I'm trying to understand how threads work, and I wrote a simple example where I want to create and start a new thread, the thread, display the numbers from 1 to 1000 in the main thread, resume the secondary thread, and display the numbers from 1 to 1000 in the secondary thread. When I leave out the Thread.wait()/Thread.notify() it behaves as expected, both threads display a few numbers at a time. When I add those functions in, for some reason the main thread's numbers are printed second instead of first. What am I doing wrong?
public class Main {
public class ExampleThread extends Thread {
public ExampleThread() {
System.out.println("ExampleThread's name is: " + this.getName());
}
#Override
public void run() {
for(int i = 1; i < 1000; i++) {
System.out.println(Thread.currentThread().getName());
System.out.println(i);
}
}
}
public static void main(String[] args) {
new Main().go();
}
public void go() {
Thread t = new ExampleThread();
t.start();
synchronized(t) {
try {
t.wait();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
for(int i = 1; i < 1000; i++) {
System.out.println(Thread.currentThread().getName());
System.out.println(i);
}
synchronized(t) {
t.notify();
}
}
}
You misunderstand how wait/notify works. wait does not block the thread on which it is called; it blocks the current thread until notify is called on the same object (so if you have threads A and B and, while in thread A, called B.wait(), this will stop thread A and not thread B - for as long as B.notify() is not called).
So, in your specific example, if you want main thread to execute first, you need to put wait() inside the secondary thread. Like this:
public class Main {
public class ExampleThread extends Thread {
public ExampleThread() {
System.out.println("ExampleThread's name is: " + this.getName());
}
#Override
public void run() {
synchronized (this) {
try {
wait();
} catch (InterruptedException e) {
}
}
for(int i = 1; i < 1000; i++) {
System.out.println(Thread.currentThread().getName());
System.out.println(i);
}
}
}
public static void main(String[] args) {
new Main().go();
}
public void go() {
Thread t = new ExampleThread();
t.start();
for(int i = 1; i < 1000; i++) {
System.out.println(Thread.currentThread().getName());
System.out.println(i);
}
synchronized(t) {
t.notify();
}
}
}
However, even this code may not work like you want. In a scenario where the main thread gets to the notify() part before the secondary thread had a chance to get to the wait() part (unlikely in your case, but still possible - you can observe it if you put Thread.sleep at the beginning of the secondary thread), the secondary thread will never be waken up. Therefore, the safest method would be something similar to this:
public class Main {
public class ExampleThread extends Thread {
public ExampleThread() {
System.out.println("ExampleThread's name is: " + this.getName());
}
#Override
public void run() {
synchronized (this) {
try {
notify();
wait();
} catch (InterruptedException e) {
}
}
for(int i = 1; i < 1000; i++) {
System.out.println(Thread.currentThread().getName());
System.out.println(i);
}
}
}
public static void main(String[] args) {
new Main().go();
}
public void go() {
Thread t = new ExampleThread();
synchronized (t) {
t.start();
try {
t.wait();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
for(int i = 1; i < 1000; i++) {
System.out.println(Thread.currentThread().getName());
System.out.println(i);
}
synchronized(t) {
t.notify();
}
}
}
In this example the output is completely deterministic. Here's what happens:
Main thread creates a new t object.
Main thread gets a lock on the t monitor.
Main thread starts the t thread.
(these can happen in any order)
Secondary thread starts, but since main thread still owns the t monitor, the secondary thread cannot proceed and must wait (because its first statement is synchronized (this), not because it happens to be the t object - all the locks, notifies and waits could as well be done on an object completely unrelated to any of the 2 threads with the same result.
Primary thread continues, gets to the t.wait() part and suspends its execution, releasing the t monitor that it synchronized on.
Secondary thread gains ownership of t monitor.
Secondary thread calls t.notify(), waking the main thread. The main thread cannot continue just yet though, since the secondary thread still holds ownership of the t monitor.
Secondary thread calls t.wait(), suspends its execution and releases the t monitor.
Primary thread can finally continue, since the t monitor is now available.
Primary thread gains ownership of the t monitor but releases it right away.
Primary thread does its number counting thing.
Primary thread again gains ownership of the t monitor.
Primary thread calls t.notify(), waking the secondary thread. The secondary thread cannot continue just yet, because the primary thread still holds the t monitor.
Primary thread releases the t monitor and terminates.
Secondary thread gains ownership of the t monitor, but releases it right away.
Secondary thread does its number counting thing and then terminates.
The entire application terminates.
As you can see, even in such a deceptively simple scenario there is a lot going on.
You are lucky that your program terminates at all.
When you call t.wait() your main threads stops and waits indefinitely on a notification.
It never gets it, but I believe is awaken by spurious wakeup when the secondary thread finishes. (Read here on what a spurious wakeup is).
ExampleThread doesn't wait() or notify(), and isn't synchronized on anything. So it will run whenever it can without any coordination with other threads.
The main thread is waiting for a notification which never comes (this notification should be sent by another thread). My guess is that when the ExampleThread dies, the main thread is woken "spuriously," and completes.
The thread that should wait for another to complete must perform the call to wait() inside a loop that checks for a condition:
class ExampleThread extends Thread {
private boolean ready = false;
synchronized void ready() {
ready = true;
notifyAll();
}
#Override
public void run() {
/* Wait to for readiness to be signaled. */
synchronized (this) {
while (!ready)
try {
wait();
} catch(InterruptedException ex) {
ex.printStackTrace();
return; /* Interruption means abort. */
}
}
/* Now do your work. */
...
Then in your main thread:
ExampleThread t = new ExampleThread();
t.start();
/* Do your work. */
...
/* Then signal the other thread. */
t.ready();
Related
This program works fine by printing alternate numbers via different threads but when all the numbers from 0-9 are printed Why does this program not stop? I have to manually stop my application.
public class EvenOddPrinter implements Runnable{
private AtomicInteger num = new AtomicInteger(0);
private Object lock = new Object();
#Override
public void run() {
synchronized (lock){
while (num.get()<10){
System.out.println(num.getAndAdd(1) + " - "+Thread.currentThread().getName());
lock.notify();
try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
}
public class Executor {
public static void main(String[] args) throws InterruptedException {
EvenOddPrinter eop = new EvenOddPrinter();
Thread t1 = new Thread(eop);
Thread t2 = new Thread(eop);
t1.start();
t2.start();
}
}
that's because in the last Thread getting stuck at wait. notifyAll will notify all waiting thread if any there and release lock.
while (num.get()<10){
// existing implementation
}
lock.notifyAll();
The second thread t2 keeps waiting on the lock in the end, and t1 doesnt do the notify() anymore because the while condition becomes false. You must put a lock.notify(); statement outside of the while loop.
As soon as the number reached 8 the first thread calls notify() and goes to wait(). Second thread then makes the number 9 and calls notify() and goes to wait(). First thread is then not able to go inside the loop as specified in the condition, therefore, it exits the synchronized and block and finishes but second thread is still waiting. There has to be a mechanism to notifyAll() as soon as one of the threads exits the synchronized block which is exactly what I did.
#Override
public void run() {
synchronized (lock){
while (num.get()<10){
System.out.println(num.getAndAdd(1) + " - "+Thread.currentThread().getName());
lock.notify();
try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
lock.notifyAll();
}
Also, lock is pointless when I am using AtomicInteger (or the other way round).
I am reading some code in OCA/OCP Java SE 7 Programmer I & II Study Guide, and I got stuck on an example:
package threads;
class Totalizer implements Runnable
{
int total = 0;
public void run(){
synchronized(this){
for(int i = 0; i < 100; i++){
total += i;
}
notifyAll();
}
}
}
class Tester extends Thread
{
Totalizer t;
public Tester(Totalizer tot){t = tot;}
public void run(){
synchronized(t){
try {
System.out.println("Waiting for calculation...");
t.wait();
} catch (InterruptedException e) {}
System.out.println(t.total);
}
}
public static void main(String[] args){
Totalizer t = new Totalizer();
new Tester(t).start();
new Tester(t).start();
new Tester(t).start();
}
}
//
When I run main(), it prints:
waiting for calculation...
waiting for calculation...
waiting for calculation...
and nothing happens, no calculation, nothing. I can't figure out what is wrong with this code.
Two points.
The most obvious one is that you never start the Totalizer runnable, so the notifyAll call is never issued. You need to have a line
new Thread(t).start();
somewhere in your main method. But even if you do that, it won't work reliably, as the wait call may be invoked after the notifyAll call. It may also print the output too early, as the wait call can wake up without a notifyAll as well.
The Javadoc for Object.wait() describes what you need to do:
synchronized (obj) {
while (<condition does not hold>)
obj.wait();
... // Perform action appropriate to condition
}
So, you can't just call Object.wait just like that, if you want to use it correctly. This is because:
You don't know if the condition was already satisfied earlier, before you started waiting
The wait call may also wake up without a notify call
In your case, you need a condition variable that you can check. For example, you can change your code like this:
class Totalizer implements Runnable
{
int total = 0;
boolean calculationComplete; // Condition to check in wait()
public void run() {
for(int i = 0; i < 100; i++) {
total += i;
}
synchronized (this) {
// Indicate condition for wait() is now true
calculationComplete = true;
notifyAll();
}
}
}
class Tester extends Thread
{
Totalizer t;
public Tester(Totalizer tot){t = tot;}
public void run(){
synchronized(t) {
System.out.println("Waiting for calculation...");
// Loop, terminate when condition is true
while (!t.calculationComplete) {
try {
t.wait();
} catch (InterruptedException e) {}
}
System.out.println(t.total);
}
}
I am trying to implement a blocking queue(only on consumer side) with ReentrantLock and conditions but am running into a state where the JVM doesn't terminate. The strange thing is that one thread gets interrupted but the other doesn't. I am sure I am making some mistake but just can't figure out what.
EDIT:
Main Question: Why does only one thread throw an interruptedexception when both the threads are blocking on condition.await
So the code below is just an example that i created. The main problem was to develop a producer-consumer implementation in which I had to create a simulation class which spawned two kinds of threads, customers and cooks, which were synchronized based on a Reentrant lock. After some operations were performed(customers adding orders and cooks performing serving those orders),I call join on customer threads to make sure that all orders have been processed and then to stop the cook threads, I called interrupt on the cook threads to terminate them. But only one thread throws interruptedexception and the second one doesn't. Why is that? since both the threads are blocking on await.
My code is as follows:
Thread class:
public class InterruptedThread implements Runnable{
private final Lock lock;
private final Condition condition;
private final Queue<Integer> orderQueue;
public InterruptedThread(Lock lock, Condition condition,Queue<Integer> orderQueue)
{
this.lock = lock;
this.condition = condition;
this.orderQueue = orderQueue;
}
#Override
public void run() {
try{
while(true)
{
this.lock.lockInterruptibly();
while(orderQueue.size() == 0 && !Thread.currentThread().isInterrupted())
{
System.out.println("Inside blocking wait" + Thread.currentThread().getName());
condition.await();
}
int i = orderQueue.poll().intValue();
System.out.println("Value read:" + i + "by thread" + Thread.currentThread().getName());
this.lock.unlock();
}
}
catch(InterruptedException ex)
{
System.out.println("Interrupted exception" + Thread.currentThread().getName());
this.condition.signalAll();
Thread.currentThread().interrupt();
}
}
}
Main class:
public class ExplicitLockCondition {
/**
* #param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic here
Queue<Integer> orderQueue = new LinkedList<>();
Lock lock = new ReentrantLock();
Condition testCondition = lock.newCondition();
Thread[] ths = new Thread[2];
for(int i=0; i<ths.length;i++)
{
ths[i] = new Thread(new InterruptedThread(lock, testCondition,orderQueue));
ths[i].start();
}
lock.lock();
orderQueue.add(1);
lock.unlock();
lock.lock();
orderQueue.add(2);
lock.unlock();
try {
Thread.currentThread().sleep(5000);
} catch (InterruptedException ex) {
Logger.getLogger(ExplicitLockCondition.class.getName()).log(Level.SEVERE, null, ex);
}
lock.lock();
orderQueue.add(-99);
lock.unlock();
for(int i=0; i<ths.length;i++)
{
ths[i].interrupt();
}
System.out.println("After loop exited!!!");
for(int i=0; i<ths.length;i++)
{
System.out.println("Interrupted thread:" + ths[i].getName() +"with interrupt flag:" + ths[0].isInterrupted());
}
for(int i=0; i<ths.length;i++)
{
try {
ths[i].join();
} catch (InterruptedException ex) {
Logger.getLogger(ExplicitLockCondition.class.getName()).log(Level.SEVERE, null, ex);
}
}
System.out.println("Program exited!!!");
}
}
You have
condition.await();
but the only place you signal it is in the catch block.
In a typical run of your application, your InterruptedThread (let's call it it1) will enter the while loop and await on the condition, putting itself in a waiting state. Your main thread will do a bunch of things and eventually interrupt it1. You'll note the javadoc of Condition#await() states
In all cases, before this method can return the current thread must
re-acquire the lock associated with this condition.
So thread it2 reacquires the lock and because it's been interrupted
If the current thread:
has its interrupted status set on entry to this method; or
is interrupted while waiting and interruption of thread suspension is supported,
then InterruptedException is thrown and the current thread's
interrupted status is cleared.
So execution leaves the while block and goes to the catch. During this time, your thread it2 still owns the lock, since nothing unlocked it. The catch block then calls
this.condition.signalAll();
which signals the condition. Thread it1 then completes normally. However, the Lock is still locked and nothing can acquire it which is why your other InterruptedThread cannot continue from within its
condition.await();
You basically have to manage locking and unlocking your Lock better.
a) you never signal the condition after you insert a value to your queue
b) your thread will leave
while(orderQueue.size() == 0 && !Thread.currentThread().isInterrupted())
if it is interrupted, and then tried to poll the value from the queue.
If there is no value there, the null will be returned and you end up with uncaught null pointer exception but the lock will never be unlock.
Allways
lock.lock()l
try {
...
} finally {
lovk.unlovk();
}
I have 2 threads, the "main" thread which starts a secondary thread to run a little process.
The "main" thread must wait for the secondary thread for a few of seconds to complete the process, after that time, the "main" thread must start again no matter what happened with the process of the secondary thread.
If the secondary process ended earlier, the "main" thread must start to work again.
How can I start a thread from another, wait for the end of execution, and restart the thread after?
I have a code here, but the ExampleRun class, must wait, for example, 10 sec and start again, no matter what happend with MyProcess
public class ExampleRun {
public static void main(String[] args) {
MyProcess t = new MyProcess();
t.start();
synchronized (t) {
try {
t.wait();
} catch (InterruptedException e) {
System.out.println("Error");
}
}
}
}
public class MyProcess extends Thread {
public void run() {
System.out.println("start");
synchronized (this) {
for (int i = 0; i < 5; i++) {
try {
System.out.println("I sleep");
sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
flag = true;
System.out.println("Wake up");
notify();
}
}
}
The simplest way to achieve what you want is to use Thread.join(timeout).
Also, do not use synchronized, wait, or notify on Thread objects. This will interfere with the Thread.join implementation. See the documentation for details.
Here's what your main program would look like:
public static void main(String[] args) {
MyProcess t = new MyProcess();
t.start();
try {
t.join(10000L);
} catch (InterruptedException ie) {
System.out.println("interrupted");
}
System.out.println("Main thread resumes");
}
Note that when the main thread resumes after the join() call, it can't tell whether the child thread completed or whether the call timed out. To test this, call t.isAlive().
Your child thread of course could do anything, but it's important for it not to use synchronized, wait, or notify on itself. For example, here's a rewrite that avoids using these calls:
class MyProcess extends Thread {
public void run() {
System.out.println("MyProcess starts");
for (int i = 0; i < 5; i++) {
try {
System.out.println("MyProcess sleeps");
sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("MyProcess finishes");
}
}
You can do this with a simple lock method:
public static void main (String[] args)
{
// create new lock object
Object lock = new Object();
// create and start thread
Thread t = new Thread(() ->
{
// try to sleep 1 sec
try { Thread.sleep(1000); }
catch (InterruptedException e) { /* do something */ }
// notify main thread
synchronized (lock) { lock.notifyAll(); }
};
t.start();
// wait for second thread to finish
synchronized (lock)
{
while (t.isAlive())
lock.wait();
}
// second thread finished
System.out.println("second thread finished :)");
}
You could call Thread.join() on the Thread you want to wait for, per the Javadoc,
Waits for this thread to die.
Alternatively, you could use a Future and simply call get(), from its' Javadoc,
Waits if necessary for the computation to complete, and then retrieves its result.
Why doesn't thread wait for notify()? The thread starts and then goes to the waiting pool, but it proceeds to execute after that moment.
public class JavaApplication2 {
public static void main(String [] args) {
ThreadB b = new ThreadB();
synchronized(b) {
b.start();
try {
System.out.println("1");
b.wait();
} catch (InterruptedException e) {}
System.out.println("Total is: " + b.total);
}
}
}
class ThreadB extends Thread {
int total;
#Override
public void run() {
synchronized(this) {
total += 1;
//notify();
}
}
}
You are synchronizing on the thread object itself, which is wrong usage. What happens is that the dying thread-of-execution always calls notify on its Thread object: Thread.join relies on this. Therefore it is clear why you get the same behavior with and without your own notify in there.
Solution: use a separate object for thread coordination; this is the standard practice.
The method notifyAll() is invoked for the Thread object of the terminating thread. This fact is strangely documented in the description of the Thread.join, with the following sentence:
As a thread terminates the this.notifyAll method is invoked. It is recommended that applications not use wait, notify, or notifyAll on Thread instances.
Thus, if you don't explicitly read the description of join, which you don't necessarily have to, you don't get to know the reason for the strange behavior.
You cannot depend on not returning from wait until a notify: "interrupts and spurious wakeups are possible". In general, you should wrap a wait call in a loop while the thread should go on waiting.
If you try your code synchronizing on any object other that ThreadB you will find it never terminates. This is because there is a hidden call to notify.
Although I am not aware of anywhere that this is specified, Thread notifies itself when it ends. This is implicit in the way the join method is implemented. This is the code for join:
public final synchronized void join(long millis)
throws InterruptedException {
long base = System.currentTimeMillis();
long now = 0;
if (millis < 0) {
throw new IllegalArgumentException("timeout value is negative");
}
if (millis == 0) {
while (isAlive()) {
wait(0);
}
} else {
while (isAlive()) {
long delay = millis - now;
if (delay <= 0) {
break;
}
wait(delay);
now = System.currentTimeMillis() - base;
}
}
}
(From the JDK7 source code)
As you can see, the calls to wait only make sense if somewhere there is a call to notify that is called after the thread ends. The same call to notify is what allows your program to terminate.
You have nested synchronized {} constructs in the two places. These constructs seem doing something weird: the thread does not react into notify at all and only resumes when ThreadB (b) terminates. Remove this:
public class JavaApplication2 {
public static void main(String[] args) {
ThreadB b = new ThreadB();
b.start();
try {
System.out.println(" ### Waiting for notify");
synchronized (b) {
b.wait();
}
System.out.println(" ### Notified");
} catch (InterruptedException e) {
}
System.out.println("### Total is: " + b.total);
}
}
class ThreadB extends Thread {
int total;
#Override
public void run() {
total += 1;
System.out.println(" *** Ready to notify in 5 secs");
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
}
System.out.println(" *** Notification sent");
synchronized (this) {
notify();
}
System.out.println(" *** 5 sec post notification");
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
}
System.out.println(" *** ThreadB exits");
}
}
The code above probably works correctly: with notify() present the main thread resumes after 5 seconds and before we see the message that ThreadB terminates. With notify() commented out the main thread resumes after 10 seconds and after the message about the termination of the ThreadB because notify() is called anywhay from the other code. Marko Topolnik explains why and from where this "behind the scene" notify() call comes from.
I was doing the same testing on the wait/notify opertaions while reading OCP SE 7, good catch. I think we should let the authoer to explain.