Factorials Challenge.(Beginner's Challenge) - java

I tried the following challenge:
Given the first few factorials:
1! = 1
2! = 2 x 1 = 2
3! = 3 x 2 x 1 = 6
4! = 4 x 3 x 2 x 1 = 24
What is the sum of the first 15 factorials, NOT INCLUDING 0!?
My solution in Java is the following:
public class Factorial
{
public static void main(String[] args)
{
int sum = 0;
int multi = 1;
for (int i=1;i<=15;i++)
{
multi = multi*i;
sum = multi+sum;
}
System.out.print(sum);
}
}
I verified the solutions for the first 7 factorials but will it work for the first 15?

It will not work for the first 15 factorials because of integer overflow. The correct answer is 1401602636313, which exceeds Java's int bound of 2147483647. You could either use a long which has a bound of 9223372036854775807 or a BigInteger.

No, its not working for 15. Use long. Also, you could move the print statement inside the loop, to check from where it starts failing. I guess in this case it's 13.

That
public static void printFactorials (int max) {
long fac = 1;
long sum = 0;
for (int i = 1; i <= max; fac *= ++i) {
System.out.println(String.format("Factorial(%2d)=%d", i, fac));
sum += fac;
}
System.out.println(String.format("Sum of Factorials(1 to %2d)=%d", max, sum));
}
gives you
Factorial( 1)=1
Factorial( 2)=2
Factorial( 3)=6
Factorial( 4)=24
Factorial( 5)=120
Factorial( 6)=720
Factorial( 7)=5040
Factorial( 8)=40320
Factorial( 9)=362880
Factorial(10)=3628800
Factorial(11)=39916800
Factorial(12)=479001600
Factorial(13)=6227020800
Factorial(14)=87178291200
Factorial(15)=1307674368000
Sum of Factorials(1 to 15)=1401602636313
long starts to fail at 21, next step is BigInteger
public static void printRlyBigFactorials (int max) {
BigInteger fac = BigInteger.ONE;
BigInteger sum = BigInteger.ZERO;
for (int i = 1; i <= max; ++i) {
fac = fac.multiply(BigInteger.valueOf(i));
sum = sum.add(fac);
System.out.println(String.format("Factorial(%2d)=%d", i, fac));
}
System.out.println(String.format("Sum of Factorials(1 to %2d)=%d", max, sum));
}
That will work almost indefinitely and can give you fancy results like:
Sum of Factorials(1 to 500)=
1222581999810786173488382263893486121736784649845260488587055662127413631697
9142090995417259894466676137016242713788312106218384177808117660024733369428
7060019503701220190523381023699528466605036804597249531428694859689049295904
5138704466475196055082304091214424335155644013903958356823605973150159110295
5787828433482529258832635575855564789877227459384652114477297831606218655683
9245588828671235437927278554210732477499719243692398907465554636521289870187
5799458234466791378320221140358905721655475503366304295011345436395868843079
5463780536087239619245051615759218253091986494512882003123090598805090122753
7135918455294416676103707115038417384516670399033063650562275830354903359872
0775172343137459008549361297203752431405977559950082400276439557196120290170
5516606073135650288107937474531851451830365876392678959480905477335825506233
3795849463603798966643420966668878072957663827751761832039623225350606860709
6479320263132522604054741925038640750661849690108363701190203548476572823422
7743271977187818002695582046473911765828511673121820261887951566200568565033
40092247479478684738621107994804323593105039052556442336528920420940313

Related

Write a program that will calculate the number of trailing zeros in a factorial of a given number. N! = 1 * 2 * 3 * ... * N

This is my code for the Codewars problem (Java) yet I cannot make it work. I'm pretty sure I've made a stupid mistake somewhere because of my lack of experience (coding for 4 months)
public static int zeros(int n) {
int f = 1;
int zerocount = 0;
for(int i = 2 ; i <= n; i++){
f *= i;
}
String factorial = String.valueOf(f);
String split [] = factorial.split("");
for(int i = 0; i < split.length; i++){
String m = split[i];
if(m.equals( "0")){
zerocount ++;
}
else {
zerocount = 0;
}
}
return zerocount;
}
}
In fact, you do not need to calculate the factorial because it will rapidly explode into a huge number that will overflow even a long. What you want to do is count the number of fives and twos by which each number between 2 and n can be divided.
static int powersoffive(int n) {
int p=0;
while (n % 5 == 0) {
p++;
n /= 5;
}
return p;
}
static int countzeros(int n) {
int fives = 0;
for (int i = 1; i <= n; i++)
fives += powersoffive(i);
return fives;
}
Note: Lajos Arpad's solution is superior.
As pointed out by other users your solution will probably not be accepted because of the exploding factorial you are calculating.
About the code you wrote there are two mistakes you have made:
You are calculating the factorial in the wrong way. You should start with i = 2 in the loop
for(int i = 2; i <= n; i++){
f *= i;
}
Also in Java you cannot compare strings using ==. This is not valid
if(m == "0")
You should compare them like this
if(m.equals("0"))
Anyway this is how I would have resolved the problem
public static int zeros(int n) {
int zerocount = 0;
for (int i = 5; n / i > 0; i *= 5) {
zerocount += n / i;
}
return zerocount;
}
A zero in a base-10 representation of a number is a 2*5. In order to determine the number of trailing zeroes you will need to determine how many times can you divide your number with ten, or, in other words, the minimum of the sum of 2 and 5 factors. Due to the fact that 5 is bigger than 2 and we go sequentially, the number of fives will be the number of trailing zeroes.
A naive approach would be to round down n/5, but that will only give you the number of items divisible with 5. However, for example, 25 is divisible by 5 twice. The same can be said about 50. 125 can be divided by 5 three times, no less.
So, the algorithm would look like this:
int items = 0;
int power = 5;
while (power < n) {
items += (int) (n / power);
power *= 5;
}
Here small numbers are in use in relative terms, but it's only a proof of concept.
You do need to use brute force here and you integers will overflow anyway.
With multiplication trailing zero appears only as the result of 2*5.
Now imagine the factorial represented by a product of it's prime factors.
Notice that for every 5 (five) we will always have 2 (two).
So to calculate the number of zeroes we need to calculate the number of fives.
That can be implemented by continuously dividing N by five and totaling results
In Java code that will be something like this:
static int calculate(int n)
{
int result = 0;
while (n > 0 ) {
n /= 5;
result += n;
}
return result;
}

Write a falling power method

public static long fallingPower(int n, int k)
However, in the related operation of falling power that is useful in many combinatorial formulas and denoted syntactically by underlining the exponent, each term that gets multiplied into the product is always one less than the previous term. For example, the falling power 83 would be computed as 8 * 7 * 6 = 336. Similarly, the falling power 105 would equal 10 * 9 * 8 * 7 * 6 = 30240. Nothing important changes if the base n is negative. For example, the falling power (-4)5 is computed the exact same way as -4 * -5 * -6 * -7 * -8 = -6720.
This method should compute and return the falling power nk where n can be any integer, and k can be any nonnegative integer. (Analogous to ordinary powers, n0 = 1 for any n.) The automated tester is designed so that your method does not need to worry about potential integer overflow as long as you perform computations using long type of 64-bit integers.
public static long fallingPower(int n, int k)
long result = n;
for (int i = n; i < k; i--) {
result = result * n;
}
return result;
}
Is my method right?
It should be:
public static long fallingPower(int n, int k){
long result = n;
for (int i = 0; i < k; i++) {
n=n-1;
result = result * n;
}
return result;
}
You are supposed to multiply k times, starting with n and decrementing each factor by one. Your code currently doesn't really make any sense. I would do it like this:
public static long fallingPower(int n, int k)
long result = n;
for (int i = 1; i < k; i++) {
result = result * (n-i);
}
return result;
}
k is required to be non-negative, so you need to handle that in the method too, for example with an exception:
public static long fallingPower(int n, int k)
if(k < 0) {
throw new IllegalArgumentException("Negative exponent");
}
long result = n;
for (int i = 1; i < k; i++) {
result = result * (n-i);
}
return result;
}
public static long fallingPower(int n, uint k){
long result = 1;
for(; k > 0; k--, n--){
result *= n;
}
return result;
}
This is more of the programming logic, not your method, if I am not wrong. I do not have error handling. I started going backward just like you, assuming the least integer permutation of zero is equal to 1 and at least we need to return 1.
You can start from k number before the n and multiply thereafter until you reach n.
public static long fallingPower(int n, int k)
{
long result = 1;
for (int i = 1 ; i <= k ; i++) {
result = result * n;
n = n-1;
}
return result;
}

Reducing the time complexity/Optimizing the solution

The motto is to find the sum of all the multiples of 3 or 5 below N.
Here's my code:
public class Solution
{
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
int t = in.nextInt();
long n=0;
long sum=0;
for(int a0 = 0; a0 < t; a0++)
{
n = in.nextInt();
sum=0;
for(long i=1;i<n;i++)
{
if(i%3==0 || i%5==0)
sum = sum + i;
}
System.out.println(sum);
}
}
}
It's taking more than 1sec to execute for some of the test cases. Can anyone please help me out so as to reduce the time complexity?
We can find the sum of all multiples of number d that are below N as a sum of an arithmetic progression (their sum is equal to d + 2*d + 3*d + ...).
long multiplesSum(long N, long d) {
long highestMultiple = (N-1) / d * d;
long numberOfMultiples = highestMultiple / d;
return (d + highestMultiple) * numberOfMultiples / 2;
}
Then the result will be equal to:
long resultSum(long N) {
return multiplesSum(N, 3) + multiplesSum(N, 5) - multiplesSum(N, 3*5);
}
We need to subtract multiplesSum(N, 15) because there are numbers that are multiples of both 3 and 5 and we added them twice.
Complexity: O(1)
You can't reduce the time complexity in this case as there are still O(N) of each set of numbers. However you can reduce the constant multiplier by using integer division:
static int findMultiples(int N, int s)
{
int c = N / s, sum = 0;
for (int i = 0, k = s; i < c; i++, k += s)
sum += k;
return sum;
}
This way you only loop through the multiples themselves instead of the whole range [0, N].
Note that you will need to do findMultiples(N, 3) + findMultiples(N, 5) - findMultiples(N, 15), to remove the duplicated multiples of both 3 and 5. The number of loops is therefore N/3 + N/5 + N/15 = 0.6N instead of N.
EDIT: in general the solution for an arbitrary number of divisors is sum(findMultiples(N,divisor_i) - findMultiples(N,LCM(all_divisors)); however it is only worth doing this if sum(1/divisor_i) + 1/LCM(all_divisors) < 1, otherwise there will be more loops. Luckily this will never be true for 2 divisors.
The sum of all numbers from 1 to (including) N is known to be N(N+1)/2 (no need for iteration).
So, the sum of all multiples of K, from K to KM is K times the above formula, giving KM(M+1)/2.
Combine this with #meowgoesthedog's findMultiples(N, 3) + findMultiples(N, 5) - findMultiples(N, 15) idea, and you have a constant-time solution.
A solution for your problem.Fastest method for solving your problem.
import java.util.*;
class Solution {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int t = in.nextInt();
while(t!=0)
{
long a=in.nextLong();
long q=a-1;
long aa=q/3;
long bb=q/5;
long cc=q/15;
long aaa=((aa*(aa+1))/2)*3;
long bbb=((bb*(bb+1))/2)*5;
long ccc=((cc*(cc+1))/2)*15;
System.out.println(aaa+bbb-ccc);
t-=1;}
}
}

euler project 23 - can't find the mistake in my code [Java]

After a week that I spent stuck on this problem I can't find where is my mistake.
the problem is:
A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number.
A number n is called deficient if the sum of its proper divisors is less than n and it is called abundant if this sum exceeds n.
As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest number that can be written as the sum of two abundant numbers is 24. By mathematical analysis, it can be shown that all integers greater than 28123 can be written as the sum of two abundant numbers. However, this upper limit cannot be reduced any further by analysis even though it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than this limit.
Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.
so my code is:
package eulerProject;
import java.util.*;
import java.math.BigInteger;
public class e23 {
public static void main(String[] args) {
ArrayList<Integer> list = new ArrayList<>();
BigInteger sum = BigInteger.ZERO;
for (int i = 1; i <= 28123; i++) {
if (!check(i))
list.add(i);
}
System.out.println(list);
for (int i = 0; i < list.size(); i++)
sum = sum.add(BigInteger.valueOf(list.get(i)));
System.out.println(sum);
}
public static boolean check(long z) {
long y = 0;
for (long i = 1; i <= z / 2; i++) {
if (abundant(i)) {
y = z - i;
if (abundant(y)) {
return true;
}
y = 0;
}
}
return false;
}
public static long sum(long x) {
long sum = 0;
for (int i = 1; i < (Math.sqrt(x)); i++) {
if (x % i == 0) {
if (x / i == i) {
sum += i;
} else {
sum = sum + i + (x / i);
}
}
}
sum = sum - x;
return sum;
}
public static boolean abundant(long x) {
if (sum(x) > x)
return true;
return false;
}
}
I'll just explain the methods:
"sum" - sums all the proper divisors of a number.
(like number = 12 , so it sum: 1+2+3+4+6.)
"abundant" - just checks if the number is abundant or not by compairing the sum of his divisors and the number itself.
"check" - generating two numbers which their sum is the number we checking - and checking if the both numbers are abundant. if they are so returns true.
and the main just generating numbers until the max limit, adding to list and then I sum the list.
my answer is: 4190404.
the correct answer is: 4179871.
where is the mistake?
Your sum method doesn't get the correct sum for perfect squares because your loop stops before the square root. For example, if you called sum(16), the loop would run up to i = 3 and stop, so 4 would not contribute to the sum.
Solution:
(I also fixed some inefficiencies.)
public static long sum(long x){
long sum = 1;
int sqrt = (int)Math.sqrt(x);
for (int i = 2; i <= sqrt; i++) {
if (x % i == 0) {
sum += i + (x/i);
}
}
//checks if perfect square and subtracts out extra square root.
if(sqrt * sqrt == x) sum -= sqrt;
return sum;
}

Counting trailing zeros of numbers resulted from factorial

I'm trying to count trailing zeros of numbers that are resulted from factorials (meaning that the numbers get quite large). Following code takes a number, compute the factorial of the number, and count the trailing zeros. However, when the number is about as large as 25!, numZeros don't work.
public static void main(String[] args) {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
double fact;
int answer;
try {
int number = Integer.parseInt(br.readLine());
fact = factorial(number);
answer = numZeros(fact);
}
catch (NumberFormatException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
public static double factorial (int num) {
double total = 1;
for (int i = 1; i <= num; i++) {
total *= i;
}
return total;
}
public static int numZeros (double num) {
int count = 0;
int last = 0;
while (last == 0) {
last = (int) (num % 10);
num = num / 10;
count++;
}
return count-1;
}
I am not worrying about the efficiency of this code, and I know that there are multiple ways to make the efficiency of this code BETTER. What I'm trying to figure out is why the counting trailing zeros of numbers that are greater than 25! is not working.
Any ideas?
Your task is not to compute the factorial but the number of zeroes. A good solution uses the formula from http://en.wikipedia.org/wiki/Trailing_zeros (which you can try to prove)
def zeroes(n):
i = 1
result = 0
while n >= i:
i *= 5
result += n/i # (taking floor, just like Python or Java does)
return result
Hope you can translate this to Java. This simply computes [n / 5] + [n / 25] + [n / 125] + [n / 625] + ... and stops when the divisor gets larger than n.
DON'T use BigIntegers. This is a bozosort. Such solutions require seconds of time for large numbers.
You only really need to know how many 2s and 5s there are in the product. If you're counting trailing zeroes, then you're actually counting "How many times does ten divide this number?". if you represent n! as q*(2^a)*(5^b) where q is not divisible by 2 or 5. Then just taking the minimum of a and b in the second expression will give you how many times 10 divides the number. Actually doing the multiplication is overkill.
Edit: Counting the twos is also overkill, so you only really need the fives.
And for some python, I think this should work:
def countFives(n):
fives = 0
m = 5
while m <= n:
fives = fives + (n/m)
m = m*5
return fives
The double type has limited precision, so if the numbers you are working with get too big the double will be only an approximation. To work around this you can use something like BigInteger to make it work for arbitrarily large integers.
You can use a DecimalFormat to format big numbers. If you format your number this way you get the number in scientific notation then every number will be like 1.4567E7 this will make your work much easier. Because the number after the E - the number of characters behind the . are the number of trailing zeros I think.
I don't know if this is the exact pattern needed. You can see how to form the patterns here
DecimalFormat formater = new DecimalFormat("0.###E0");
My 2 cents: avoid to work with double since they are error-prone. A better datatype in this case is BigInteger, and here there is a small method that will help you:
public class CountTrailingZeroes {
public int countTrailingZeroes(double number) {
return countTrailingZeroes(String.format("%.0f", number));
}
public int countTrailingZeroes(String number) {
int c = 0;
int i = number.length() - 1;
while (number.charAt(i) == '0') {
i--;
c++;
}
return c;
}
#Test
public void $128() {
assertEquals(0, countTrailingZeroes("128"));
}
#Test
public void $120() {
assertEquals(1, countTrailingZeroes("120"));
}
#Test
public void $1200() {
assertEquals(2, countTrailingZeroes("1200"));
}
#Test
public void $12000() {
assertEquals(3, countTrailingZeroes("12000"));
}
#Test
public void $120000() {
assertEquals(4, countTrailingZeroes("120000"));
}
#Test
public void $102350000() {
assertEquals(4, countTrailingZeroes("102350000"));
}
#Test
public void $1023500000() {
assertEquals(5, countTrailingZeroes(1023500000.0));
}
}
This is how I made it, but with bigger > 25 factorial the long capacity is not enough and should be used the class Biginteger, with witch I am not familiar yet:)
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner in = new Scanner(System.in);
System.out.print("Please enter a number : ");
long number = in.nextLong();
long numFactorial = 1;
for(long i = 1; i <= number; i++) {
numFactorial *= i;
}
long result = 0;
int divider = 5;
for( divider =5; (numFactorial % divider) == 0; divider*=5) {
result += 1;
}
System.out.println("Factorial of n is: " + numFactorial);
System.out.println("The number contains " + result + " zeroes at its end.");
in.close();
}
}
The best with logarithmic time complexity is the following:
public int trailingZeroes(int n) {
if (n < 0)
return -1;
int count = 0;
for (long i = 5; n / i >= 1; i *= 5) {
count += n / i;
}
return count;
}
shamelessly copied from http://www.programcreek.com/2014/04/leetcode-factorial-trailing-zeroes-java/
I had the same issue to solve in Javascript, and I solved it like:
var number = 1000010000;
var str = (number + '').split(''); //convert to string
var i = str.length - 1; // start from the right side of the array
var count = 0; //var where to leave result
for (;i>0 && str[i] === '0';i--){
count++;
}
console.log(count) // console shows 4
This solution gives you the number of trailing zeros.
var number = 1000010000;
var str = (number + '').split(''); //convert to string
var i = str.length - 1; // start from the right side of the array
var count = 0; //var where to leave result
for (;i>0 && str[i] === '0';i--){
count++;
}
console.log(count)
Java's doubles max out at a bit over 9 * 10 ^ 18 where as 25! is 1.5 * 10 ^ 25. If you want to be able to have factorials that high you might want to use BigInteger (similar to BigDecimal but doesn't do decimals).
I wrote this up real quick, I think it solves your problem accurately. I used the BigInteger class to avoid that cast from double to integer, which could be causing you problems. I tested it on several large numbers over 25, such as 101, which accurately returned 24 zeros.
The idea behind the method is that if you take 25! then the first calculation is 25 * 24 = 600, so you can knock two zeros off immediately and then do 6 * 23 = 138. So it calculates the factorial removing zeros as it goes.
public static int count(int number) {
final BigInteger zero = new BigInteger("0");
final BigInteger ten = new BigInteger("10");
int zeroCount = 0;
BigInteger mult = new BigInteger("1");
while (number > 0) {
mult = mult.multiply(new BigInteger(Integer.toString(number)));
while (mult.mod(ten).compareTo(zero) == 0){
mult = mult.divide(ten);
zeroCount += 1;
}
number -= 1;
}
return zeroCount;
}
Since you said you don't care about run time at all (not that my first was particularly efficient, just slightly more so) this one just does the factorial and then counts the zeros, so it's cenceptually simpler:
public static BigInteger factorial(int number) {
BigInteger ans = new BigInteger("1");
while (number > 0) {
ans = ans.multiply(new BigInteger(Integer.toString(number)));
number -= 1;
}
return ans;
}
public static int countZeros(int number) {
final BigInteger zero = new BigInteger("0");
final BigInteger ten = new BigInteger("10");
BigInteger fact = factorial(number);
int zeroCount = 0;
while (fact.mod(ten).compareTo(zero) == 0){
fact = fact.divide(ten);
zeroCount += 1;
}
}

Categories