Java How to get parameters that a object was declared with? - java

So I want to find out what parameters were used to create a object. How would I do that?
For example:
Example temp=new Example(1,2,3);
How do I find out what values 1,2, and 3 are, without manually saving them.

A well defined object usually hides its members behind a set of methods. If you need to discover how an object was initialized, you should add methods to its class that allow those details to be determined. And yes, this would involve at least saving these details as part of the object's initializer.

You can't. (Indeed, if you could, that would cause a number of bad things to happen. Not all constructor arguments are meant to be saved.)
Save them manually as fields in the class, like you normally would.

Related

Checking String parameters corresponding to field names

I'm heavily using Java.lang.Class.getField() method which requires a String variable as an argument. The problem I'm facing is when I change field names, that getField() refers to, Eclipse doesn't warn me that argument points nowhere (since it's String) and I end up having methods working improperly unnoticed.
So far I can see two ways out. It's either using try-catch blocks around every getField() call and running application to see what will be the next line to throw an exception. Fix it and watch out for the next exception. Or it's using Find/Replace feature every time I change a field name to manually look for the String value and replace it. Is there a more friendly (i.e. automatic) way to update String parameters in such cases?
Maybe there's a method (which I fail to find) that accepts a full field path as a non-String argument and returns a Field object? Something like turnToFieldObject(car.speed) returning Field object corresponding to speed field so that Eclipse would automatically check if there's such a field car.speed.
PS
First of all, thank you for your replies.
I can see that a lot of you, guys, suggest that I'm using reflection too much. That's why I feel I need to add extra explanation and would be glad to hear suggestions as well.
I'm doing a research about modeling social evolution and I need the entities to evolve new features that they don't have at the start. And it seemed to me that adding new fields to represent some evolutional changes is better understanding wise than adding new elements to arrays or collections. And the task suggests I shouldn't be able to know what feature will be evolved. That's why I rely so heavily on reflection.
AFAIK, there is no such method. You pass a reference (if it's an object) or value (if it's primitive); all data about the variables that they were originally assigned to is not available at runtime.
This is the huge downside of using reflection, and if you're "heavily" using this feature in such way, you're probably doing something wrong. Why not access the field directly, using getters and setters?
Don't get me wrong, reflection has its uses (for example, when you want to scan for fields with certain annotations and inject their values), but if you're referencing fields or methods by their name using a simple string, you could just as well access fields or methods directly. It implies that you know the field beforehand. If it's private, there is probably a reason why it's encapsulated. You're losing the content assist and refactoring possibilities by overusing reflection.
If you're modeling social evolution, I'd go with a more flexible solution. Adding new fields at runtime is (near?) impossible, so you are basically forced to implement a new class for each entity and create a new object each time the entity "evolves". That's why I suggest you to go with one of these solutions:
Use Map<String, Object> to store entities' properties. This is a very flexible solution which will allow you easily add and remove "fields" at the cost of losing their type data. Checking if the entity has a certain property will be a cheap contains call.
If you really want to stick to a million custom classes, use interfaces with getters and setters in addition to fields. For example, convert private String name to interface Named { String getName(); void setName(String name); }. This is much easier to refactor and does not rely on reflection. A class can implement as many interfaces as you want, so this is pretty much like the field solution, except it allows you to create custom getters/setters with extra logic if desperately needed. And determining if entity has a certain property is a entity instanceof MyInterface call, which is still cheaper than reflection.
I would suggest writing a method that use to get your fields supply it a string and then if the exception is thrown notify whatever needs to be notified that it was not valid and if the exception isn't caught return the field.
Although I do agree with the above that reflection should not be used heavily.

Referring to Object of Object of Object

Assuming we have an object inside an object, inside another object, what is the best way to retrieve the value of a private variable outside the two objects?
The simplest way seems to be to do something like this:
object1.object2.object3.getvalue();
Is this acceptable? Or would it be better to call a method which calls a method, which calls a method?
The second option seems unnecessarily laborious, considering you would basically be having the same method created in 3 different classes.
use getter to get any object
ex: Object obj = object1.getObject2().getObject3();
It depends on your definition of "acceptable". It may be acceptable in your case. It is hard to tell without proper context.
However, there are something you may consider, level-by-level:
1. Use of getters
Although such kind of getters are still far from satisfactory, it is still better than using direct property access
i.e. Instead of accessing object1.object2 by direct field access, provide Object2 getObject2() in Object1, so that the code looks like:
object1.getObject2().getObject3().getValue()
2. Null handling
Usually when we chained such kind of property navigation, we will have problem that in some level, null is returned, which makes object1.getObject2().getObject3().getValue() throwing NPE.
If you are using Java 8, consider returning Optional<>. e.g. in Object1, getter of object2 should look like Optional<Object2> getObject2()
With such change, your code can be made null-safe by something like:
Value value = object1.getObject2()
.flatMap(Object2::getObject3)
.map(Object3::getValue)
.orElse(Value.emptyValue())
3. Law of Demeter
In order to make a more loosely-coupled design, you may want to provide access to that value in API of Object1, instead of exposing multiple levels of indirection. Hence:
Value value = object1.getFooValue();
(Keep using Optional<> if it fit your need)
for which internally it retrieve the value from Object3. (Of course, Object2 may also want to do something similar)
4. Getter is evil
Always remember you should try to avoid providing internal representation of your object. Your objects should provide meaningful behavior instead of simply act as a value object for you to get or set data. It is hard to give an example here but ask yourself, why do you need to get the value for? Is that action more appropriate to be provided by your object itself?
The best way is to not think of your objects as data stores. A class should be defined to have some work to do, some cluster of related responsibilities. In order to perform that work to fulfill those responsibilities some internal data may be kept, and some nested objects contained. Serving out data should not be the goal of your objects, generally speaking.
Encapsulation
The whole idea of encapsulation in object-oriented programming is to not expose that internal data and nested objects. Instead publish the various available chores by declaring methods on your higher/outer object. Encapsulation frees you to change those internals without breaking the outside calling code – avoiding fragility is the goal.
For example, an Invoice object can contain a collection of LineItem objects. In turn each LineItem object contains other objects for product, quantity, price, extended cost, taxability, tax rate, tax amount, and line cost. If you want to know the total amount of sales tax added across the items, instead of asking the Invoice for the LineItem, and then asking the LineItem for TaxAmount object, define this chore as a method on Invoice, getTotalTaxAmount. Let that method figure out (and keep to itself!) how to go through the contained objects to collect the relevant information.
If you absolutely must expose that nested data, again define a method at the highest level that returns a copy of the desired data or a collection of the desired objects (probably copies of those objects). Again, the goal is to avoid exposing the objects within objects within objects.
Then, within that highest method, as the correct Answer by Raaga stated, define a getter that calls a getter.
Getter Methods versus Direct Member Access
In a very simple structure of data you could access the objects directly. But generally better to use getter methods. Again the reason is encapsulation. Having a getter method allows you the flexibility of redefining the implementation details of the stored data.
For example, presently you could store the "Sex" variable as a String with values of "F" or "M". But later you may decide to take advantage of Java's nifty enum feature. So you replace those single-character "F" & "M" strings with enum instances Sex.FEMALE and Sex.MALE. Having a getter provides a level of insulation, so the Strings can be replaced internally with enums. The getter method continues to return a String (and internally translating the enum to an "F" or "M" String to be returned). This way you can work on restructuring your class without breaking those dependent outside objects.
object1.object2.object3.getvalue();
This chaining seems incorrect...Object chaining under such scenario is always object1.someMethod().someOtherMethod(). Or something like suggested above in an answer using getter object1.getObject2().getObject3().
I hope it helps.
What you described may be the simplest way (if object2 and object3 are accessible) but it is definitely not the way to go. As Raaga pointed out getters are a lot better to retrieve members of a class and these members should then be private or protected to prevent errors.
If you can do
object1.object2.object3.getvalue();
you can also do something like
object1.object2 = null;
which is most likely not what you want to allow. This is one of the basic concepts of object oriented programming. Classes should handle their implementation details / secrets and not directly offer them to the outside! This is what getters/setters are for.
This way you have more control over the access and what can be done and what can't. If you should only be able to retrieve object2 from object1 but not be able to change it, you can only offer a getter and no setter.
If you should also be able to change it, it is also better to use setter for more control, because you can do checking in your setter to prevent my example where I put a null pointer as your object2
And just in case you worry about efficiency that calling a method might not be as efficient as directly accessing a member, you can rely on Java to internally optimize your method call that it is not any slower than the direct access.

Why is "Set()" function better than modifying public variable?

This one is bothering me for a while now :)
Suppose we have a variable - why is writing a Set function better practice than simply modifying variable's data (and setting the variable to be public instead of private)?
It's less coding that way and I can't see any "security" issues.
Sometimes when setting a variable, you may want to do something else with the given value other than instantly place it in the class's variable: for instance, you may want to validate it or update another value that is related.
Basically, it lets the class which owns that variable control what can be done to it, and the specific series of events that occur when it is altered.
It also needs to be mentioned that it is not always better to use "set" methods. Blind compliance with patterns may lead to overcomplicated code. If class acts as just simple (really simple) data container, then public access is often acceptable. In example, look at java.awt.Rectangle or at java.awt.Point classes.
It all has to do with object orientation and how strict you are in that doctrine. If you strictly follow all the guidelines, it is bad to directly use methods and identifiers from one class, by the other. Technically there is no objection.
This discussion is the same as the static - no static discussion. The (self proclaimed) guru, found that sacrilege, but you put your computer no obstacle in the way, if you put your whole program is static.

Setting values of an object

Let's say I've got a class called House with the two fields
name
address
Each of these fields has got a getter and a setter.
Now I want another method in the House class called setValues. This method should set the fields with properties from a passed object of a different type.
There would be two ways on how to create this method. First way:
private void setHouse(HouseTransfer transer){
name = transfer.getName();
address = transfer.getAddress();
}
Or the second option:
private void setHouse(HouseTransfer transer){
setName(transfer.getName());
setAddress(transfer.getAddress());
}
Which one is more "best practice"?
At a certain level of granularity, software design is more subjective matter than one of black-and-white absolutes. I do not believe there is an absolute "best practice" here.
That being said, I personally would use the second form. The basic idea of having a setter method is that at some point you might need some some special logic around setting that value (e.g. formatting input, sanitation, validation, etc). So it makes the most sense to always rely on any such logic being in one central place, rather than scattered throughout you code anywhere this variable is set.
If you have a truly trivial example, where the setter is simply setting the value and know absolutely that no other logic will ever be added, then you could certainly use the first form for simplicity. Put there's not real performance hit to the second form, so I personally would just use that.
I would use the individual getters/setters inside of the setHouse method (which is your second option).
The fact that you have setters indicates that there is some kind of encapsulation involved around that operation. Rather than re-write the code to enforce that encapsulation, re-use what you already have.
Jon's answer to that question (Taken from another question about using getters/setters which is not a duplicate to this one)
You don't always need getters/setters, but if you have some, there's usually a good reason why you've implemented them and in that case: use them.
Perhaps if you are getting and setting in two different places you might consider factoring out your getter and setter to a common interface. This can make later customisations easier, right?

find out instantiating object in the constructor of a class

How can i get hold of the instantiating object from a constructor in java?
I want to store reference to the parent object for some GUI classes to simulate event bubbling - calling parents handlers - but i dont wanna change all the existing code.
Short answer: there isn't a way to do this in Java. (You can find out what class called you, but the long answer below applies there for the most part as well.)
Long answer: Code that magically behaves differently depending on where it's being invoked from is almost always a bad idea. It's confusing to whoever has to maintain your code, and it seriously hurts your ability to refactor. For example, suppose you realize that two of the places instantiating your object have basicaly the same logic, so you decide to factor out the common bits. Surprise! Now the code behaves differently because it's being instantiated from somewhere else. Just add the parameter and fix the callers. It'll save you time in the long run.
If you want to know the invoking class, then pass "this" as a parameter to the constructor.
Thing thing = new Thing(this);
Edit: A modern IDE allowing refactoring will make this very easy to do.
Intercepting method calls (including constructors) without changing a ton of existing code is one thing Aspect-oriented programming was made for.
Check out AspectJ for a start.
With AspectJ, you can define a "pointcut" that specifies that you want to intercept constructor calls for a certain object or set of objects (using wildcards if need be), and within the interception code ("advice"), you will be given method context, which includes information about the both the calling method and object.
You can even use AspectJ to add fields to your object's to store the parent reference without modifying their existing code (this is called "introduction").

Categories