Timer to check activity on socket connection? - java

We have a socket application which the snippet of the while loop is as below. What we would like to check is that say if it pass 30 seconds and no more data then shut the socket connection. At event if the some data is in then we reset the timer. Must I use the timer or system milliseconds
while ((readChar=readSocket.read()) != -1)
{
//processing.
}

You can configure the socket so that a read operation times out if no data is received within the specified interval.
From the Socket Javadoc:
public void setSoTimeout(int timeout) throws SocketException
Enable/disable SO_TIMEOUT with the specified timeout, in milliseconds. With this option set to a non-zero timeout, a read() call on the InputStream associated with this Socket will block for only this amount of time. If the timeout expires, a java.net.SocketTimeoutException is raised, though the Socket is still valid. The option must be enabled prior to entering the blocking operation to have effect. The timeout must be > 0. A timeout of zero is interpreted as an infinite timeout.
Parameters:
timeout - the specified timeout, in milliseconds.
Throws:
SocketException - if there is an error in the underlying protocol, such as a TCP error.
Since:
JDK 1.1
See Also:
getSoTimeout()
Using this approach, you can read data, consume it (however your need to), and then read from the socket again. If you get the timeout exception, then close the socket.
socket.setSoTimeout(30 * 1000); // timeout after 30 seconds
try
{
while ((readChar=readSocket.read()) != -1) // block reading data ...
{
// processing ...
}
}
catch (SocketTimeoutException e) // we didn't get any data within 30 seconds ...
{
socket.close(); // ... close the socket
}

Use asynchronous NIO operations.
If you use java6, async operations are tricky, but there are many network libraries (Mina, Netty) though they are rather heavy.
If you use java7, true async network operations are implemented and are easy to use (nio2). Even more easier is to use a lightweight nio2 library from https://github.com/rfqu/df4j.

Related

Close TCP connection after a minute of inactivity

I have a server that creates a new thread (client handler) every time a client connects to it. I want the client handler to close the connection if it has not received a DataInputstream message from the client in a minute.
I have tried:
if (System.currentTimeMillis() > startTime + 60000) {
System.out.println("Time up!!! for client: "+this.socket);
dos.writeUTF("close");
this.socket.close
break;
}
However, this only gets to the if statement after the client sends a message and I want to close the connection after 1 minute of inactivity from the client automatically.
There's multiple scenarios:
The timeout after the last read should be 60 seconds: Simply set the read() timeout: socket.setSoTimeout(60*1000); So if the reading thread has not received any data for a minute, the read() request will fail. Handle that exception accordingly, and you've got it.
The total connection timeout shall be 60 seconds, but the input still done in blockning mode: same as (1), but after each successful read you reduce the given timeout: socket.setSoTimeout(msLeft);
The total connection timeout shall be 60 seconds, but the input can be done in non-blocking mode: This uses is very different from those classes you use in your example, but here is a good guide to that: Non-blocking sockets.
However, I would stick to blocking I/O if possible, it's simply better for a lot of reasons.

Why adding socket read timeout doesn't help for socketread0 [duplicate]

Performing millions of HTTP requests with different Java libraries gives me threads hanged on:
java.net.SocketInputStream.socketRead0()
Which is native function.
I tried to set up Apche Http Client and RequestConfig to have timeouts on (I hope) everythig that is possible but still, I have (probably infinite) hangs on socketRead0. How to get rid of them?
Hung ratio is about ~1 per 10000 requests (to 10000 different hosts) and it can last probably forever (I've confirmed thread hung as still valid after 10 hours).
JDK 1.8 on Windows 7.
My HttpClient factory:
SocketConfig socketConfig = SocketConfig.custom()
.setSoKeepAlive(false)
.setSoLinger(1)
.setSoReuseAddress(true)
.setSoTimeout(5000)
.setTcpNoDelay(true).build();
HttpClientBuilder builder = HttpClientBuilder.create();
builder.disableAutomaticRetries();
builder.disableContentCompression();
builder.disableCookieManagement();
builder.disableRedirectHandling();
builder.setConnectionReuseStrategy(new NoConnectionReuseStrategy());
builder.setDefaultSocketConfig(socketConfig);
return HttpClientBuilder.create().build();
My RequestConfig factory:
HttpGet request = new HttpGet(url);
RequestConfig config = RequestConfig.custom()
.setCircularRedirectsAllowed(false)
.setConnectionRequestTimeout(8000)
.setConnectTimeout(4000)
.setMaxRedirects(1)
.setRedirectsEnabled(true)
.setSocketTimeout(5000)
.setStaleConnectionCheckEnabled(true).build();
request.setConfig(config);
return new HttpGet(url);
OpenJDK socketRead0 source
Note: Actually I have some "trick" - I can schedule .getConnectionManager().shutdown() in other Thread with cancellation of Future if request finished properly, but it is depracated and also it kills whole HttpClient, not only that single request.
Though this question mentions Windows, I have the same problem on Linux. It appears there is a flaw in the way the JVM implements blocking socket timeouts:
https://bugs.openjdk.java.net/browse/JDK-8049846
https://bugs.openjdk.java.net/browse/JDK-8075484
To summarize, timeout for blocking sockets is implemented by calling poll on Linux (and select on Windows) to determine that data is available before calling recv. However, at least on Linux, both methods can spuriously indicate that data is available when it is not, leading to recv blocking indefinitely.
From poll(2) man page BUGS section:
See the discussion of spurious readiness notifications under the BUGS section of select(2).
From select(2) man page BUGS section:
Under Linux, select() may report a socket file descriptor as "ready
for reading", while nevertheless a subsequent read blocks. This could
for example happen when data has arrived but upon examination has
wrong checksum and is discarded. There may be other circumstances
in which a file descriptor is spuriously reported as ready. Thus it
may be safer to use O_NONBLOCK on sockets that should not block.
The Apache HTTP Client code is a bit hard to follow, but it appears that connection expiration is only set for HTTP keep-alive connections (which you've disabled) and is indefinite unless the server specifies otherwise. Therefore, as pointed out by oleg, the Connection eviction policy approach won't work in your case and can't be relied upon in general.
As Clint said, you should consider a Non-blocking HTTP client, or (seeing that you are using the Apache Httpclient) implement a Multithreaded request execution to prevent possible hangs of the main application thread (this not solve the problem but is better than restart your app because is freezed). Anyway, you set the setStaleConnectionCheckEnabled property but the stale connection check is not 100% reliable, from the Apache Httpclient tutorial:
One of the major shortcomings of the classic blocking I/O model is
that the network socket can react to I/O events only when blocked in
an I/O operation. When a connection is released back to the manager,
it can be kept alive however it is unable to monitor the status of the
socket and react to any I/O events. If the connection gets closed on
the server side, the client side connection is unable to detect the
change in the connection state (and react appropriately by closing the
socket on its end).
HttpClient tries to mitigate the problem by testing whether the
connection is 'stale', that is no longer valid because it was closed
on the server side, prior to using the connection for executing an
HTTP request. The stale connection check is not 100% reliable and adds
10 to 30 ms overhead to each request execution.
The Apache HttpComponents crew recommends the implementation of a Connection eviction policy
The only feasible solution that does not involve a one thread per
socket model for idle connections is a dedicated monitor thread used
to evict connections that are considered expired due to a long period
of inactivity. The monitor thread can periodically call
ClientConnectionManager#closeExpiredConnections() method to close all
expired connections and evict closed connections from the pool. It can
also optionally call ClientConnectionManager#closeIdleConnections()
method to close all connections that have been idle over a given
period of time.
Take a look at the sample code of the Connection eviction policy section and try to implement it in your application along with the Multithread request execution, I think the implementation of both mechanisms will prevent your undesired hangs.
You should consider a Non-blocking HTTP client like Grizzly or Netty which do not have blocking operations to hang a thread.
I have more than 50 machines that make about 200k requests/day/machine. They are running Amazon Linux AMI 2017.03. I previously had jdk1.8.0_102, now I have jdk1.8.0_131. I am using both apacheHttpClient and OKHttp as scraping libraries.
Each machine was running 50 threads, and sometimes, the threads get lost. After profiling with Youkit java profiler I got
ScraperThread42 State: RUNNABLE CPU usage on sample: 0ms
java.net.SocketInputStream.socketRead0(FileDescriptor, byte[], int, int, int) SocketInputStream.java (native)
java.net.SocketInputStream.socketRead(FileDescriptor, byte[], int, int, int) SocketInputStream.java:116
java.net.SocketInputStream.read(byte[], int, int, int) SocketInputStream.java:171
java.net.SocketInputStream.read(byte[], int, int) SocketInputStream.java:141
okio.Okio$2.read(Buffer, long) Okio.java:139
okio.AsyncTimeout$2.read(Buffer, long) AsyncTimeout.java:211
okio.RealBufferedSource.indexOf(byte, long) RealBufferedSource.java:306
okio.RealBufferedSource.indexOf(byte) RealBufferedSource.java:300
okio.RealBufferedSource.readUtf8LineStrict() RealBufferedSource.java:196
okhttp3.internal.http1.Http1Codec.readResponse() Http1Codec.java:191
okhttp3.internal.connection.RealConnection.createTunnel(int, int, Request, HttpUrl) RealConnection.java:303
okhttp3.internal.connection.RealConnection.buildTunneledConnection(int, int, int, ConnectionSpecSelector) RealConnection.java:156
okhttp3.internal.connection.RealConnection.connect(int, int, int, List, boolean) RealConnection.java:112
okhttp3.internal.connection.StreamAllocation.findConnection(int, int, int, boolean) StreamAllocation.java:193
okhttp3.internal.connection.StreamAllocation.findHealthyConnection(int, int, int, boolean, boolean) StreamAllocation.java:129
okhttp3.internal.connection.StreamAllocation.newStream(OkHttpClient, boolean) StreamAllocation.java:98
okhttp3.internal.connection.ConnectInterceptor.intercept(Interceptor$Chain) ConnectInterceptor.java:42
okhttp3.internal.http.RealInterceptorChain.proceed(Request, StreamAllocation, HttpCodec, Connection) RealInterceptorChain.java:92
okhttp3.internal.http.RealInterceptorChain.proceed(Request) RealInterceptorChain.java:67
okhttp3.internal.http.BridgeInterceptor.intercept(Interceptor$Chain) BridgeInterceptor.java:93
okhttp3.internal.http.RealInterceptorChain.proceed(Request, StreamAllocation, HttpCodec, Connection) RealInterceptorChain.java:92
okhttp3.internal.http.RetryAndFollowUpInterceptor.intercept(Interceptor$Chain) RetryAndFollowUpInterceptor.java:124
okhttp3.internal.http.RealInterceptorChain.proceed(Request, StreamAllocation, HttpCodec, Connection) RealInterceptorChain.java:92
okhttp3.internal.http.RealInterceptorChain.proceed(Request) RealInterceptorChain.java:67
okhttp3.RealCall.getResponseWithInterceptorChain() RealCall.java:198
okhttp3.RealCall.execute() RealCall.java:83
I found out that they have a fix for this
https://bugs.openjdk.java.net/browse/JDK-8172578
in JDK 8u152 (early access). I have installed it on one of our machines. Now I am waiting to see some good results.
Given no one else responded so far, here is my take
Your timeout setting looks perfectly OK to me. The reason why certain requests appear to be constantly blocked in a java.net.SocketInputStream#socketRead0() call is likely to be due to a combination of misbehaving servers and your local configuration. Socket timeout defines a maximum period of inactivity between two consecutive i/o read operations (or in other words two consecutive incoming packets). Your socket timeout setting is 5,000 milliseconds. As long as the opposite endpoint keeps on sending a packet every 4,999 milliseconds for a chunk encoded message the request will never time out and will end up sending most of its time blocked in java.net.SocketInputStream#socketRead0(). You can find out whether or not this is the case by running HttpClient with wire logging turned on.
For Apache HTTP Client (blocking) I found best solution is to getConnectionManager(). and shutdown it.
So in high-reliability solution I just schedule shutdown in other thread and in case request does not complete I'm shutting in down from other thread
I bumped into the same issue using apache common http client.
There's a pretty simple workaround (which doesn't require shutting the connection manager down):
In order to reproduce it, one needs to execute the request from the question in a new thread paying attention to details:
run request in separate thread, close request and release it's connection in a different thread, interrupt hanging thread
don't run EntityUtils.consumeQuietly(response.getEntity()) in finally block (because it hangs on 'dead' connection)
First, add the interface
interface RequestDisposer {
void dispose();
}
Execute an HTTP request in a new thread
final AtomicReference<RequestDisposer> requestDisposer = new AtomicReference<>(null);
final Thread thread = new Thread(() -> {
final HttpGet request = new HttpGet("http://my.url");
final RequestDisposer disposer = () -> {
request.abort();
request.releaseConnection();
};
requestDiposer.set(disposer);
try (final CloseableHttpResponse response = httpClient.execute(request))) {
...
} finally {
disposer.dispose();
}
};)
thread.start()
Call dispose() in the main thread to close hanging connection
requestDisposer.get().dispose(); // better check if it's not null first
thread.interrupt();
thread.join();
That fixed the issue for me.
My stacktrace looked like this:
java.lang.Thread.State: RUNNABLE
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.socketRead(SocketInputStream.java:116)
at java.net.SocketInputStream.read(SocketInputStream.java:171)
at java.net.SocketInputStream.read(SocketInputStream.java:141)
at org.apache.http.impl.io.SessionInputBufferImpl.streamRead(SessionInputBufferImpl.java:139)
at org.apache.http.impl.io.SessionInputBufferImpl.fillBuffer(SessionInputBufferImpl.java:155)
at org.apache.http.impl.io.SessionInputBufferImpl.readLine(SessionInputBufferImpl.java:284)
at org.apache.http.impl.io.ChunkedInputStream.getChunkSize(ChunkedInputStream.java:253)
at org.apache.http.impl.io.ChunkedInputStream.nextChunk(ChunkedInputStream.java:227)
at org.apache.http.impl.io.ChunkedInputStream.read(ChunkedInputStream.java:186)
at org.apache.http.conn.EofSensorInputStream.read(EofSensorInputStream.java:137)
at sun.nio.cs.StreamDecoder.readBytes(StreamDecoder.java:284)
at sun.nio.cs.StreamDecoder.implRead(StreamDecoder.java:326)
at sun.nio.cs.StreamDecoder.read(StreamDecoder.java:178)
To whom it might be interesting, it easily reproducable, interrupt the thread without aborting request and releasing connection (ratio is about 1/100).
Windows 10, version 10.0.
jdk8.151-x64.
I feel that all these answers are way too specific.
We have to note that this is probably a real JVM bug. It should be possible to get the file descriptor and close it. All this timeout-talk is too high level. You do not want a timeout to the extent that the connection fails, what you want is an ability to hard break this stuck thread and stop or interrupt it.
The way the JVM should implemented the SocketInputStream.socketRead function is to set some internal default timeout, which should be even as low as 1 second. Then when the timeout comes, immediately looping back to the socketRead0. While that is happening, the Thread.interrupt and Thread.stop commands can take effect.
The even better way of doing this of course is not to do any blocking wait at all, but instead use a the select(2) system call with a list of file descriptors and when any one has data available, let it perform the read operation.
Just look all over the internet all these people having trouble with threads stuck in java.net.SocketInputStream#socketRead0, it's the most popular topic about java.net.SocketInputStream hands down!
So, while the bug is not fixed, I wonder about the most dirty trick I can come up with to break up this situation. Something like connecting with the debugger interface to get to the stack frame of the socketRead call and grab the FileDescriptor and then break into that to get the int fd number and then make a native close(2) call on that fd.
Do we have a chance to do that? (Don't tell me "it's not good practice") -- if so, let's do it!
I faced the same issue today. Based on #Sergei Voitovich I've tried to make it work still using Apache Http Client.
Since I am using Java 8 its simpler to make a timeout to abort the connection.
Here's is a draft of the implementation:
private HttpResponse executeRequest(Request request){
InterruptibleRequestExecution requestExecution = new InterruptibleRequestExecution(request, executor);
ExecutorService executorService = Executors.newSingleThreadExecutor();
try {
return executorService.submit(requestExecution).get(<your timeout in milliseconds>, TimeUnit.MILLISECONDS);
} catch (TimeoutException | ExecutionException e) {
// Your request timed out, you can throw an exception here if you want
throw new UsefulExceptionForYourApplication(e);
} catch (InterruptedException e) {
// Always remember to call interrupt after catching InterruptedException
Thread.currentThread().interrupt();
throw new UsefulExceptionForYourApplication(e);
} finally {
// This method forces to stop the Thread Pool (with single thread) created by Executors.newSingleThreadExecutor() and makes the pending request to abort inside the thread. So if the request is hanging in socketRead0 it will stop and also the thread will be terminated
forceStopIdleThreadsAndRequests(requestExecution, executorService);
}
}
private void forceStopIdleThreadsAndRequests(InterruptibleRequestExecution execution,
ExecutorService executorService) {
execution.abortRequest();
executorService.shutdownNow();
}
The code above will create a new Thread to execute the request using org.apache.http.client.fluent.Executor. Timeout can be easily configured.
The execution of the thread is defined in InterruptibleRequestExecution which you can see below.
private static class InterruptibleRequestExecution implements Callable<HttpResponse> {
private final Request request;
private final Executor executor;
private final RequestDisposer disposer;
public InterruptibleRequestExecution(Request request, Executor executor) {
this.request = request;
this.executor = executor;
this.disposer = request::abort;
}
#Override
public HttpResponse call() {
try {
return executor.execute(request).returnResponse();
} catch (IOException e) {
throw new UsefulExceptionForYourApplication(e);
} finally {
disposer.dispose();
}
}
public void abortRequest() {
disposer.dispose();
}
#FunctionalInterface
interface RequestDisposer {
void dispose();
}
}
The results are really good. We've had times where some connections where hanging in sockedRead0 for 7 hours! Now, it never passes the defined timeout and its working in production with millions of requests per day without having any problems.

Stop Socket with timeout from waiting after data read from socket

I am trying to create a java http server using tcp sockets. HTTP 1.1 has a timeout value that will enable the connection to be persistent and wait for a short while for possible data from the client. I am trying to implement this timer in my program by using:clientSocket.setSoTimeout(). Even though this will help to leave the connection open for a certain amount of time, but it will wait for that exact amount of time before allowing the next request to be read.
For example:
If timeout is set to 5 seconds,
Request 1 is read. Then the socket hangs and wait until 5 seconds is over.
Request 2 is read. The socket waits until 5 seconds is up again.
This proves to be a problem if my timeout is set to big values. This should not be the case as the request should be processed once it is received and the timeout should only expire only if no data is received throughout the specified duration.
Can anyone advise me on how I could resolve this?
Edit:
For people who face a similar problem, here is my solution:
Since the client waits until the timeout before receiving all the data, I guessed that the client does not know that all the data from the server has been received. Hence, I added a content-length field to the HTTP response packet. Now, my client no longer hangs after receiving the data. The setSoTimeout does indeed work as stated!
Ok, when you receive a connection, then please start a new Thread like this:
class ClientService extends Thread {
private final Socket clientSocket;
public ClientService(Socket clientSocket) {
this.clientSocket=clientSocket;
}
public void run() {
// do your work with the Socket clientSocket here
}
}
this is how then your server code should look like:
while (true) {
Socket clientSocket = server.accept();
new ClientService(clientSocket).start();
}
It will allow you to process responses without waiting for one another till it timeouts.
HTTP 1.1 has a timeout value that will enable the connection to be persistent and wait for a short while for possible data from the client.
Not really. It has a connection: keep-alive setting, which is the default behaviour, and it allows endpoints to close connections that aren't in use after a period of idleness, but it doesn't have a timeout property itself.
I am trying to implement this timer in my program by using:clientSocket.setSoTimeout().
This has nothing whatsoever to do with HTTP. It is a socket read timeout.
Even though this will help to leave the connection open for a certain amount of time, but it will wait for that exact amount of time before allowing the next request to be read.
No it won't. It will cause read methods to throw SocketTimeoutException if no data arrives within the timeout period. Nothing else.
For example:
If timeout is set to 5 seconds,
Request 1 is read. Then the socket hangs and wait until 5 seconds is over.
No it doesn't.
Request 2 is read. The socket waits until 5 seconds is up again.
No it doesn't. You've made all this up. It is fantasy.
This proves to be a problem if my timeout is set to big values.
It isn't a problem with any timeout values whether large or small, because it simply does not happen.
This should not be the case as the request should be processed once it is received and the timeout should only expire only if no data is received throughout the specified duration.
That is exactly what Socket.setSoTimeout() already does.
Your question is founded on a fallacy.

Java - readObject() and setSoTimeout()

So, i wrote a thread on my client side , which tries to readObject() from a socket stream.
This thread runs as long the client is connected.
The connection to the server can be closed on the client's GUI.
If the client decides to disconnect(this will not exit the client program) by clicking the
"disconnect" menu option, the socket will be closed and a isConnected is set to false.
Since the clients read thread tries to readObject() from stream, while the connection can be closed via the GUI, i set a timeout to 250ms (setSoTimeout(250)).
#Override
public void run()
{
this.connection = this.connectionHandler.getSocket();
while(connectionHandler.isConnected())
{
this.readCircle();
}
this.connectionHandler.setReadTaskRunning(false);
}
private void readCircle()
{
try
{
this.connection.setSoTimeout(250);
this.connectionHandler.readData(); //this uses readObject().
}
catch(SocketTimeoutException timeout){}
catch(...){}
}
I know that readObject() will block, and to check if the client is still connected, i wraped it in a while, which checks (every timeout) if the client socket is still connected.
My question now:
In case, if the readObject() starts to get a object passed by the server, tries to read it, but while processing a timeout occurs, will the data on the stream be "damaged" in some way, because it canceled.
Or should i just let the readObject() block and catch a exception if the GUI thread wants to close the socket.
I'm not very experienced with sockets and maybe my approach is wrong at all.
Socket read timeout will cause a SocketTimeoutException to be thrown by readObject(). You may not be able to reuse that ObjectInputStream, and the stream may be damaged because its current position will stay largely undefined.
This probably can only be fixed by closing and reopening the connection.

How do you prevent a denial of service from exhausting a thread pool on a socket server in Java?

For work I have written a specialized HTTP server which only performs 301/302/Frame redirections for web sites. Recently, some nefarious clients have been intentionally opening sockets and writing one character every 500 milliseconds in order to defeat my TCP socket timeout. Then they keep the socket open indefinitely and have multiple clients doing the same thing in a distributed denial of service. This eventually exhausts the thread pool which handles the TCP connections. How would you write your code to make it less susceptible to this sort of bad behavior? Here's my socket accept code:
while (true) {
// Blocks while waiting for a new connection
log.debug("Blocking while waiting for a new connection.") ;
try {
Socket server = httpServer.accept() ;
// After receiving a new connection, set the SO_LINGER and SO_TIMEOUT options
server.setReuseAddress(true) ;
server.setSoTimeout(timeout) ;
server.setSoLinger(true, socketTimeout) ;
// Hand off the new socket connection to a worker thread
threadPool.execute(new Worker(cache, server, requests, geoIp)) ;
} catch (IOException e) {
log.error("Unable to accept socket connection.", e) ;
continue ;
}
}
timeout and socketTimeout are currently set to 500 milliseconds.
Start closing sockets after a certain time has passed. If a socket has stayed open too long just close it down. You could do this in two ways:
You could also put a time limit on how long the client takes to send you a request. If they don't sustain a certain level of throughput close em. That can be pretty easy to do in your read loop when your thread is reading the request by adding a System.currentTimeInMillis() at the start and compare to where you are as you loop. If it drifts past a certain limit they are shutdown and dropped.
An alternative idea to this idea is possibly not reject them but let your thread return to the pool, but put the socket on a stack to watch. Let the bytes pile up and after they reached a certain size you can them pass them to a thread in the pool to process. This the hybrid approach to cut em off vs. maybe they aren't bad but slow.
Another way to handle that is watch how long a thread has been working on a request, and if it's not finished within a time limit close the underlying socket. Then the thread will get a SocketException and it can shutdown and clean up.
Here are some other ideas that mostly involve using outside hardware like firewalls, load balancers, etc.
https://security.stackexchange.com/questions/114/what-techniques-do-advanced-firewalls-use-to-protect-againt-dos-ddos/792#792

Categories