How to stop excuting a method after say 1 sec. of time? - java

I have a method in java which calls webservice. Now if the webservice is taking more than 1 sec. of time. I should be able to kill the method and continue in the program flow.

Google Guava's SimpleTimeLimiter will do what you need, specifically its callWithTimeout() method.

I would recommend you to use the Executors framework and call Future.get(long, TimeUnit). As for killing that call, you can call Future.cancel(true). Of course, you'll have to submit a Callable that contains the call.

In case you don't want to add a new library, you can easily accomplish this by delegating the Web Service invocation to another Thread, and join on it using a timeout of 1 sec. Below is a complete program which does these tasks. There are 2 key points:
Use Asynchronous Thread to do the call and join on it with TimeOut. You can additionally set it as Daemon.
Convey to the Asynchronous thread when the value from operation doesn't need to be consumed, so that it doesn't make unnecessary assignments.
Code:
public class Main {
String returnVar;
private static final long TIME_OUT=1000;//in mills
private void makeCall() {
WebServiceStubDummy ws = new WebServiceStubDummy();
Boolean timeElapsed = false;
Thread t = new Thread(new AsyncWSCall(ws,timeElapsed));
t.start();
try {
t.join(TIME_OUT);
} catch (InterruptedException e) {}
synchronized (ws) {
timeElapsed=true;
}
System.out.println(returnVar);
}
private class AsyncWSCall implements Runnable{
WebServiceStubDummy ws;
Boolean timeElapsed;
public AsyncWSCall(WebServiceStubDummy ws, Boolean timeElapsed){
this.ws=ws;
this.timeElapsed=timeElapsed;
}
#Override
public void run() {
String myStr = ws.dummyMethod();
//synchronize for shared variable timeElapsed
synchronized (ws) {
if(!timeElapsed){
//if time elapsed don't assign
returnVar=myStr;
}
}
}
}
class WebServiceStubDummy{
public String dummyMethod(){
try {
//Dummy Call: if changed to 2000 value will not be consumed
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "From Dummy Metho";
}
}
/**
* #param args
*/
public static void main(String[] args) {
Main m=new Main();
m.makeCall();
}}
You can additionally fine tune your code as per how you wish to pass the WebService object and how you want to assign the result of WS operation

Use a timeout of 1 sec. on your webservice request.

The SO-thread "Killing thread after some specified time limit in java" could help. It makes use of ExecutorService
Time Limitation on method execution in java could also be used. Keep in mind though that Thread.stop is deprecated:
Why is Thread.stop deprecated?
Because it is inherently unsafe. Stopping a thread causes it to unlock
all the monitors that it has locked. (The monitors are unlocked as the
ThreadDeath exception propagates up the stack.) If any of the objects
previously protected by these monitors were in an inconsistent state,
other threads may now view these objects in an inconsistent state.
Such objects are said to be damaged. When threads operate on damaged
objects, arbitrary behavior can result. This behavior may be subtle
and difficult to detect, or it may be pronounced. Unlike other
unchecked exceptions, ThreadDeath kills threads silently; thus, the
user has no warning that his program may be corrupted. The corruption
can manifest itself at any time after the actual damage occurs, even
hours or days in the future.
source: Java Thread Primitive Deprecation

Related

HealthChecker for Java Process

I want to create a health checker, which will check the health of a java process. My process does a lot of things and is multi threaded. Various exceptions could be thrown, like Service / SQL / IO, etc. My plan is to call the HealthChecker to check for the process, from the catch block, in the individual threads. This will check for all the different healths, and in the case where there is any issue it will pause the threads, and log appropriately. There will be other processes which will read the logs by the process, and alert support to take appropriate actions.
Below is the general structure of the java process.
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class Schedular {
private static int numOfTasks = 10 ;
public static void main(String[] args) {
ExecutorService service = Executors.newFixedThreadPool(5);
while(true){
for(int i=0;i<numOfTasks;i++){
service.execute(new Workers());
}
}
}
}
class Workers implements Runnable{
#Override
public void run() {
/*
* This can throw different exceptions , eg:
*/
try{
}catch(Exception e){
e.printStackTrace();
HealthChecker.checkHealth();
}
}
}
class HealthChecker{
public static void checkHealth() {
//Check health and then , log and pause all the threads
}
}
I am not able to figure out a way to pause all the threads. If there is a db exception I want all the threads to pause. I am requesting some suggestions.
You need a way to block the threads until some event occurs that allows the threads to continue. I see some major issues with the code:
1) The while(true) in your main thread might lead to a StackOverflowError. With each iteration of the while loop, you will add 10 more threads to the executor, and this will just continue unbounded.
2) There is no loop in your run() so that even if an exception is caught and we wait for the HealthCheck, the run() method would still exit. While a loop is not needed in your run() if you can constantly execute new Threads from your main thread to take the place of the terminated one, but that logic is not presently there in the main loop.
But setting those concerns aside here is one way to block worker threads until some event (presumably a HealthCheck all clear) occurs.
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class Schedular {
private static int numOfTasks = 10 ;
public static void main(String[] args) {
ExecutorService service = Executors.newFixedThreadPool(5);
HealtchChecker hChecker = new HealthChecker();
for(int i=0;i<numOfTasks;i++){
service.execute(new Workers(hChecker));
}
}
}
class Workers implements Runnable{
private HealtchChecker hChecker;
public Workers(HealtchChecker hChecker){
this.hChecker = hChecker;
}
#Override
public void run() {
/*
* This can throw different exceptions , eg:
*/
while(true) {
try{
}catch (InterruptedException ie) {
throw ie;
}catch(Exception e){
e.printStackTrace();
HealthChecker.checkHealth();
}
}
}
}
class HealthChecker implements Runnable {
private final Semaphore semaphore = new Semaphore(1, true);
public void checkHealth() {
try {
semaphore.acquire();
} finally {
semaphore.release();
}
}
#Override
public void run(){
//code to check for errors that cause threads to pause.
if (inErrorState) {
semaphore.acquire();
} else {
semaphore.release();
}
}
}
A few things worth mentioning.
1) The main thread only creates 10 threads, versus an unbounded amount. You can adjust this as needed.
2) The Worker thread is long lived, meaning it will continue running even if it encounters Exceptions, except for an InterruptException.
3) HealthCheck is no longer a static object. it is instead a shared object.
4) HealthCheck is a runnable that can be executed in its own thread for monitoring for errors. I did not add the code to execute this thread.
5) HealCheck uses a Semaphore to cause the threads to block until the error state is cleared. I looked for other objects that can do this, like CountDownLatch or CyclicBarrier or Phaser, but this one came closest to giving us what we need to block all the threads from one point (the run() method).
Its not perfect but I think it gets you a little bit closer to what you want.
You're venturing pretty far afield from best practices, but you didn't ask about best practices for monitoring the health of threads - so I won't answer that question. Instead, I'll just answer the question you asked: how can I pause a set of threads managed by an ExecutorService?
Assuming that your Workers.run() will eventually end without intervention (in other words, it's not in an infinite loop - intentional or otherwise), the right thing to do is to call service.shutdown() (where service is your instance of ExecutorService). To do this, you can pass service in to HealthCheck.healthCheck() as a new parameter. Calling shutdown() will allow the currently-running threads to complete, then stop the executor.
If Workers.run() will not naturally complete, best practice says that you need to change your code such that it will. There is a Thread.stop() method you can call to halt the thread and a Thread.suspend() method you can call to suspend the thread. Both of these are double-bad ideas for you to use for two reasons:
They are Deprecated and will leave the Threads in a super-unhealthy state. You will have very difficult problems in the future if you use them.
You are using ExecutorService. That means you are delegating thread management to that class. If you go messing with the state of the Threads underneath ExecutorService, it can't manage the thread pool for you and, again, you will have very difficult problems in the future.

Given two Java threads, stop one thread when one of them finishes

I'm looking for a clean design/solution for this problem: I have two threads, that may run as long as the user wants to, but eventually stop when the user issues the stop command. However if one of the threads ends abruptly (eg. because of a runtime exception) I want to stop the other thread.
Now both threads execute a Runnable (so when I say 'stop a thread' what I mean is that I call a stop() method on the Runnable instance), what I'm thinking is to avoid using threads (Thread class) and use the CompletionService interface and then submit both Runnables to an instance of this service.
With this I would use the CompletionService's method take(), when this method returns I would stop both Runnables since I know that at least one of them already finished. Now, this works, but if possible I would like to know of a simpler/better solution for my case.
Also, what is a good solution when we have n threads and as soon as one of them finishes to stop execution of all the others ?
Thanks in advance.
There is no Runnable.stop() method, so that is an obvious non-starter.
Don't use Thread.stop()! It is fundamentally unsafe in the vast majority of cases.
Here are a couple of approaches that should work, if implemented correctly.
You could have both threads regularly check some common flag variable (e.g. call it stopNow), and arrange that both threads set it when they finish. (The flag variable needs to be volatile ... or properly synchronized.)
You could have both threads regularly call the Thread.isInterrupted() method to see if it has been interrupted. Then each thread needs to call Thread.interrupt() on the other one when it finishes.
I know Runnable doesn't have that method, but my implementation of Runnable that I pass to the threads does have it, and when calling it the runner will finish the run() method (something like Corsika's code, below this answer).
From what I can tell, Corsika's code assumes that there is a stop() method that will do the right thing when called. The real question is how have you do implemented it? Or how do you intend to implement it?
If you already have an implementation that works, then you've got a solution to the problem.
Otherwise, my answer gives two possible approaches to implementing the "stop now" functionality.
I appreciate your suggestions, but I have a doubt, how does 'regularly check/call' translate into code ?
It entirely depends on the task that the Runnable.run() method performs. It typically entails adding a check / call to certain loops so that the test happens reasonably often ... but not too often. You also want to check only when it would be safe to stop the computation, and that is another thing you must work out for yourself.
The following should help to give you some ideas of how you might apply it to your problem. Hope it helps...
import java.util.*;
public class x {
public static void main(String[] args) {
ThreadManager<Thread> t = new ThreadManager<Thread>();
Thread a = new MyThread(t);
Thread b = new MyThread(t);
Thread c = new MyThread(t);
t.add(a);
t.add(b);
t.add(c);
a.start();
b.start();
c.start();
}
}
class ThreadManager<T> extends ArrayList<T> {
public void stopThreads() {
for (T t : this) {
Thread thread = (Thread) t;
if (thread.isAlive()) {
try { thread.interrupt(); }
catch (Exception e) {/*ignore on purpose*/}
}
}
}
}
class MyThread extends Thread {
static boolean signalled = false;
private ThreadManager m;
public MyThread(ThreadManager tm) {
m = tm;
}
public void run() {
try {
// periodically check ...
if (this.interrupted()) throw new InterruptedException();
// do stuff
} catch (Exception e) {
synchronized(getClass()) {
if (!signalled) {
signalled = true;
m.stopThreads();
}
}
}
}
}
Whether you use a stop flag or an interrupt, you will need to periodically check to see whether a thread has been signalled to stop.
You could give them access to eachother, or a callback to something that had access to both so it could interrupt the other. Consider:
MyRunner aRunner = new MyRunner(this);
MyRunner bRunner = new MyRunner(this);
Thread a = new Thread(aRunner);
Thread b = new Thread(brunner);
// catch appropriate exceptions, error handling... probably should verify
// 'winner' actually is a or b
public void stopOtherThread(MyRunner winner) {
if(winner == aRunner ) bRunner .stop(); // assumes you have stop on class MyRunner
else aRunner.stop();
}
// later
a.start();
b.start();
// in your run method
public void run() {
// la de da de da
// awesome code
while(true) fork();
// other code here
myRunnerMaster.stopOtherThread(this);
}

Check execute code when thread is finished

I didn't fully understand the concept of threads I have some questions. Assume we have the following code:
ExecCommand.java
// I don't know how this work, for now
package therads;
// Here we will have the methods and run them from the Main.java
public class ExecCommand implements Runnable
{
String name;
int time;
public ExecCommand(String s,int amount)
{
name = s;
time = amount;
}
// Run method (Runnable)
public void run()
{
try
{
// What to execute when the thread is started
System.out.printf("%s is sleeping for %d\n",name,time);
Thread.sleep(time);
System.out.printf("%s is done\n",name);
}
catch(Exception e)
{
}
}
// This dosen't work when the thread is stopped
public void stop()
{
try
{
System.out.printf("STOPPED!");
}
catch(Exception e)
{
}
}
// This dosen't work when the thread is started
public void start()
{
try
{
System.out.printf("Started!");
}
catch(Exception e)
{
}
}
}
and i call him from :
Main.java
Thread t5 = new Thread(new ExecCommand("Good Function",1000));
t5.start();
I want to println() "Started" when the thread is started and "Stopped" when it finished. It is possible?
When a thread is completed, it dies, complete released from memory? If not, how i can do that?
How can i make a thread that repeat itself like once every 1000 miliseconds till i press a key? I was thinking about while(true) { t5.start; }
but i don't know for sure.
First of all, there is no point in using the start and stop methods. Everything happens in the run method.
To print a message on start and stop, put them at the start and end of the run method. To loop indefinitely and keep executing code until an outside event happens, use a flag and loop on it:
class ThreadTask implements Runnable {
private volatile boolean flag = false;
public void setFlag(boolean value) {
flag = value;
}
public void run() {
System.out.println("Started");
while(!flag) {
// execute code
}
System.out.println("Stopped");
}
}
Then when you want the thread to stop, just set the flag to true using setFlag.
And yes, threads are automatically cleaned up by the runtime + OS after the run method terminates.
Why or when would you expect your .start() and .stop() to be called? Runnable has only a single method in the interface; .run(). The JavaDocs for Thread cover it pretty well. http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.html. If you want something to happen when your Thread starts, put that something at the top of your .run(). If you want something to happen when your Thread is finishing, put it at the bottom of the .run(). By-in-large doing anything with the .start() and .stop() methods on Thread is discouraged. Concentrate on doing all you lifecycle stuff within your .run(). And get a copy of "Java Concurrency in Practice" by Goetz. It will show you the full range of your options (including don't do you own Threading directly).
You are not supposed to override the start and stop methods. They are not callback methods.
What you want is something akin to the SwingWorker class (assuming you are interested in UI related threading synchronization).
If not, you can subclass Thread yourself and provide a callback mechanism.
Yes of course. You can just print "Started" in the first line of your run() method, and print "Stopped" either in a finally section of run() method or just after t5.join()
You are not told about the details, and cannot do anything. But you can assume the resources are freed as soon as necessary. (Of course if you have reachable links for any references allocated within your thread, JVM cannot decide that these are of no use, so "complete" is not a proper word here.)
Take a look at java.util.Timer
If you prefer to use System.out.println instead of printf just change those lines of code. There's nothing thread-related about those calls.
The thread will be collected and released from memory by the garbage collector when it has stopped running and there are no live references to it. Same as all objects.
Don't override stop(). This has been deprecated and should really be dealt with by the JVM, not your application code. Just override run to implement whatever you want your thread to do, as per the docs
You can use Thread.sleep to sleep for a period of time. How accurate the sleep will be will depend on your platform and the resolution of the available system clock.

Using sleep() and interrupt() to reuse thread

In a swing application, I would like to re-utilize a spawned thread instead of creating a new one to serve requests. This is because the requests would be coming in short intervals of time and the cost of creating a new thread for every request could be high.
I am thinking of using the interrupt() and sleep() methods to do this as below and would like to know any potential performance problems with the code:
public class MyUtils {
private static TabSwitcherThread tabSwitcherThread = null;
public static void handleStateChange(){
if(tabSwitcherThread == null || !tabSwitcherThread.isAlive()){
tabSwitcherThread = new TabSwitcherThread();
tabSwitcherThread.start();
}
else
tabSwitcherThread.interrupt();
}
private static class TabSwitcherThread extends Thread{
#Override
public void run() {
try {
//Serve request code
//Processing complete, sleep till next request is received (will be interrupted)
Thread.sleep(60000);
} catch (InterruptedException e) {
//Interrupted execute request
run();
}
//No request received till sleep completed so let the thread die
}
}
}
Thanks
I wouldn't use sleep() and interrupt() - I'd use wait() and notify() if I absolutely had to.
However, is there any real need to do this instead of using a ThreadPoolExecutor which can handle the thread reuse for you? Or perhaps use a BlockingQueue in a producer/consumer fashion?
Java already provides enough higher-level building blocks for this that you shouldn't need to go down to this level yourself.
I think what you're looking for is a ThreadPool. Java 5 and above comes with ThreadPoolExecutor. I would suggest you use what is provided with Java instead of writing your own, so you can save yourself a lot of time and hairs.
Of course, if you absolutely has to do it the way you described (hey, sometimes business requirement make our life hard), then use wait() and notify() as Jon suggested. I would not use sleep() in this case because you have to specified timeout, and you never know when the next request will come in. Having a thread that keep waking up then go back to sleep seems a bit wasteful of CPU cycle for me.
Here is a nice tutorial about the ThreadPoolExecutor.
EDIT:
Here is some code example:
public class MyUtils {
private static UIUpdater worker = null;
private static ExecutorService exeSrv = Executors.newFixedThreadPool(1);
public static void handleStateChange(){
if(tabSwitcherThread == null || !tabSwitcherThread.isAlive()){
worker = new UIUpdater();
}
//this call does not block
exeSrv.submit(worker, new Object());
}
private static class UIUpdater implements Runnable{
#Override
public void run() {
//do server request and update ui.
}
}
}

How do you kill a Thread in Java?

How do you kill a java.lang.Thread in Java?
See this thread by Sun on why they deprecated Thread.stop(). It goes into detail about why this was a bad method and what should be done to safely stop threads in general.
The way they recommend is to use a shared variable as a flag which asks the background thread to stop. This variable can then be set by a different object requesting the thread terminate.
Generally you don't..
You ask it to interrupt whatever it is doing using Thread.interrupt() (javadoc link)
A good explanation of why is in the javadoc here (java technote link)
In Java threads are not killed, but the stopping of a thread is done in a cooperative way. The thread is asked to terminate and the thread can then shutdown gracefully.
Often a volatile boolean field is used which the thread periodically checks and terminates when it is set to the corresponding value.
I would not use a boolean to check whether the thread should terminate. If you use volatile as a field modifier, this will work reliable, but if your code becomes more complex, for instead uses other blocking methods inside the while loop, it might happen, that your code will not terminate at all or at least takes longer as you might want.
Certain blocking library methods support interruption.
Every thread has already a boolean flag interrupted status and you should make use of it. It can be implemented like this:
public void run() {
try {
while (!interrupted()) {
// ...
}
} catch (InterruptedException consumed)
/* Allow thread to exit */
}
}
public void cancel() { interrupt(); }
Source code adapted from Java Concurrency in Practice. Since the cancel() method is public you can let another thread invoke this method as you wanted.
One way is by setting a class variable and using it as a sentinel.
Class Outer {
public static volatile flag = true;
Outer() {
new Test().start();
}
class Test extends Thread {
public void run() {
while (Outer.flag) {
//do stuff here
}
}
}
}
Set an external class variable, i.e. flag = true in the above example. Set it to false to 'kill' the thread.
I want to add several observations, based on the comments that have accumulated.
Thread.stop() will stop a thread if the security manager allows it.
Thread.stop() is dangerous. Having said that, if you are working in a JEE environment and you have no control over the code being called, it may be necessary; see Why is Thread.stop deprecated?
You should never stop stop a container worker thread. If you want to run code that tends to hang, (carefully) start a new daemon thread and monitor it, killing if necessary.
stop() creates a new ThreadDeathError error on the calling thread and then throws that error on the target thread. Therefore, the stack trace is generally worthless.
In JRE 6, stop() checks with the security manager and then calls stop1() that calls stop0(). stop0() is native code.
As of Java 13 Thread.stop() has not been removed (yet), but Thread.stop(Throwable) was removed in Java 11. (mailing list, JDK-8204243)
There is a way how you can do it. But if you had to use it, either you are a bad programmer or you are using a code written by bad programmers. So, you should think about stopping being a bad programmer or stopping using this bad code.
This solution is only for situations when THERE IS NO OTHER WAY.
Thread f = <A thread to be stopped>
Method m = Thread.class.getDeclaredMethod( "stop0" , new Class[]{Object.class} );
m.setAccessible( true );
m.invoke( f , new ThreadDeath() );
I'd vote for Thread.stop().
As for instance you have a long lasting operation (like a network request).
Supposedly you are waiting for a response, but it can take time and the user navigated to other UI.
This waiting thread is now a) useless b) potential problem because when he will get result, it's completely useless and he will trigger callbacks that can lead to number of errors.
All of that and he can do response processing that could be CPU intense. And you, as a developer, cannot even stop it, because you can't throw if (Thread.currentThread().isInterrupted()) lines in all code.
So the inability to forcefully stop a thread it weird.
The question is rather vague. If you meant “how do I write a program so that a thread stops running when I want it to”, then various other responses should be helpful. But if you meant “I have an emergency with a server I cannot restart right now and I just need a particular thread to die, come what may”, then you need an intervention tool to match monitoring tools like jstack.
For this purpose I created jkillthread. See its instructions for usage.
There is of course the case where you are running some kind of not-completely-trusted code. (I personally have this by allowing uploaded scripts to execute in my Java environment. Yes, there are security alarm bell ringing everywhere, but it's part of the application.) In this unfortunate instance you first of all are merely being hopeful by asking script writers to respect some kind of boolean run/don't-run signal. Your only decent fail safe is to call the stop method on the thread if, say, it runs longer than some timeout.
But, this is just "decent", and not absolute, because the code could catch the ThreadDeath error (or whatever exception you explicitly throw), and not rethrow it like a gentlemanly thread is supposed to do. So, the bottom line is AFAIA there is no absolute fail safe.
'Killing a thread' is not the right phrase to use. Here is one way we can implement graceful completion/exit of the thread on will:
Runnable which I used:
class TaskThread implements Runnable {
boolean shouldStop;
public TaskThread(boolean shouldStop) {
this.shouldStop = shouldStop;
}
#Override
public void run() {
System.out.println("Thread has started");
while (!shouldStop) {
// do something
}
System.out.println("Thread has ended");
}
public void stop() {
shouldStop = true;
}
}
The triggering class:
public class ThreadStop {
public static void main(String[] args) {
System.out.println("Start");
// Start the thread
TaskThread task = new TaskThread(false);
Thread t = new Thread(task);
t.start();
// Stop the thread
task.stop();
System.out.println("End");
}
}
There is no way to gracefully kill a thread.
You can try to interrupt the thread, one commons strategy is to use a poison pill to message the thread to stop itself
public class CancelSupport {
public static class CommandExecutor implements Runnable {
private BlockingQueue<String> queue;
public static final String POISON_PILL = “stopnow”;
public CommandExecutor(BlockingQueue<String> queue) {
this.queue=queue;
}
#Override
public void run() {
boolean stop=false;
while(!stop) {
try {
String command=queue.take();
if(POISON_PILL.equals(command)) {
stop=true;
} else {
// do command
System.out.println(command);
}
} catch (InterruptedException e) {
stop=true;
}
}
System.out.println(“Stopping execution”);
}
}
}
BlockingQueue<String> queue=new LinkedBlockingQueue<String>();
Thread t=new Thread(new CommandExecutor(queue));
queue.put(“hello”);
queue.put(“world”);
t.start();
Thread.sleep(1000);
queue.put(“stopnow”);
http://anandsekar.github.io/cancel-support-for-threads/
Generally you don't kill, stop, or interrupt a thread (or check wheter it is interrupted()), but let it terminate naturally.
It is simple. You can use any loop together with (volatile) boolean variable inside run() method to control thread's activity. You can also return from active thread to the main thread to stop it.
This way you gracefully kill a thread :) .
Attempts of abrupt thread termination are well-known bad programming practice and evidence of poor application design. All threads in the multithreaded application explicitly and implicitly share the same process state and forced to cooperate with each other to keep it consistent, otherwise your application will be prone to the bugs which will be really hard to diagnose. So, it is a responsibility of developer to provide an assurance of such consistency via careful and clear application design.
There are two main right solutions for the controlled threads terminations:
Use of the shared volatile flag
Use of the pair of Thread.interrupt() and Thread.interrupted() methods.
Good and detailed explanation of the issues related to the abrupt threads termination as well as examples of wrong and right solutions for the controlled threads termination can be found here:
https://www.securecoding.cert.org/confluence/display/java/THI05-J.+Do+not+use+Thread.stop%28%29+to+terminate+threads
Here are a couple of good reads on the subject:
What Do You Do With InterruptedException?
Shutting down threads cleanly
I didn't get the interrupt to work in Android, so I used this method, works perfectly:
boolean shouldCheckUpdates = true;
private void startupCheckForUpdatesEveryFewSeconds() {
Thread t = new Thread(new CheckUpdates());
t.start();
}
private class CheckUpdates implements Runnable{
public void run() {
while (shouldCheckUpdates){
//Thread sleep 3 seconds
System.out.println("Do your thing here");
}
}
}
public void stop(){
shouldCheckUpdates = false;
}
Thread.stop is deprecated so how do we stop a thread in java ?
Always use interrupt method and future to request cancellation
When the task responds to interrupt signal, for example, blocking queue take method.
Callable < String > callable = new Callable < String > () {
#Override
public String call() throws Exception {
String result = "";
try {
//assume below take method is blocked as no work is produced.
result = queue.take();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
return result;
}
};
Future future = executor.submit(callable);
try {
String result = future.get(5, TimeUnit.SECONDS);
} catch (TimeoutException e) {
logger.error("Thread timedout!");
return "";
} finally {
//this will call interrupt on queue which will abort the operation.
//if it completes before time out, it has no side effects
future.cancel(true);
}
When the task does not respond to interrupt signal.Suppose the task performs socket I/O which does not respond to interrupt signal and thus using above approach will not abort the task, future would time out but the cancel in finally block will have no effect, thread will keep on listening to socket. We can close the socket or call close method on connection if implemented by pool.
public interface CustomCallable < T > extends Callable < T > {
void cancel();
RunnableFuture < T > newTask();
}
public class CustomExecutorPool extends ThreadPoolExecutor {
protected < T > RunnableFuture < T > newTaskFor(Callable < T > callable) {
if (callable instanceof CancellableTask)
return ((CancellableTask < T > ) callable).newTask();
else
return super.newTaskFor(callable);
}
}
public abstract class UnblockingIOTask < T > implements CustomCallable < T > {
public synchronized void cancel() {
try {
obj.close();
} catch (IOException e) {
logger.error("io exception", e);
}
}
public RunnableFuture < T > newTask() {
return new FutureTask < T > (this) {
public boolean cancel(boolean mayInterruptIfRunning) {
try {
this.cancel();
} finally {
return super.cancel(mayInterruptIfRunning);
}
}
};
}
}
After 15+ years of developing in Java there is one thing I want to say to the world.
Deprecating Thread.stop() and all the holy battle against its use is just another bad habit or design flaw unfortunately became a reality... (eg. want to talk about the Serializable interface?)
The battle is focusing on the fact that killing a thread can leave an object into an inconsistent state. And so? Welcome to multithread programming. You are a programmer, and you need to know what you are doing, and yes.. killing a thread can leave an object in inconsistent state. If you are worried about it use a flag and let the thread quit gracefully; but there are TONS of times where there is no reason to be worried.
But no.. if you type thread.stop() you're likely to be killed by all the people who looks/comments/uses your code. So you have to use a flag, call interrupt(), place if(!flag) all around your code because you're not looping at all, and finally pray that the 3rd-party library you're using to do your external call is written correctly and doesn't handle the InterruptException improperly.

Categories