Euler paths DFS implementation - java

I'm implementing an algorithm to find all the euler paths in a graph. I'm basing myself, to create the dfs, in the code found here: Find all possible Euler cycles
Here is my current code:
public class Graph {
private int numVertex;
private int numEdges;
private boolean[][] adj;
public Graph(int numVertex, int numEdges) {
this.numVertex = numVertex;
this.numEdges = numEdges;
this.adj = new boolean[numVertex+1][numVertex+1];
}
public void addEdge(int start, int end){
adj[start][end] = true;
adj[end][start] = true;
}
public Integer DFS(Graph G, int startVertex){
int i=0;
pilha.push(startVertex);
for(i=0; i<G.numVertex; i++){
if(G.adj[i][startVertex] != false){
System.out.println("i: " + i);
G.adj[i][startVertex] = false;
G.adj[startVertex][i] = false;
DFS(G, i);
G.adj[i][startVertex] = true;
G.adj[startVertex][i] = true;
}
}
return -1;
}
Stack<Integer> pilha = new Stack();
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int numVertices = input.nextInt();
int numLinks = input.nextInt();
int startNode = input.nextInt();
Graph g = new Graph(numVertices, numLinks);
for(int i = 0; i<numLinks; i++){
g.addEdge(input.nextInt(),input.nextInt());
}
}
}
Unfortunately i don't get the right results and i can't seem to figure out why. I've tried a lot of thing as storing the results from the dfs in a list and print them, but still i got no paths.
any idea on how can i modify my code so i start getting the euler paths?

What do you expect the result from your program to be? You are pushing the nodes to a temporary stack(pilha). You need to keep that stack because it will in fact determine the order in which you should visit the nodes. Also the DFS method is void but somehow you add the result from its invocation in the list res. Does this code even run successfully?

Related

How to insert an error tapping in a graph and how to make a graph using edges and vertices

Can you please help me to put an error tarpping in my code. I have been doing it since yesterday but I think my braincell is already exhausted. Please send help po. And also can we print a graph in blueJ? how to print the graph? kinds of error trapping (i, i) = (0,0) same source destination, not allowed (i, j) = (i, j) existing edge, not allowed (i, j) = (j, i) existing edge, not allowed n (level of vertex) > n = not allowed
*
import java.util.Scanner;
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class AdjMatrixGraph{
List<List<Integer>> graph;
Scanner input = new Scanner(System.in);
ArrayList<Connection> Links = new ArrayList<Connection>();
boolean visited[];
int nodes;
int vertices;
int matrix[][];
class Node {//stores node information
String name;
boolean visited;
ArrayList<Node> neighbors = new ArrayList<Node>();
Node(String name) {
this.name = name;
visited = false;
}
}
class Connection {//stores edges information
double fare;
Node source, destination;
Connection(Node source, Node destination) {
this.source = source;
this.destination = destination;
}
}
public static void main(String[] args){
Scanner s = new Scanner(System.in);
System.out.println("Enter the number of vertices");
int V = s.nextInt();
AdjMatrixGraph amg = new AdjMatrixGraph(V);
System.out.println("Enter the number of edges");
int E = s.nextInt();
System.out.print("\n");
for(int i=0;i<E;i++){
System.out.println("Enter the endpoints");
int mark = s.nextInt();
int mac = s.nextInt();
if (mark == mac) { //checks if newly input edge is a loop
System.out.println("\nERROR TRAPPED!!\nNo Loops Allowed Here!\nAdd New Edge!");
i--;
continue;
}
amg.addEdge(mark,mac);
amg.addEdge1(mark,mac);
}
amg.printGraph();
System.out.print("\nSize of the graph: " + E);
System.out.print("\nOrder of the graph: " + V);
System.out.println(amg.ifGraphConnected());
}
AdjMatrixGraph(int vertices){
graph = new ArrayList<>();
visited = new boolean[vertices];
this.vertices=vertices;
matrix=new int[vertices][vertices];
for (int i = 0; i < vertices; i++){
graph.add(i, new ArrayList<>());
}
}
public void addEdge(int source,int destination){
matrix[source][destination]= 1;
matrix[destination][source]= 1;
}
public void addEdge1(int a, int b) {
graph.get(a).add(b);
graph.get(b).add(a);
}
public boolean ifGraphConnected() {
int startIndex = 0;
dfs(startIndex);
for(int i = 0; i < visited.length; i++) {
if(!visited[i]) {
System.out.println("\n");
System.out.println("The Graph is not connected!: ");
System.out.print("\nCreate another graph? \n1=Yes or 2=No\n");
String menu = input.nextLine();
if(menu.equals("1")){//goes back to the first menu and resets the list
input.close();
main(null);
}else if(menu.equals("2")){//terminates the program
System.exit(0);
}else{
System.out.println("\nERROR!");
}
return false;
}
}
System.out.println("\n");
System.out.println("The Graph is connected!");
System.out.print("\nCreate another graph? \n1=Yes or 2=No\n");
String menu = input.nextLine();
if(menu.equals("1")){//goes back to the first menu and resets the list
input.close();
main(null);
}else if(menu.equals("2")){//terminates the program
System.exit(0);
}else{
System.out.println("\nERROR!");
}
return true;
}//print true if it's connected
public void dfs(int start){ //the DFS traversal method for determining whether it is connected or not.
Stack<Integer> stack = new Stack<>(); //implement a stack that stores integers and traverse the graph
stack.push(start);
visited[start] = true; //places the vertex's start or address and sets it to true
while(!stack.isEmpty()) { //While the stack is not empty, the arguments in this block will be executed.
Integer vertices = stack.pop(); //the element is inserted into the stack
List<Integer> neighboursList = graph.get(vertices); //This will create a linked list of the graph's vertices
for(Integer neighbour: neighboursList) { //This will scan over all of the vertices that are related to the initial index.
if(!visited[neighbour]) {
stack.push(neighbour); //All the vertices that is related to vertex will be pushed.
visited[neighbour] = true; //Makes the vertex that is related to it true. It will then check to see if the stack is still full. If the loop is not empty, it will pop the visited vertex and proceed.
}
}
}
}
void printGraph(){ //printing Graph
System.out.print("\n");
System.out.println("The Adjacency Matrix is:");
for(int i=0;i<vertices;i++){ //using for loop method
for(int j = 0;j<vertices;j++){
System.out.print(matrix[i][j]+" ");
}
System.out.println();
}
}
}```

DFS iterative function does not work properly

I'm trying to do some basic function on a graph (using a boolean matrix). They all work except the DFS one. It give me some random number. I'm trying to resolve this problem since few hours now, but still nothing.. (the code compile, but what it show its wrong). Btw, the result of DFS must be a matrix, with the number of stack, and also the "Unwinding" of each graph vertex.
Where's my error?
My program :
public int[][] DFS(int s) {
Stack<Integer> stack = new Stack<Integer>();
stack.push(s);
int recorder = 1;
int[][] mark = new int[nbs][2];
mark[s][0] = recorder++;
boolean[] decouvert = new boolean[nbs];
while (!stack.isEmpty()) {
s = stack.pop();
mark[s][1] = recorder++;
if (!decouvert[s]) {
decouvert[s] = true;
for (int i = 0; i < nbs; i++) {
if (m[s][i]) {
stack.push(i);
mark[s][0] = recorder++;
}
}
}
}
return mark;
}
Well, I think one problem is the line:
mark[s][0] = recorder++;
If I read your code correctly, it should be mark[i][0]. And then, it just overrides the value even if you have already been in that node before effectively messing up the counter for it.

Java DFS Backtracking in an adjacency matrix

I'm implementing a DFS search to run in an adjacency matrix. With this i want to solve de euler path problem.
I already have DFS running with no problems, but now i want to modify it so it will perform backtrack whenever it tries to visit an edge that already has been visited.
Here's my current code:
public class Graph {
private int numVertex;
private int numEdges;
private boolean[][] adj;
public Graph(int numVertex, int numEdges) {
this.numVertex = numVertex;
this.numEdges = numEdges;
this.adj = new boolean[numVertex+1][numVertex+1];
}
public void addEdge(int start, int end){
adj[start][end] = true;
adj[end][start] = true;
}
List<Integer> visited = new ArrayList<Integer>();
public Integer DFS(Graph G, int startVertex){
int i=0;
pilha.push(startVertex);
for(i=0; i<G.numVertex; i++){
if(G.adj[i][startVertex] != false){
System.out.println("i: " + i);
G.adj[i][startVertex] = false;
G.adj[startVertex][i] = false;
DFS(G, i);
pilha.push(i);
G.adj[i][startVertex] = true;
G.adj[startVertex][i] = true;
}
/* else{
pilha.pop();
}*/
if(!pilha.isEmpty()){
int c = pilha.pop();
visited.add(c);
System.out.println("visited: " + visited);
}
}
return -1;
}
Stack<Integer> pilha = new Stack();
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int numVertices = input.nextInt();
int numLinks = input.nextInt();
int startNode = input.nextInt();
Graph g = new Graph(numVertices, numLinks);
for(int i = 0; i<numLinks; i++){
g.addEdge(input.nextInt(),input.nextInt());
}
g.DFS(g, startNode);
}
}
The problem is, whenever i try to run the pop that is commented, i get an EmptyStackException. Any ideas on how to modify my code so it will backtrack when it tries to visit an edge that already has been visited.
Thx in advance.
That else of yours is getting executed if startvertex is not adjacent to some vertex i.
It really should get that else only if startvertex is not adjacent to any vertex i.
I'd do something like:
bool hasAdjacent = False;
for(i=0; i<G.numVertex; i++){
if(G.adj[i][startVertex] != false){
hasAdjacent = True;
...
}
}
if (!hasAdjacent) {
int c = pilha.pop();
visited.add(c);
}
I'm not giving you a complete solution, but I think this solves your main logic problem.

Checking for odd cycles in an undirected graph

I'm back with another similar question. I am currently working on a Java program that will check if a graph is 2-colorable, i.e. if it contains no odd cycles (cycles of odd number length). The entire algorithm is supposed to run in O(V+E) time (V being all vertices and E being all edges in the graph). My current algorithm does a Depth First Search, recording all vertices in the path it takes, then looks for a back edge, and then records between which vertices the edge is between. Next it traces a path from one end of the back edge until it hits the other vertex on the other end of the edge, thus retracing the cycle that the back edge completes.
I was under the impression that this kind of traversing could be done in O(V+E) time for all cycles that exist in my graph, but I must be missing something, because my algorithm is running for a ridiculously long time for very large graphs (10k nodes, no idea how many edges).
Is my algorithm completely wrong? And if so, can anyone point me in the right direction for a better way to record these cycles or possibly tell if they have odd numbers of vertices? Thanks for any and all help you guys can give. Code is below if you need it.
Addition: Sorry I forgot, if the graph is not 2-colorable, I need to provide an odd cycle that proves that it is not.
package algorithms311;
import java.util.*;
import java.io.*;
public class CS311 {
public static LinkedList[] DFSIter(Vertex[] v) {
LinkedList[] VOandBE = new LinkedList[2];
VOandBE[0] = new LinkedList();
VOandBE[1] = new LinkedList();
Stack stack = new Stack();
stack.push(v[0]);
v[0].setColor("gray");
while(!stack.empty()) {
Vertex u = (Vertex) stack.peek();
LinkedList adjList = u.getAdjList();
VOandBE[0].add(u.getId());
boolean allVisited = true;
for(int i = 0; i < adjList.size(); i++) {
if(v[(Integer)adjList.get(i)].getColor().equals("white")) {
allVisited = false;
break;
}
else if(v[(Integer)adjList.get(i)].getColor().equals("gray") && u.getPrev() != (Integer)adjList.get(i)) {
int[] edge = new int[2]; //pair of vertices
edge[0] = u.getId(); //from u
edge[1] = (Integer)adjList.get(i); //to v
VOandBE[1].add(edge);
}
}
if(allVisited) {
u.setColor("black");
stack.pop();
}
else {
for(int i = 0; i < adjList.size(); i++) {
if(v[(Integer)adjList.get(i)].getColor().equals("white")) {
stack.push(v[(Integer)adjList.get(i)]);
v[(Integer)adjList.get(i)].setColor("gray");
v[(Integer)adjList.get(i)].setPrev(u.getId());
break;
}
}
}
}
return VOandBE;
}
public static void checkForTwoColor(String g) { //input is a graph formatted as assigned
String graph = g;
try {
// --Read First Line of Input File
// --Find Number of Vertices
FileReader file1 = new FileReader("W:\\Documents\\NetBeansProjects\\algorithms311\\src\\algorithms311\\" + graph);
BufferedReader bReaderNumEdges = new BufferedReader(file1);
String numVertS = bReaderNumEdges.readLine();
int numVert = Integer.parseInt(numVertS);
System.out.println(numVert + " vertices");
// --Make Vertices
Vertex vertex[] = new Vertex[numVert];
for(int k = 0; k <= numVert - 1; k++) {
vertex[k] = new Vertex(k);
}
// --Adj Lists
FileReader file2 = new FileReader("W:\\Documents\\NetBeansProjects\\algorithms311\\src\\algorithms311\\" + graph);
BufferedReader bReaderEdges = new BufferedReader(file2);
bReaderEdges.readLine(); //skip first line, that's how many vertices there are
String edge;
while((edge = bReaderEdges.readLine()) != null) {
StringTokenizer ST = new StringTokenizer(edge);
int vArr[] = new int[2];
for(int j = 0; ST.hasMoreTokens(); j++) {
vArr[j] = Integer.parseInt(ST.nextToken());
}
vertex[vArr[0]-1].addAdj(vArr[1]-1);
vertex[vArr[1]-1].addAdj(vArr[0]-1);
}
LinkedList[] l = new LinkedList[2];
l = DFSIter(vertex);//DFS(vertex);
System.out.println(l[0]);
for(int i = 0; i < l[1].size(); i++) {
int[] j = (int[])l[1].get(i);
System.out.print(" [" + j[0] + ", " + j[1] + "] ");
}
LinkedList oddCycle = new LinkedList();
boolean is2Colorable = true;
//System.out.println("iterate through list of back edges");
for(int i = 0; i < l[1].size(); i++) { //iterate through the list of back edges
//System.out.println(i);
int[] q = (int[])(l[1].get(i)); // q = pair of vertices that make up a back edge
int u = q[0]; // edge (u,v)
int v = q[1];
LinkedList cycle = new LinkedList();
if(l[0].indexOf(u) < l[0].indexOf(v)) { //check if u is before v
for(int z = l[0].indexOf(u); z <= l[0].indexOf(v); z++) { //if it is, look for u first; from u to v
cycle.add(l[0].get(z));
}
}
else if(l[0].indexOf(v) < l[0].indexOf(u)) {
for(int z = l[0].indexOf(v); z <= l[0].indexOf(u); z++) { //if it is, look for u first; from u to v
cycle.add(l[0].get(z));
}
}
if((cycle.size() & 1) != 0) { //if it has an odd cycle, print out the cyclic nodes or write them to a file
is2Colorable = false;
oddCycle = cycle;
break;
}
}
if(!is2Colorable) {
System.out.println("Graph is not 2-colorable, odd cycle exists");
if(oddCycle.size() <= 50) {
System.out.println(oddCycle);
}
else {
try {
BufferedWriter outFile = new BufferedWriter(new FileWriter("W:\\Documents\\NetBeansProjects\\algorithms311\\src\\algorithms311\\" + graph + "OddCycle.txt"));
String cyc = oddCycle.toString();
outFile.write(cyc);
outFile.close();
}
catch (IOException e) {
System.out.println("Could not write file");
}
}
}
}
catch (IOException e) {
System.out.println("Could not open file");
}
System.out.println("Done!");
}
public static void main(String[] args) {
//checkForTwoColor("smallgraph1");
//checkForTwoColor("smallgraph2");
//checkForTwoColor("smallgraph3");
//checkForTwoColor("smallgraph4");
checkForTwoColor("smallgraph5");
//checkForTwoColor("largegraph1");
}
}
Vertex class
package algorithms311;
import java.util.*;
public class Vertex implements Comparable {
public int id;
public LinkedList adjVert = new LinkedList();
public String color = "white";
public int dTime;
public int fTime;
public int prev;
public boolean visited = false;
public Vertex(int idnum) {
id = idnum;
}
public int getId() {
return id;
}
public int compareTo(Object obj) {
Vertex vert = (Vertex) obj;
return id-vert.getId();
}
#Override public String toString(){
return "Vertex # " + id;
}
public void setColor(String newColor) {
color = newColor;
}
public String getColor() {
return color;
}
public void setDTime(int d) {
dTime = d;
}
public void setFTime(int f) {
fTime = f;
}
public int getDTime() {
return dTime;
}
public int getFTime() {
return fTime;
}
public void setPrev(int v) {
prev = v;
}
public int getPrev() {
return prev;
}
public LinkedList getAdjList() {
return adjVert;
}
public void addAdj(int a) { //adds a vertex id to this vertex's adj list
adjVert.add(a);
}
public void visited() {
visited = true;
}
public boolean wasVisited() {
return visited;
}
}
I was under the impression that this kind of traversing could be done in O(V+E) time for all cycles that exist in my graph
There may be much more cycles than O(V+E) in a graph. If you iterate all of them, you will run long.
Back to your original idea, you could just try to implement a straightforward algorithm to color graph in two colors (mark an arbitrary node as black, all neighbors in white, all their neighbors in black, etc; that would be a breadth-first search). That is indeed done in O(V+E) time. If you succeed, then graph is 2-colorable. If you fail, it's not.
Edit: If you need a cycle that proves graph is not 2-colorable, just record for each node the vertex you traversed into it from. When you happen to traverse from black vertex A to black vertex B (thus needing to color black B into white and proving your graph is not 2-colorable), you get the cycle by looking back to parents:
X -> Y -> Z -> U -> V -> P -> Q -> A
\-> D -> E -> B
Then, A-B-E-D-V-P-Q (the paths up to their common ancestor) is the cycle you needed.
Note that in this version you don't have to check all cycles, you just output a first cycle, where back-edge in the tree has both vertexes colored in the same color.
you are describing a bipartite graph. a bipartite graph is 2 colorable and it contains no odd length cycles. You can use BFS to prove that a graph is bipartite or not. Hope this helps.

Stack overflow error for large inputs in Java

I'm writing a Java program that searches for and outputs cycles in a graph. I am using an adjacency list for storing my graph, with the lists stored as LinkedLists. My program takes an input formatted with the first line as the number of nodes in the graph and each subsequent line 2 nodes that form an edge e.g.:
3
1 2
2 3
3 1
My problem is that when the inputs get very large (the large graph I am using has 10k nodes and I don't know how many edges, the file is 23mb of just edges) I am getting a java.lang.StackOverflowError, but I don't get any errors with small inputs. I'm wondering if it would be better to use another data structure to form my adjacency lists or if there is some method I could use to avoid this error, as I'd rather not just have to change a setting on my local installation of Java (because I have to be sure this will run on other computers that I can't control the settings on as much). Below is my code, the Vertex class and then my main class. Thanks for any help you can give!
Vertex.java:
package algorithms311;
import java.util.*;
public class Vertex implements Comparable {
public int id;
public LinkedList adjVert = new LinkedList();
public String color = "white";
public int dTime;
public int fTime;
public int prev;
public Vertex(int idnum) {
id = idnum;
}
public int getId() {
return id;
}
public int compareTo(Object obj) {
Vertex vert = (Vertex) obj;
return id-vert.getId();
}
#Override public String toString(){
return "Vertex # " + id;
}
public void setColor(String newColor) {
color = newColor;
}
public String getColor() {
return color;
}
public void setDTime(int d) {
dTime = d;
}
public void setFTime(int f) {
fTime = f;
}
public int getDTime() {
return dTime;
}
public int getFTime() {
return fTime;
}
public void setPrev(int v) {
prev = v;
}
public int getPrev() {
return prev;
}
public LinkedList getAdjList() {
return adjVert;
}
public void addAdj(int a) { //adds a vertex id to this vertex's adj list
adjVert.add(a);
}
}
CS311.java:
package algorithms311;
import java.util.*;
import java.io.*;
public class CS311 {
public static final String GRAPH= "largegraph1";
public static int time = 0;
public static LinkedList[] DFS(Vertex[] v) {
LinkedList[] l = new LinkedList[2];
l[0] = new LinkedList();
l[1] = new LinkedList(); //initialize the array with blank lists, otherwise we get a nullpointerexception
for(int i = 0; i < v.length; i++) {
v[i].setColor("white");
v[i].setPrev(-1);
}
time = 0;
for(int i = 0; i < v.length; i++) {
if(v[i].getColor().equals("white")) {
l = DFSVisit(v, i, l);
}
}
return l;
}
public static LinkedList[] DFSVisit(Vertex[] v, int i, LinkedList[] l) { //params are a vertex of nodes and the node id you want to DFS from
LinkedList[] VOandBE = new LinkedList[2]; //two lists: visit orders and back edges
VOandBE[0] = l[0]; // l[0] is visit Order, a linked list of ints
VOandBE[1] = l[1]; // l[1] is back Edges, a linked list of arrays[2] of ints
VOandBE[0].add(v[i].getId());
v[i].setColor("gray"); //color[vertex i] <- GRAY
time++; //time <- time+1
v[i].setDTime(time); //d[vertex i] <- time
LinkedList adjList = v[i].getAdjList(); // adjList for the current vertex
for(int j = 0; j < adjList.size(); j++) { //for each v in adj[vertex i]
if(v[(Integer)adjList.get(j)].getColor().equals("gray") && v[i].getPrev() != v[(Integer)adjList.get(j)].getId()) { // if color[v] = gray and Predecessor[u] != v do
int[] edge = new int[2]; //pair of vertices
edge[0] = i; //from u
edge[1] = (Integer)adjList.get(j); //to v
VOandBE[1].add(edge);
}
if(v[(Integer)adjList.get(j)].getColor().equals("white")) { //do if color[v] = WHITE
v[(Integer)adjList.get(j)].setPrev(i); //then "pi"[v] <- vertex i
DFSVisit(v, (Integer)adjList.get(j), VOandBE); //DFS-Visit(v)
}
}
VOandBE[0].add(v[i].getId());
v[i].setColor("black");
time++;
v[i].setFTime(time);
return VOandBE;
}
public static void main(String[] args) {
try {
// --Read First Line of Input File
// --Find Number of Vertices
FileReader file1 = new FileReader("W:\\Documents\\NetBeansProjects\\algorithms311\\src\\algorithms311\\" + GRAPH);
BufferedReader bReaderNumEdges = new BufferedReader(file1);
String numVertS = bReaderNumEdges.readLine();
int numVert = Integer.parseInt(numVertS);
System.out.println(numVert + " vertices");
// --Make Vertices
Vertex vertex[] = new Vertex[numVert];
for(int k = 0; k <= numVert - 1; k++) {
vertex[k] = new Vertex(k);
}
// --Adj Lists
FileReader file2 = new FileReader("W:\\Documents\\NetBeansProjects\\algorithms311\\src\\algorithms311\\" + GRAPH);
BufferedReader bReaderEdges = new BufferedReader(file2);
bReaderEdges.readLine(); //skip first line, that's how many vertices there are
String edge;
while((edge = bReaderEdges.readLine()) != null) {
StringTokenizer ST = new StringTokenizer(edge);
int vArr[] = new int[2];
for(int j = 0; ST.hasMoreTokens(); j++) {
vArr[j] = Integer.parseInt(ST.nextToken());
}
vertex[vArr[0]-1].addAdj(vArr[1]-1);
vertex[vArr[1]-1].addAdj(vArr[0]-1);
}
for(int i = 0; i < vertex.length; i++) {
System.out.println(vertex[i] + ", adj nodes: " + vertex[i].getAdjList());
}
LinkedList[] l = new LinkedList[2];
l = DFS(vertex);
System.out.println("");
System.out.println("Visited Nodes: " + l[0]);
System.out.println("");
System.out.print("Back Edges: ");
for(int i = 0; i < l[1].size(); i++) {
int[] q = (int[])(l[1].get(i));
System.out.println("[" + q[0] + "," + q[1] + "] ");
}
for(int i = 0; i < l[1].size(); i++) { //iterate through the list of back edges
int[] q = (int[])(l[1].get(i)); // q = pair of vertices that make up a back edge
int u = q[0]; // edge (u,v)
int v = q[1];
LinkedList cycle = new LinkedList();
if(l[0].indexOf(u) < l[0].indexOf(v)) { //check if u is before v
for(int z = l[0].indexOf(u); z <= l[0].indexOf(v); z++) { //if it is, look for u first; from u to v
cycle.add(l[0].get(z));
}
}
else if(l[0].indexOf(v) < l[0].indexOf(u)) {
for(int z = l[0].indexOf(v); z <= l[0].indexOf(u); z++) { //if it is, look for u first; from u to v
cycle.add(l[0].get(z));
}
}
System.out.println("");
System.out.println("Cycle detected! : " + cycle);
if((cycle.size() & 1) != 0) {
System.out.println("Cycle is odd, graph is not 2-colorable!");
}
else {
System.out.println("Cycle is even, we're okay!");
}
}
}
catch (IOException e) {
System.out.println("AHHHH");
e.printStackTrace();
}
}
}
The issue is most likely the recursive calls in DFSVisit. If you don't want to go with the 'easy' answer of increasing Java's stack size when you call the JVM, you may want to consider rewriting DFSVisit to use an iterative algorithm instead of recursive. While Depth First Search is more easily defined in a recursive manner, there are iterative approaches to the algorithm that can be used.
For example: this blog post
The stack is a region in memory that is used for storing execution context and passing parameters. Every time your code invokes a method, a little bit of stack is used, and the stack pointer is increased to point to the next available location. When the method returns, the stack pointer is decreased and the portion of the stack is freed up.
If an application uses recursion heavily, the stack quickly becomes a bottleneck, because if there is no limit to the recursion depth, there is no limit to the amount of stack needed. So you have two options: increase the Java stack (-Xss JVM parameter, and this will only help until you hit the new limit) or change your algorithm so that the recursion depth is not as deep.
I am not sure if you were looking for a generic answer, but from a brief glance at your code it appears that your problem is recursion.
If you're sure your algorithm is correct and the depth of recursive calls you're making isn't accidental, then solutions without changing your algorithm are:
add to the JVM command line e.g. -Xss128m to set a 128 MB stack size (not a good solution in multi-threaded programs as it sets the default stack size for every thread not just the particular thread running your task);
run your task in its own thread, which you can initialise with a stack size specific to just that thread (and set the stack size within the program itself)-- see my example in the discussion of fixing StackOverflowError, but essentially the stack size is a parameter to the Thread() constructor;
don't use recursive calls at all-- instead, mimic the recursive calls using an explicit Stack or Queue object (this arguably gives you a bit more control).

Categories