final - because we do not need to change it.
Interface : System requirement service.
In interface, variable are by default assign by public,static,final access modifier.
Because :
public : It happen some-times that interface might placed in some other package. So it need to access the variable from anywhere in project.
static : As such incomplete class can not create object. So in project we need to access the variable without object so we can access with the help of interface_filename.variable_name
final : Suppose one interface implements by many class and all classes try to access and update the interface variable. So it leads to inconsistent of changing data and affect every other class. So it need to declare access modifier with final.
Java does not allow abstract variables and/or constructor definitions in interfaces. Solution: Simply hang an abstract class between your interface and your implementation which only extends the abstract class like so:
public interface IMyClass {
void methodA();
String methodB();
Integer methodC();
}
public abstract class myAbstractClass implements IMyClass {
protected String varA, varB;
//Constructor
myAbstractClass(String varA, String varB) {
this.varA = varA;
this.varB = VarB;
}
//Implement (some) interface methods here or leave them for the concrete class
protected void methodA() {
//Do something
}
//Add additional methods here which must be implemented in the concrete class
protected abstract Long methodD();
//Write some completely new methods which can be used by all subclasses
protected Float methodE() {
return 42.0;
}
}
public class myConcreteClass extends myAbstractClass {
//Constructor must now be implemented!
myClass(String varA, String varB) {
super(varA, varB);
}
//All non-private variables from the abstract class are available here
//All methods not implemented in the abstract class must be implemented here
}
You can also use an abstract class without any interface if you are SURE that you don't want to implement it along with other interfaces later. Please note that you can't create an instance of an abstract class you MUST extend it first.
(The "protected" keyword means that only extended classes can access these methods and variables.)
spyro
An Interface is contract between two parties that is invariant, carved in the stone, hence final. See Design by Contract.
In Java, interface doesn't allow you to declare any instance variables. Using a variable declared in an interface as an instance variable will return a compile time error.
You can declare a constant variable, using static final which is different from an instance variable.
Interface can be implemented by any classes and what if that value got changed by one of there implementing class then there will be mislead for other implementing classes. Interface is basically a reference to combine two corelated but different entity.so for that reason the declaring variable inside the interface will implicitly be final and also static because interface can not be instantiate.
Think of a web application where you have interface defined and other classes implement it. As you cannot create an instance of interface to access the variables you need to have a static keyword. Since its static any change in the value will reflect to other instances which has implemented it. So in order to prevent it we define them as final.
Just tried in Eclipse, the variable in interface is default to be final, so you can't change it. Compared with parent class, the variables are definitely changeable. Why? From my point, variable in class is an attribute which will be inherited by children, and children can change it according to their actual need. On the contrary, interface only define behavior, not attribute. The only reason to put in variables in interface is to use them as consts which related to that interface. Though, this is not a good practice according to following excerpt:
"Placing constants in an interface was a popular technique in the early days of Java, but now many consider it a distasteful use of interfaces, since interfaces should deal with the services provided by an object, not its data. As well, the constants used by a class are typically an implementation detail, but placing them in an interface promotes them to the public API of the class."
I also tried either put static or not makes no difference at all. The code is as below:
public interface Addable {
static int count = 6;
public int add(int i);
}
public class Impl implements Addable {
#Override
public int add(int i) {
return i+count;
}
}
public class Test {
public static void main(String... args) {
Impl impl = new Impl();
System.out.println(impl.add(4));
}
}
I feel like all these answers missed the point of the OP's question.
The OP did not ask for confirmation of their statement, they wanted to know WHY their statement is the standard.
Answering the question requires a little bit of information.
First, lets talk about inheretence.
Lets assume there is a class called A with an instance variable named x.
When you create a class A, it inhereits all the properties of the Object class. Without your knowledge when you instantiate A, you are instantiating an Object object as well, and A points to it as it's parent.
Now lets say you make a class B that inherits from A.
When you create a class B, you are also creating a class A and a Object.
B has access to the variable x. that means that B.x is really just the same thing as B.A.x and Java just hides the magic of grabbing A for you.
Not lets talk about interfaces...
An interface is NOT inheretence. If B were to implmement the interface Comparable, B is not making a Comparable instance and calling it a parent. Instead, B is promising to have the things that Comparable has.
Not lets talk a little bit of theory here... An interface is a set of functions you can use to interact with something. It is not the thing itself. For example, you interface with your friends by talking to them, sharing food with them, dancing with them, being near them. You don't inheret from them though - you do not have a copy of them.
Interfaces are similar. There is only one interface and all the objects associate with it. Since the interface exists only one time as a Class (as opposed to an instance of itself) it is not possible for each object that implements the interface to have their own copy of the interface. That means there is only one instance of each variable. That means the variables are shared by all the classes that use the interface (a.k.a. static).
As for why we make them public...
Private would be useless. The functions are abstract and cannot have any code inside them to use teh private variable. It will always be unused. If the variable is marked as protected, then only an inheritor of the class will be able to use the variables. I don't think you can inhereit from interfaces. Public is the only viable option then.
The only design decision left is the 'final'. It is possible that you intend to change the shared variable between multiple instances of a class. (E.G. Maybe you have 5 players playing Monopoly and you want one board to exist so you have all the players meet the interface and a single shared Board - it might be that you want to actually make the board change based on the player functions...) [I recommend against this design]
For multithreaded applicatiosn though, if you don't make the variable static you will have a difficult time later, but I won't stop you. Do it and learn why that hurts <3
So there you go. final public static variables

Categories