How should I use AsynchronousServerSocketChannel for accepting connections? - java

I would like to write an asynchronous server using Java 7 and NIO 2.
But how should I use AsynchronousServerSocketChannel?
E.g. if I start with:
final AsynchronousServerSocketChannel server =
AsynchronousServerSocketChannel.open().bind(
new InetSocketAddress(port));
Then when I do server.accept(), the program terminates because that call is asynchronous. And if I put that code in an infinite loop, an AcceptPendingException is thrown.
Any suggestions on how to write a simple asynchronous server using AsynchronousServerSocketChannel?
Here is my full example (similar to the example in the JavaDoc):
import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.channels.AsynchronousServerSocketChannel;
import java.nio.channels.AsynchronousSocketChannel;
import java.nio.channels.CompletionHandler;
public class AsyncServer {
public static void main(String[] args) {
int port = 8060;
try {
final AsynchronousServerSocketChannel server =
AsynchronousServerSocketChannel.open().bind(
new InetSocketAddress(port));
System.out.println("Server listening on " + port);
server.accept("Client connection",
new CompletionHandler<AsynchronousSocketChannel, Object>() {
public void completed(AsynchronousSocketChannel ch, Object att) {
System.out.println("Accepted a connection");
// accept the next connection
server.accept("Client connection", this);
// handle this connection
//TODO handle(ch);
}
public void failed(Throwable exc, Object att) {
System.out.println("Failed to accept connection");
}
});
} catch (IOException e) {
e.printStackTrace();
}
}
}

You are on the right track, calling accept() from the completed callback in order to accept more connections should work.
A simple (but ugly) way to prevent the thread from terminating is simply to loop until the thread is interrupted.
// yes, sleep() is evil, but sometimes I don't care
while (true) {
Thread.sleep(1000);
}
A cleaner way is to use AsynchronousChannelGroup. For instance:
AsynchronousChannelGroup group = AsynchronousChannelGroup.withThreadPool(Executors
.newSingleThreadExecutor());
AsynchronousServerSocketChannel server = AsynchronousServerSocketChannel.open(group).bind(
new InetSocketAddress(port));
// (insert server.accept() logic here)
// wait until group.shutdown()/shutdownNow(), or the thread is interrupted:
group.awaitTermination(Long.MAX_VALUE, TimeUnit.SECONDS);
You can tune how threads are handled, see the AsynchronousChannelGroup API docs for more information.

Using asynchronous accept is useful if you have something else to do in the same thread. In you case, you are not doing something else so I would use
while(true) {
AsynchronousSocketChannel socket = server.accept().get();
System.out.println("Accepted " + socket);
socket.close();
}

Another alternative is to have your main method wait on a signal before returning. Then if you have some kind of external shutdown command, you just notify the signal and the main thread shuts down.
private static final Object shutdownSignal = new Object();
public static void main(String[] args) {
...
synchronized (shutdownSignal) {
try {
shutdownSignal.wait();
}
catch (InterruptedException e) {
// handle it!
}
}
}

Use count down latch like the following example
final AsynchronousServerSocketChannel serverChannel = AsynchronousServerSocketChannel.open();
InetSocketAddress address = new InetSocketAddress(port);
serverChannel.bind(address);
final CountDownLatch latch = new CountDownLatch(1);
serverChannel.accept(null, new CompletionHandler<AsynchronousSocketChannel, Object>() {
#Override
public void completed(final AsynchronousSocketChannel channel, Object attachment) {
serverChannel.accept(null, this);
}
});
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
Thread.currentThread().interrupt();
}

Related

Stop a thread which has a while (true) [duplicate]

In my main thread I have a while(listening) loop which calls accept() on my ServerSocket object, then starts a new client thread and adds it to a Collection when a new client is accepted.
I also have an Admin thread which I want to use to issue commands, like 'exit', which will cause all the client threads to be shut down, shut itself down, and shut down the main thread, by turning listening to false.
However, the accept() call in the while(listening) loop blocks, and there doesn't seem to be any way to interrupt it, so the while condition cannot be checked again and the program cannot exit!
Is there a better way to do this? Or some way to interrupt the blocking method?
You can call close() from another thread, and the accept() call will throw a SocketException.
Set timeout on accept(), then the call will timeout the blocking after specified time:
http://docs.oracle.com/javase/7/docs/api/java/net/SocketOptions.html#SO_TIMEOUT
Set a timeout on blocking Socket operations:
ServerSocket.accept();
SocketInputStream.read();
DatagramSocket.receive();
The option must be set prior to entering a blocking operation to take effect. If the timeout expires and the operation would continue to block, java.io.InterruptedIOException is raised. The Socket is not closed in this case.
Is calling close() on the ServerSocket an option?
http://java.sun.com/j2se/6/docs/api/java/net/ServerSocket.html#close%28%29
Closes this socket. Any thread currently blocked in accept() will throw a SocketException.
You can just create "void" socket for break serversocket.accept()
Server side
private static final byte END_WAITING = 66;
private static final byte CONNECT_REQUEST = 1;
while (true) {
Socket clientSock = serverSocket.accept();
int code = clientSock.getInputStream().read();
if (code == END_WAITING
/*&& clientSock.getInetAddress().getHostAddress().equals(myIp)*/) {
// End waiting clients code detected
break;
} else if (code == CONNECT_REQUEST) { // other action
// ...
}
}
Method for break server cycle
void acceptClients() {
try {
Socket s = new Socket(myIp, PORT);
s.getOutputStream().write(END_WAITING);
s.getOutputStream().flush();
s.close();
} catch (IOException e) {
}
}
The reason ServerSocket.close() throws an exception
is because you have an outputstream or an inputstream
attached to that socket.
You can avoid this exception safely by first closing the input and output streams.
Then try closing the ServerSocket.
Here is an example:
void closeServer() throws IOException {
try {
if (outputstream != null)
outputstream.close();
if (inputstream != null)
inputstream.close();
} catch (IOException e1) {
e1.printStackTrace();
}
if (!serversock.isClosed())
serversock.close();
}
}
You can call this method to close any socket from anywhere without getting an exception.
Use serverSocket.setSoTimeout(timeoutInMillis).
OK, I got this working in a way that addresses the OP's question more directly.
Keep reading past the short answer for a Thread example of how I use this.
Short answer:
ServerSocket myServer;
Socket clientSocket;
try {
myServer = new ServerSocket(port)
myServer.setSoTimeout(2000);
//YOU MUST DO THIS ANYTIME TO ASSIGN new ServerSocket() to myServer‼!
clientSocket = myServer.accept();
//In this case, after 2 seconds the below interruption will be thrown
}
catch (java.io.InterruptedIOException e) {
/* This is where you handle the timeout. THIS WILL NOT stop
the running of your code unless you issue a break; so you
can do whatever you need to do here to handle whatever you
want to happen when the timeout occurs.
*/
}
Real world example:
In this example, I have a ServerSocket waiting for a connection inside a Thread. When I close the app, I want to shut down the thread (more specifically, the socket) in a clean manner before I let the app close, so I use the .setSoTimeout() on the ServerSocket then I use the interrupt that is thrown after the timeout to check and see if the parent is trying to shut down the thread. If so, then I set close the socket, then set a flag indicating that the thread is done, then I break out of the Threads loop which returns a null.
package MyServer;
import javafx.concurrent.Task;
import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.net.SocketException;
import javafx.concurrent.Task;
import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.net.SocketException;
public class Server {
public Server (int port) {this.port = port;}
private boolean threadDone = false;
private boolean threadInterrupted = false;
private boolean threadRunning = false;
private ServerSocket myServer = null;
private Socket clientSocket = null;
private Thread serverThread = null;;
private int port;
private static final int SO_TIMEOUT = 5000; //5 seconds
public void startServer() {
if (!threadRunning) {
serverThread = new Thread(thisServerTask);
serverThread.setDaemon(true);
serverThread.start();
}
}
public void stopServer() {
if (threadRunning) {
threadInterrupted = true;
while (!threadDone) {
//We are just waiting for the timeout to exception happen
}
if (threadDone) {threadRunning = false;}
}
}
public boolean isRunning() {return threadRunning;}
private Task<Void> thisServerTask = new Task <Void>() {
#Override public Void call() throws InterruptedException {
threadRunning = true;
try {
myServer = new ServerSocket(port);
myServer.setSoTimeout(SO_TIMEOUT);
clientSocket = new Socket();
} catch (IOException e) {
e.printStackTrace();
}
while(true) {
try {
clientSocket = myServer.accept();
}
catch (java.io.InterruptedIOException e) {
if (threadInterrupted) {
try { clientSocket.close(); } //This is the clean exit I'm after.
catch (IOException e1) { e1.printStackTrace(); }
threadDone = true;
break;
}
} catch (SocketException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
return null;
}
};
}
Then, in my Controller class ... (I will only show relevant code, massage it into your own code as needed)
public class Controller {
Server server = null;
private static final int port = 10000;
private void stopTheServer() {
server.stopServer();
while (server.isRunning() {
//We just wait for the server service to stop.
}
}
#FXML private void initialize() {
Platform.runLater(()-> {
server = new Server(port);
server.startServer();
Stage stage = (Stage) serverStatusLabel.getScene().getWindow();
stage.setOnCloseRequest(event->stopTheServer());
});
}
}
I hope this helps someone down the road.
Another thing you can try which is cleaner, is to check a flag in the accept loop, and then when your admin thread wants to kill the thread blocking on the accept, set the flag (make it thread safe) and then make a client socket connection to the listening socket.
The accept will stop blocking and return the new socket.
You can work out some simple protocol thing telling the listening thread to exit the thread cleanly.
And then close the socket on the client side.
No exceptions, much cleaner.
You can simply pass the timeout limit (milli seconds) as a parameter while calling accept function.
eg serverSocket.accept(1000);
automatically close the request after 1 sec

How to stop server in Client Server multithreading

I am implementing a multi-threaded client-server application in java. I want to implement JDBC in this program and I want my server to retrieve data from the database whenever it is started. I will store that data in my collection instances, perform manipulations on data and when server completes execution, I need to store the data back to the database. The problem is that the server is in an infinite loop waiting for clients and I am not able to figure out how to make the server stop.
This is my server program:
import java.io.*;
import java.text.*;
import java.util.*;
import java.net.*;
public class Server
{
public static void main(String[] args) throws IOException
{
// server is listening on port 5056
ServerSocket ss = new ServerSocket(5056);
// running infinite loop for getting
// client request
while (true)
{
Socket s = null;
try {
// socket object to receive incoming client requests
s = ss.accept();
System.out.println("A new client is connected : " + s);
// obtaining input and out streams
DataInputStream dis = new DataInputStream(s.getInputStream());
DataOutputStream dos = new DataOutputStream(s.getOutputStream());
System.out.println("Assigning new thread for this client");
// create a new thread object
Thread t = new ClientHandler(s, dis, dos);
// Invoking the start() method
t.start();
}
catch (Exception e) {
s.close();
e.printStackTrace();
}
}
}
}
// ClientHandler class
class ClientHandler extends Thread
{
DateFormat fordate = new SimpleDateFormat("yyyy/MM/dd");
DateFormat fortime = new SimpleDateFormat("hh:mm:ss");
final DataInputStream dis;
final DataOutputStream dos;
final Socket s;
// Constructor
public ClientHandler(Socket s, DataInputStream dis, DataOutputStream dos)
{
this.s = s;
this.dis = dis;
this.dos = dos;
}
#Override
public void run()
{
String received;
String toreturn;
while (true) {
try {
// Ask user what he wants
dos.writeUTF("What do you want?[Date | Time]..\n"+
"Type Exit to terminate connection.");
// receive the answer from client
received = dis.readUTF();
if(received.equals("Exit"))
{
System.out.println("Client " + this.s + " sends exit...");
System.out.println("Closing this connection.");
this.s.close();
System.out.println("Connection closed");
break;
}
// creating Date object
Date date = new Date();
// write on output stream based on the
// answer from the client
switch (received) {
case "Date" :
toreturn = fordate.format(date);
dos.writeUTF(toreturn);
break;
case "Time" :
toreturn = fortime.format(date);
dos.writeUTF(toreturn);
break;
default:
dos.writeUTF("Invalid input");
break;
}
}
catch (IOException e) {
e.printStackTrace();
}
}
try
{
// closing resources
this.dis.close();
this.dos.close();
}
catch(IOException e){
e.printStackTrace();
}
}
}
Here is my client program:
import java.io.*;
import java.net.*;
import java.util.Scanner;
// Client class
public class Client
{
public static void main(String[] args) throws IOException
{
try
{
Scanner scn = new Scanner(System.in);
// getting localhost ip
InetAddress ip = InetAddress.getByName("localhost");
// establish the connection with server port 5056
Socket s = new Socket(ip, 5056);
// obtaining input and out streams
DataInputStream dis = new DataInputStream(s.getInputStream());
DataOutputStream dos = new DataOutputStream(s.getOutputStream());
// the following loop performs the exchange of
// information between client and client handler
while (true)
{
System.out.println(dis.readUTF());
String tosend = scn.nextLine();
dos.writeUTF(tosend);
// If client sends exit,close this connection
// and then break from the while loop
if(tosend.equals("Exit"))
{
System.out.println("Closing this connection : " + s);
s.close();
System.out.println("Connection closed");
break;
}
// printing date or time as requested by client
String received = dis.readUTF();
System.out.println(received);
}
// closing resources
scn.close();
dis.close();
dos.close();
}
catch(Exception e){
e.printStackTrace();
}
}
}
Overview
Great question! To reiterate what was stated in the above comments, you are looking for a server-side shutdown. There are some way of handling this situation, and I can explain it with a brief example.
ExecutorServer
I will run through a modified example based off this example. Below find the server implementation.
class NetworkService implements Runnable {
private final ServerSocket serverSocket;
private final ExecutorService pool;
private final AtomicBoolean shouldExit;
public NetworkService(int port, int poolSize) throws IOException {
serverSocket = new ServerSocket(port);
pool = Executors.newFixedThreadPool(poolSize);
shouldExit = new AtomicBoolean(false); // Thread-safe boolean
}
public void run() { // run the service
try {
// While we should not exit
while(!shouldExit.get()) {
try {
pool.execute(new ClientHandler(serverSocket.accept()));
} catch (SocketException e) {
if(shouldExit.get()) break; // Poison pill has been delivered, lets stop
// Error handling
}
}
} catch (IOException ex) {
pool.shutdown();
}
// Clean up the thread pool
shutdownAndAwaitTermination();
}
}
class ClientHandler implements Runnable {
private final Socket socket;
ClientHandler (Socket socket) { this.socket = socket; }
public void run() {
...
}
...
}
Here you will modify your current Server code to intimidate this structure. You have a similar make up currently but here we have added ExecutorService.
An Executor that provides methods to manage termination and methods that can produce a Future for tracking progress of one or more asynchronous tasks.
By dispatching your ClientHandler to an ExecutorService, you are utilizing a ThreadPool. Although this comes with plenty of benefits, the most significant ones are that you have more control over your multi-threaded service, the ThreadPool will manage thread utilization, and the application efficiency will increase tremendously.
Below is how you would attempt to shutdown and terminate all remaining threads:
void shutdownAndAwaitTermination(ExecutorService pool) {
pool.shutdown(); // Disable new tasks from being submitted
try {
// Wait a while for existing tasks to terminate
if (!pool.awaitTermination(60, TimeUnit.SECONDS)) {
pool.shutdownNow(); // Cancel currently executing tasks
// Wait a while for tasks to respond to being cancelled
if (!pool.awaitTermination(60, TimeUnit.SECONDS))
System.err.println("Pool did not terminate");
}
} catch (InterruptedException ie) {
// (Re-)Cancel if current thread also interrupted
pool.shutdownNow();
// Preserve interrupt status
Thread.currentThread().interrupt();
}
}
Now, the question remains how do we shutdown the server? The above code shows a improved structure, but still have the issue of blocking on a serverSocket.accept()!
Solution
There are two ideas that come to mind when thinking of this scenario; a CLI or a GUI. Both have the same semantics, and the decision is ultimately up to you. For purposes of explaining, I will refer to a CLI approach.
Poison Pill
If you implement a new Thread() that handled all incoming commands from the CLI, this thread would act as a poison pill. The idea is to deliver a poison pill to the target such that can wake up/execute and die. The thread will change the shouldExit atomic boolean to true and create a new Socket(serverSocket.getInetAddress(), serverSocket.getLocalPort()).close(); to connect to the ServerSocket and immediately close it. In the above code, the application will no longer be blocking on the serverSocket.accept(). Instead, it will enter the try catch for SocketExceptions and test if a poison pill was utilized; If it was then lets clean up, if not lets error handle.
Timeout
You could also set a timeout on the ServerSocket such that it will throw an exception each time it cannot get a connection in that time interval with myServer.setSoTimeout(2000);. This will throw an InterruptedIOException and can be handled similarly to the poison pill where the flag is changed via a CLI command and it checks if it should exit in the catch block. If it should exit, lets clean up, if not lets error handle.
You can use pattern flag with volatile boolean variable, and you should place it in 'while' - when processing would be finished, turn it to false and the server would stop.
Another way - use thread pools and wait for them to finish in the main thread of your server.

Is there a timeout case that allows for code a block of code to be terminated after a specific amount of time? [duplicate]

In my main thread I have a while(listening) loop which calls accept() on my ServerSocket object, then starts a new client thread and adds it to a Collection when a new client is accepted.
I also have an Admin thread which I want to use to issue commands, like 'exit', which will cause all the client threads to be shut down, shut itself down, and shut down the main thread, by turning listening to false.
However, the accept() call in the while(listening) loop blocks, and there doesn't seem to be any way to interrupt it, so the while condition cannot be checked again and the program cannot exit!
Is there a better way to do this? Or some way to interrupt the blocking method?
You can call close() from another thread, and the accept() call will throw a SocketException.
Set timeout on accept(), then the call will timeout the blocking after specified time:
http://docs.oracle.com/javase/7/docs/api/java/net/SocketOptions.html#SO_TIMEOUT
Set a timeout on blocking Socket operations:
ServerSocket.accept();
SocketInputStream.read();
DatagramSocket.receive();
The option must be set prior to entering a blocking operation to take effect. If the timeout expires and the operation would continue to block, java.io.InterruptedIOException is raised. The Socket is not closed in this case.
Is calling close() on the ServerSocket an option?
http://java.sun.com/j2se/6/docs/api/java/net/ServerSocket.html#close%28%29
Closes this socket. Any thread currently blocked in accept() will throw a SocketException.
You can just create "void" socket for break serversocket.accept()
Server side
private static final byte END_WAITING = 66;
private static final byte CONNECT_REQUEST = 1;
while (true) {
Socket clientSock = serverSocket.accept();
int code = clientSock.getInputStream().read();
if (code == END_WAITING
/*&& clientSock.getInetAddress().getHostAddress().equals(myIp)*/) {
// End waiting clients code detected
break;
} else if (code == CONNECT_REQUEST) { // other action
// ...
}
}
Method for break server cycle
void acceptClients() {
try {
Socket s = new Socket(myIp, PORT);
s.getOutputStream().write(END_WAITING);
s.getOutputStream().flush();
s.close();
} catch (IOException e) {
}
}
The reason ServerSocket.close() throws an exception
is because you have an outputstream or an inputstream
attached to that socket.
You can avoid this exception safely by first closing the input and output streams.
Then try closing the ServerSocket.
Here is an example:
void closeServer() throws IOException {
try {
if (outputstream != null)
outputstream.close();
if (inputstream != null)
inputstream.close();
} catch (IOException e1) {
e1.printStackTrace();
}
if (!serversock.isClosed())
serversock.close();
}
}
You can call this method to close any socket from anywhere without getting an exception.
Use serverSocket.setSoTimeout(timeoutInMillis).
OK, I got this working in a way that addresses the OP's question more directly.
Keep reading past the short answer for a Thread example of how I use this.
Short answer:
ServerSocket myServer;
Socket clientSocket;
try {
myServer = new ServerSocket(port)
myServer.setSoTimeout(2000);
//YOU MUST DO THIS ANYTIME TO ASSIGN new ServerSocket() to myServer‼!
clientSocket = myServer.accept();
//In this case, after 2 seconds the below interruption will be thrown
}
catch (java.io.InterruptedIOException e) {
/* This is where you handle the timeout. THIS WILL NOT stop
the running of your code unless you issue a break; so you
can do whatever you need to do here to handle whatever you
want to happen when the timeout occurs.
*/
}
Real world example:
In this example, I have a ServerSocket waiting for a connection inside a Thread. When I close the app, I want to shut down the thread (more specifically, the socket) in a clean manner before I let the app close, so I use the .setSoTimeout() on the ServerSocket then I use the interrupt that is thrown after the timeout to check and see if the parent is trying to shut down the thread. If so, then I set close the socket, then set a flag indicating that the thread is done, then I break out of the Threads loop which returns a null.
package MyServer;
import javafx.concurrent.Task;
import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.net.SocketException;
import javafx.concurrent.Task;
import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.net.SocketException;
public class Server {
public Server (int port) {this.port = port;}
private boolean threadDone = false;
private boolean threadInterrupted = false;
private boolean threadRunning = false;
private ServerSocket myServer = null;
private Socket clientSocket = null;
private Thread serverThread = null;;
private int port;
private static final int SO_TIMEOUT = 5000; //5 seconds
public void startServer() {
if (!threadRunning) {
serverThread = new Thread(thisServerTask);
serverThread.setDaemon(true);
serverThread.start();
}
}
public void stopServer() {
if (threadRunning) {
threadInterrupted = true;
while (!threadDone) {
//We are just waiting for the timeout to exception happen
}
if (threadDone) {threadRunning = false;}
}
}
public boolean isRunning() {return threadRunning;}
private Task<Void> thisServerTask = new Task <Void>() {
#Override public Void call() throws InterruptedException {
threadRunning = true;
try {
myServer = new ServerSocket(port);
myServer.setSoTimeout(SO_TIMEOUT);
clientSocket = new Socket();
} catch (IOException e) {
e.printStackTrace();
}
while(true) {
try {
clientSocket = myServer.accept();
}
catch (java.io.InterruptedIOException e) {
if (threadInterrupted) {
try { clientSocket.close(); } //This is the clean exit I'm after.
catch (IOException e1) { e1.printStackTrace(); }
threadDone = true;
break;
}
} catch (SocketException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
return null;
}
};
}
Then, in my Controller class ... (I will only show relevant code, massage it into your own code as needed)
public class Controller {
Server server = null;
private static final int port = 10000;
private void stopTheServer() {
server.stopServer();
while (server.isRunning() {
//We just wait for the server service to stop.
}
}
#FXML private void initialize() {
Platform.runLater(()-> {
server = new Server(port);
server.startServer();
Stage stage = (Stage) serverStatusLabel.getScene().getWindow();
stage.setOnCloseRequest(event->stopTheServer());
});
}
}
I hope this helps someone down the road.
Another thing you can try which is cleaner, is to check a flag in the accept loop, and then when your admin thread wants to kill the thread blocking on the accept, set the flag (make it thread safe) and then make a client socket connection to the listening socket.
The accept will stop blocking and return the new socket.
You can work out some simple protocol thing telling the listening thread to exit the thread cleanly.
And then close the socket on the client side.
No exceptions, much cleaner.
You can simply pass the timeout limit (milli seconds) as a parameter while calling accept function.
eg serverSocket.accept(1000);
automatically close the request after 1 sec

server handling many clients java

guys! i wrote simple server client (udp) application. Now i am trying to make server that accepts many clients. As, i understood, i need to create functions, that accepts and handle clients, but i am confused about apps structure. Can u check if i have right skeleton for my app? Mayb u can give me some hint or example. All advice appreciated! :)
class MultiServer {
private DatagramSocket serversocket;
public MultiServer() {
try {
this.serversocket = new DatagramSocket(6789);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public void start() throws IOException {
while(true) {
DatagramSocket serversock = serversocket.accept();
new Thread(new ClientHandler(serversock)).start();
}
}
public static void main(String[] args) {
Server1 server = new Server1();
try {
server.start();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
class ClientHandler implements Runnable {
private final DatagramSocket clientsocket;
ClientHandler(DatagramSocket sock) {
this.clientsocket = sock;
}
#Override
public void run() {
//receive packet, send msg, get ip, get portnumber ?
}
}
}
So you want your server to be able to operate with multiple requests at the same time? Good, it's how most web-servers work. You have to understand the basic concepts of multi-threading and concurrency.
A simple server can only handle ONE thing at a time. What happens if another request is received while the server is dealing with something else? Nothing, so the application isn't very efficient and not scalable at all.
If you haven't used multiple threads in your applications yet and don't know much about concurrency, it's a great time to have a go, read the Oracle Concurrency Lesson, or find a tutorial online, there are plenty.
Now, once (or if) you know how threading works make sure you break down your functions as much as possible and see what functions can happen at the same time. An example of a Web Server that i can think of is this:
A separate thread to listen on the port for requests. Once a request is received, place it in the 'request pool' and queue it to be processed
A separate thread (or multiple threads/thread pool) that process the request
Your structure looks like you have both receive and process in the same Runnable. Anyway, this is just an idea, you'll have to see what's more applicable to your application. Also, have a look at the Concurrency tools that newer Java versions provide, Java 6 and 7 provide a lot of tools you can use that are very effective (but also quite hard to understand and use in my opinion).
Good luck!
You are looking for a Threadpooled Server. The way you started is good. Now you simply implement a Java execution Service to Handle the requests. The threadpool has a fixed of thread. It does take your requests and put those in a queue and if a request is done it takes the next request. So you normaly dont lose any requests.
Here is a small example i made:
public class PoolServer implements Runnable {
private static final int DEFAULT_PORT = 8080;
private static final String CONFIG = "config.xml";
protected ServerSocket serverSocket = null;
protected boolean isStopped = false;
protected Thread runningThread = null;
protected ExecutorService threadPool = Executors.newFixedThreadPool(100);
protected int serverPort;
public PoolServer() {
// getting the port from the XML
this.serverPort = getPortFromXML();
}
public void run() {
synchronized (this) {
this.runningThread = Thread.currentThread();
}
openServerSocket();
// accepting loop
while (!isStopped()) {
Socket clientSocket = null;
try {
// accept the client
clientSocket = this.serverSocket.accept();
clientSocket.setSoTimeout(2000);
} catch (IOException e) {
if (isStopped()) {
return;
}
throw new RuntimeException("Error accepting client connection",
e);
}
this.threadPool.execute(new ThreadHandler(clientSocket));
}
// loop end
// server stopped shut down the ThreadPool
this.threadPool.shutdown();
}
private synchronized boolean isStopped() {
return this.isStopped;
}
public synchronized void stop() {
this.isStopped = true;
try {
this.serverSocket.close();
} catch (IOException e) {
throw new RuntimeException("Error closing server", e);
}
}
private void openServerSocket() {
try {
this.serverSocket = new ServerSocket(this.serverPort);
} catch (IOException e) {
throw new RuntimeException("Cannot open port " + this.serverPort, e);
}
}
At this point this.threadPool.execute(new ThreadHandler(clientSocket)); i do execute the request if a thread is free. Else it get into the queue of the Threadpool.
You can even change it from a Fixed to some other Threadpools! Just take a look at the Executors and take what you need. Executors
Hope this helps!

Keeping A Constant Connection With A Socket

I am trying to keep a connection open for a multithreaded server program. When I hit a button, I want it to send a test message to all clients that are connected.
public void run() {
try {
Scanner in = new Scanner(socket.getInputStream());
PrintWriter out = new PrintWriter(socket.getOutputStream());
readUpdate(out, in);
while(true){sendUpdate(out);}
} catch (Exception e) {
e.printStackTrace();
}
}
Uses way to much CPU.
This is my sendUpdate method.
private void sendUpdate(final PrintWriter out) {
new Thread(new Runnable() {
public void run() {
if(Server.send) {
try {
if (Server.command != "idle") {
System.out.println("Sending");
out.println("!msg#" + Server.command);
out.flush();
Server.send = false;
Thread.sleep(100);
}
} catch (Exception ex) {
}
}
}
}).start();
}
If somebody can help me keep the connection open, and ready to send data, I would appreciate it.
If your server can initiate messages and so can your client, you probably want a separate thread reading and writing. One thread makes sense for request-response style communication, where you can block on the next client request, do some server-side processing, respond to the client, and then block again.
But if you need to block on two separate conditions (receiving a message from the client and you clicking the button on the server) then you should have two separate threads. Otherwise, you will find yourself needing to repeatedly wake your thread up to check if either of the conditions are true.
So create two threads, and give one your Scanner (that does the readUpdate logic) and the other your PrintWriter. This is what your output handler could look like:
public class WriteHandler implements Runnable {
private final PrintWriter out;
private final BlockingQueue<String> messageQueue = new LinkedBlockingQueue<String>();
//initialize the above in a constructor;
public void run() {
while(true) {
String nextMessageToWrite = messageQueue.poll();
out.println(nextMessageToWrite);
}
}
public void send(String message) {
messageQueue.add(message);
}
}
This uses a blocking queue, which is a much better concurrency mechanism than a check-sleep loop. Then when the button is clicked, you can just have something like this:
public void actionPerformed() {
for ( WriteHandler handler : handlers ) {
handler.send("PING!");
}
}

Categories