I hava a Java mulithreading question. I have the following worker class:
public class ThreadWorker implements Runnable {
//some code in here
public void run(){
// invokes some recursion method in the ThreadWorker itself,
// which will stop eventually
{
}
To work with threads I'm using an ExecutorService:
public static int THREAD_NUMBER = 4;
public static ExecutorServide es = Executors.newFixedThreadPool(THREAD_NUMBER);
Adding instances of ThreadWroker class happens here:
public void recursiveMethod(Arraylist<Integers> elements, MyClass data){
if (elements.size() == 0 && data.qualifies()){
ThreadWorker tw = new ThreadWorker(data);
es.execute(tw);
return;
}
for (int i=0; i< elements.size(); i++){
// some code to prevent my problem
MyClass data1 = new MyClass(data);
MyClass data2 = new MyClass(data);
ArrayList<Integer> newElements = (ArrayList<Integer>)elements.clone();
data1.update(elements.get(i));
data2.update(-1 * elements.get(i));
newElements.remove(i);
recursiveMethod(newElements, data1);
recursiveMethod(newElements, data2);
{
}
The problem is that the depth of the recursion tree is quite big, so as it's width, so a lot of ThreadWorkers are added to the ExecutorService, so after some time on the big input a get
Exception in thread "pool-1-thread-2" java.lang.OutOfMemoryError: Java heap space
which is caused, as I think because of a ginormous number of ThreadWorkers i'm adding to ExecutorSirvice to be executed, so it runs out of memory. Every ThreadWorker takes about 40 Mb of RAM for all it needs.
Is there a method to get how many threads (instances of classes implementing runnable interface) have been added to ExecutorService? So I can add it in the shown above code (int the " // some code to prevent my problem"), as
while ("number of threads in the ExecutorService" > 10){
Thread.sleep(10000);
}
so I won't go to deep or to broad with my recursion and prevent those exception-throwing situations.
Sincerely, Sergey Aganezov jr.
How about creating a ThreadPoolExecutor backed by a BlockingQueue using ThreadPoolExecutor.CallerRunsPolicy.
This way, when there are no worker threads available to run a task on, the main thread (which is adding the new jobs) runs the task itself, which prevents any more jobs from being added.
There are more details on the constructor options for ThreadPoolExecutor on its Javadoc page.
I think your case is a good match for the "fork-join" framework of the Java JDK. (Google for that keyword.)
Fork-Join helps you to trim down the number of jobs in your queue by delaying the "split" as far as possible.
You have to reformulate your code into that philosophy though.
Related
I'm trying to write a class that can only run X(Let's say 3)threads at one time. I have 8 threads that need to execute but I only want to allow 3 to run at once, then wait. Once one of the currently running threads stops, then it will start another. I'm not quite sure how to do this. My code looks like this:
public class Main {
public void start() {
for(int i=0; i<=ALLTHREADS; i++) {
MyThreadClass thread = new MyThreadClass(someParam, someParam);
thread.run();
// Continue until we have 3 running threads, wait until a new spot opens up. This is what I'm having problems with
}
}
}
public class MyThreadClass implements Runnable {
public MyThreadClass(int param1, int param2) {
// Some logic unimportant to this post
}
public void run() {
// Generic code here, the point of this is to download a large file
}
}
As you can see above most of it is stubbed out pseudo-code. I can post it if anyone would like but it's unimportant to the main question.
you should use thread pooling mechanism here to run multiple threads.
to make it easy we can go for thread pool executor in java which is very easy
create a fixed pool of 3 threads using executors method.
write a for loop for 8 iteration and call execute on each thread and it will run only 3 threads at a time.
ExecutorService executor = Executors.newFixedThreadPool(3);
for (int i = 0; i < 8; i++) {
Task task = new Task(someParam, someParam);
executor.execute(task);
}
executor.shutdown();
Unless this is homework, you can use Executors.newFixedThreadPool(3) which returns an ExecutorService with a max of 3 threads to perform Runnable tasks.
I am learning Thread-ing in Java in order to create some program run in parallel. To design programs with parallelism is something I never had a chance to learn back at my school programming class. I know how to create threads and make them run, but I have no idea how to use them efficiently. After all I know it is not actually using threads that makes a program fast but a good parallel design. So I did some experiment to test my knowledge. However, my paralleled version actually runs slower than an unparalleled one. I start to doubt if I really get the idea. If you could be so kind, would you mind having a look my following program:
I made a program to fill an array in a divide-and-conquer fashion (I know Java has a Arrays.fill utility, but I just want to test my knowledge in multithreading):
public class ParalledFill
{
private static fill(final double [] array,
final double value,
final int start,
final int size)
{
if (size > 1000)
{ // Each thread handles at most 1000 elements
Runnable task = new Runnable() { // Fork the task
public void run() {
fill(array, value, start, 1000); // Fill the first 1000 elements
}};
// Create the thread
Thread fork = new Thread(task);
fork.start();
// Fill the rest of the array
fill(array, value, start+1000, size-1000);
// Join the task
try {
fork.join();
}
catch (InterruptedException except)
{
System.err.println(except);
}
}
else
{ // The array is small enough, fill it via a normal loop
for (int i = start; i < size; ++i)
array[i] = value;
}
} // fill
public static void main(String [] args)
{
double [] bigArray = new double[1000*1000];
double value = 3;
fill(bigArray, value, 0, bigArray.length);
}
}
I tested this program, but it turns out to be even slower than just doing something like:
for (int i = 0; i < bigArray.length; ++i)
bigArray[i] = value;
I had my guess, it could be that java does some optimisation for filling an array using a loop which makes it much faster than my threaded version. But other than that, I feel more strongly that my way to handle threads/parallelism could be wrong. I have never designed anything using threads (always relied on compiler optimisation or OpenMP in C). Could anyone help me explain why my paralleled version isn’t faster? Was the program just too bad in terms of designing paralleled program?
Thanks,
Xing.
Unless you have multiple CPUs, or long running tasks like I/O, I'm guessing that all you're doing is time slicing between threads. If there's a single CPU that has so much work to do, adding threads doesn't decrease the work that has to be done. All you end up doing is adding overhead due to context switching.
You ought to read "Java Concurrency In Practice". Better to learn how to do things with the modern concurrency package rather than raw threads.
I do not have much experience making multi-threaded applications but I feel like my program is at a point where it may benefit from having multiple threads. I am doing a larger scale project that involves using a classifier (as in machine learning) to classify roughly 32000 customers. I have debugged the program and discovered that it takes about a second to classify each user. So in other words this would take 8.8 hours to complete!
Is there any way that I can run 4 threads handling 8000 users each? The first thread would handle 1-8000, the second 8001-16000, the third 16001-23000, the fourth 23001-32000. Also, as of now each classification is done by calling a static function from another class...
Then when the other threads besides the main one should end. Is something like this feasible? If so, I would greatly appreciate it if someone could provide tips or steps on how to do this. I am familiar with the idea of critical sections (wait/signal) but have little experience with it.
Again, any help would be very much appreciated! Tips and suggestions on how to handle a situation like this are welcomed! Not sure it matters but I have a Core 2 Duo PC with a 2.53 GHZ processor speed.
This is too lightweight for Apache Hadoop, which requires around 64MB chunks of data per server... but.. it's a perfect opportunity for Akka Actors, and, it just happens to support Java!
http://doc.akka.io/docs/akka/2.1.4/java/untyped-actors.html
Basically, you can have 4 actors doing the work, and as they finish classifying a user, or probably better, a number of users, they either pass it to a "receiver" actor, that puts the info into a data structure or a file for output, or, you can do concurrent I/O by having each write to a file on their own.. then the files can be examined/combined when they're all done.
If you want to get even more fancy/powerful, you can put the actors on remote servers. It's still really easy to communicate with them, and you'd be leveraging the CPU/resources of multiple servers.
I wrote an article myself on Akka actors, but it's in Scala, so I'll spare you that. But if you google "akka actors", you'll get lots of hand-holding examples on how to use it. Be brave, dive right in and experiment. The "actor system" is such an easy concept to pick up. I know you can do it!
Split the data up into objects that implement Runnable, then pass them to new threads.
Having more than four threads in this case won't kill you, but you cannot get more parallel work than you have cores (as mentioned in the comments) - if there are more threads than cores the system will have to handle who gets to go when.
If I had a class customer, and I want to issue a thread to prioritize 8000 customers of a greater collection I might do something like this:
public class CustomerClassifier implements Runnable {
private customer[] customers;
public CustomerClassifier(customer[] customers) {
this.customers = customers;
}
#Override
public void run() {
for (int i=0; i< customers.length; i++) {
classify(customer);//critical that this classify function does not
//attempt to modify a resource outside this class
//unless it handles locking, or is talking to a database
//or something that won't throw fits about resource locking
}
}
}
then to issue these threads elsewhere
int jobSize = 8000;
customer[] customers = new customer[jobSize]();
int j = 0;
for (int i =0; i+j< fullCustomerArray.length; i++) {
if (i == jobSize-1) {
new Thread(new CustomerClassifier(customers)).start();//run will be invoked by thread
customers = new Customer[jobSize]();
j += i;
i = 0;
}
customers[i] = fullCustomerArray[i+j];
}
If you have your classify method affect the same resource somewhere you will have to
implement locking and will also kill off your advantage gained to some degree.
Concurrency is extremely complicated and requires a lot of thought, I also recommend looking at the oracle docs http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html
(I know links are bad, but hopefully the oracle docs don't move around too much?)
Disclaimer: I am no expert in concurrent design or in multithreading (different topics).
If you split the input array in 4 equal subarrays for 4 threads, there is no guarantee that all threads finish simultaneously. You better put all data in a single queue and let all working threads feed from that common queue. Use thead-safe BlockingQueue implementations in order to not write low level synchronize/wait/notify code.
From java 6 we have some handy utils for concurrency. You might want to consider using thread pools for cleaner implementation.
package com.threads;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
public class ParalleliseArrayConsumption {
private int[] itemsToBeProcessed ;
public ParalleliseArrayConsumption(int size){
itemsToBeProcessed = new int[size];
}
/**
* #param args
*/
public static void main(String[] args) {
(new ParalleliseArrayConsumption(32)).processUsers(4);
}
public void processUsers(int numOfWorkerThreads){
ExecutorService threadPool = Executors.newFixedThreadPool(numOfWorkerThreads);
int chunk = itemsToBeProcessed.length/numOfWorkerThreads;
int start = 0;
List<Future> tasks = new ArrayList<Future>();
for(int i=0;i<numOfWorkerThreads;i++){
tasks.add(threadPool.submit(new WorkerThread(start, start+chunk)));
start = start+chunk;
}
// join all worker threads to main thread
for(Future f:tasks){
try {
f.get();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (ExecutionException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
threadPool.shutdown();
while(!threadPool.isTerminated()){
}
}
private class WorkerThread implements Callable{
private int startIndex;
private int endIndex;
public WorkerThread(int startIndex, int endIndex){
this.startIndex = startIndex;
this.endIndex = endIndex;
}
#Override
public Object call() throws Exception {
for(int currentUserIndex = startIndex;currentUserIndex<endIndex;currentUserIndex++){
// process the user. Add your logic here
System.out.println(currentUserIndex+" is the user being processed in thread " +Thread.currentThread().getName());
}
return null;
}
}
}
Bear with me as I'm not terribly savvy in multithreaded programming...
I'm currently building out a system that uses a ThreadPool ExecutorService for various runnables. That much is straightforward. However, I'm looking at the possibility of having the runnables themselves spawn an additional runnable based on what happens in the original runnable (ie, if success, do this, if fail, do this, etc as some tasks must be complete before others execute). It should be noted that the main thread does not need to be notified of the results of these tasks, although it might be handy for handling exceptions, ie, if an external service cannot be contacted and all threads are throwing exceptions as a result, then stop submitting tasks and periodically check on the external service until it comes back up. This isn't completely necessary, but it would be nice.
Ie, submit Task A. Task A does some things. If everything goes well, Task A will execute Task B. If something doesn't work out properly or an exception is thrown, execute Task C. Each child task may also have additional tasks, but only a few levels deep. I'd much rather do something like this than large, snarled conditionals in a single task as this approach allows for much greater flexibility.
However, I'm not certain how this would affect the thread pool. I would assume that any additional thread(s) created from within a thread in the pool would exist outside of the pool as they themselves were not submitted directly to the pool. Is this a correct assumption? If so, it's likely a bad idea (well, if not, it may not be a very good idea anyway) as it could result in a lot more threads as the original thread completes and a new task is submitted while the thread spawned from the earlier task is still going (and may last considerably longer than others).
I've also considered implementing these as Callables instead and placing a response object in the Future that is returned, then add the appropriate Callable to the thread pool based on the response. However, this would tie all actions back to the main thread, which seems an unnecessary bottleneck. I suppose I could place a Runnable into the pool that itself handles the execution of the Callable and subsequent actions, but then I get twice as many threads.
Am I on the right track here or am I completely off the rails?
I have never used this, but it can be useful for you: http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
There are many ways to do what you want. You need to be careful you don't end up creating too many threads.
The following is an example, you could make this more efficient with an ExecutorCompletionService and alternatively you could use Runnable's.
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
public class ThreadsMakeThreads {
public static void main(String[] args) {
new ThreadsMakeThreads().start();
}
public void start() {
//Create resources
ExecutorService threadPool = Executors.newCachedThreadPool();
Random random = new Random(System.currentTimeMillis());
int numberOfThreads = 5;
//Prepare threads
ArrayList<Leader> leaders = new ArrayList<Leader>();
for(int i=0; i < numberOfThreads; i++) {
leaders.add(new Leader(threadPool, random));
}
//Get the results
try {
List<Future<Integer>> results = threadPool.invokeAll(leaders);
for(Future<Integer> result : results) {
System.out.println("Result is " + result.get());
}
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
threadPool.shutdown();
}
class Leader implements Callable<Integer> {
private ExecutorService threadPool;
private Random random;
public Leader(ExecutorService threadPool, Random random) {
this.threadPool = threadPool;
this.random = random;
}
#Override
public Integer call() throws Exception {
int numberOfWorkers = random.nextInt(10);
ArrayList<Worker> workers = new ArrayList<Worker>();
for(int i=0; i < numberOfWorkers; i++) {
workers.add(new Worker(random));
}
List<Future<Integer>> tasks = threadPool.invokeAll(workers);
int result = 0;
for(Future<Integer> task : tasks) {
result += task.get();
}
return result;
}
}
class Worker implements Callable<Integer> {
private Random random;
public Worker(Random random) {
this.random = random;
}
#Override
public Integer call() throws Exception {
return random.nextInt(100);
}
}
}
Submitting tasks to the thread pool from other tasks is quite meaningful idea. But I am afraid you think of running new tasks on separate threads, that really can eat all the memory. Just set a limit to the number of threads when the pool is created, and submit new tasks to that thread pool.
This approach can be further elaborated in different directions. First, treat tasks as ordinary objects, with interface methods, and let that methods decide if they want to submit this object to the thread pool. This requires that each task knows its thread pool - pass it as a parameter at the time of creation. Even more convenient, keep reference to the thread pool as a thread local variable.
You can easily emulate functional programming: an object represents a function call, and for each parameter it has corresponding set method. When all parameters are set, the object is submitted to the thread pool.
Another direction is actor programming: task class has single set method, but it can be called multiple times, and if previous argument is not yet processed, the set method does not submit the task to the thread pool, but simply stores its argument in a queue. The run() method processes all available arguments from the queue and then returns.
All this features are implemented in the dataflow library https://github.com/rfqu/df4j. I wrote it intentionally to support task-based parallelism.
I am new to multi-threading and I have to write a program using multiple threads to increase its efficiency. At my first attempt what I wrote produced just opposite results. Here is what I have written:
class ThreadImpl implements Callable<ArrayList<Integer>> {
//Bloom filter instance for one of the table
BloomFilter<Integer> bloomFilterInstance = null;
// Data member for complete data access.
ArrayList< ArrayList<UserBean> > data = null;
// Store the result of the testing
ArrayList<Integer> result = null;
int tableNo;
public ThreadImpl(BloomFilter<Integer> bloomFilterInstance,
ArrayList< ArrayList<UserBean> > data, int tableNo) {
this.bloomFilterInstance = bloomFilterInstance;
this.data = data;
result = new ArrayList<Integer>(this.data.size());
this.tableNo = tableNo;
}
public ArrayList<Integer> call() {
int[] tempResult = new int[this.data.size()];
for(int i=0; i<data.size() ;++i) {
tempResult[i] = 0;
}
ArrayList<UserBean> chkDataSet = null;
for(int i=0; i<this.data.size(); ++i) {
if(i==tableNo) {
//do nothing;
} else {
chkDataSet = new ArrayList<UserBean> (data.get(i));
for(UserBean toChk: chkDataSet) {
if(bloomFilterInstance.contains(toChk.getUserId())) {
++tempResult[i];
}
}
}
this.result.add(new Integer(tempResult[i]));
}
return result;
}
}
In the above class there are two data members data and bloomFilterInstance and they(the references) are passed from the main program. So actually there is only one instance of data and bloomFilterInstance and all the threads are accessing it simultaneously.
The class that launches the thread is(few irrelevant details have been left out, so all variables etc. you can assume them to be declared):
class MultithreadedVrsion {
public static void main(String[] args) {
if(args.length > 1) {
ExecutorService es = Executors.newFixedThreadPool(noOfTables);
List<Callable<ArrayList<Integer>>> threadedBloom = new ArrayList<Callable<ArrayList<Integer>>>(noOfTables);
for (int i=0; i<noOfTables; ++i) {
threadedBloom.add(new ThreadImpl(eval.bloomFilter.get(i),
eval.data, i));
}
try {
List<Future<ArrayList<Integer>>> answers = es.invokeAll(threadedBloom);
long endTime = System.currentTimeMillis();
System.out.println("using more than one thread for bloom filters: " + (endTime - startTime) + " milliseconds");
System.out.println("**Printing the results**");
for(Future<ArrayList<Integer>> element: answers) {
ArrayList<Integer> arrInt = element.get();
for(Integer i: arrInt) {
System.out.print(i.intValue());
System.out.print("\t");
}
System.out.println("");
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
I did the profiling with jprofiler and
![here]:(http://tinypic.com/r/wh1v8p/6)
is a snapshot of cpu threads where red color shows blocked, green runnable and yellow is waiting. I problem is that threads are running one at a time I do not know why?
Note:I know that this is not thread safe but I know that I will only be doing read operations throughout now and just want to analyse raw performance gain that can be achieved, later I will implement a better version.
Can anyone please tell where I have missed
One possibility is that the cost of creating threads is swamping any possible performance gains from doing the computations in parallel. We can't really tell if this is a real possibility because you haven't included the relevant code in the question.
Another possibility is that you only have one processor / core available. Threads only run when there is a processor to run them. So your expectation of a linear speed with the number of threads and only possibly achieved (in theory) if is a free processor for each thread.
Finally, there could be memory contention due to the threads all attempting to access a shared array. If you had proper synchronization, that would potentially add further contention. (Note: I haven't tried to understand the algorithm to figure out if contention is likely in your example.)
My initial advice would be to profile your code, and see if that offers any insights.
And take a look at the way you are measuring performance to make sure that you aren't just seeing some benchmarking artefact; e.g. JVM warmup effects.
That process looks CPU bound. (no I/O, database calls, network calls, etc.) I can think of two explanations:
How many CPUs does your machine have? How many is Java allowed to use? - if the threads are competing for the same CPU, you've added coordination work and placed more demand on the same resource.
How long does the whole method take to run? For very short times, the additional work in context switching threads could overpower the actual work. The way to deal with this is to make a longer job. Also, run it a lot of times in a loop not counting the first few iterations (like a warm up, they aren't representative.)
Several possibilities come to mind:
There is some synchronization going on inside bloomFilterInstance's implementation (which is not given).
There is a lot of memory allocation going on, e.g., what appears to be an unnecessary copy of an ArrayList when chkDataSet is created, use of new Integer instead of Integer.valueOf. You may be running into overhead costs for memory allocation.
You may be CPU-bound (if bloomFilterInstance#contains is expensive) and threads are simply blocking for CPU instead of executing.
A profiler may help reveal the actual problem.