Related
In this case, the MAX is only 5, so I could check the duplicates one by one, but how could I do this in a simpler way? For example, what if the MAX has a value of 20?
Thanks.
int MAX = 5;
for (i = 1 , i <= MAX; i++)
{
drawNum[1] = (int)(Math.random()*MAX)+1;
while (drawNum[2] == drawNum[1])
{
drawNum[2] = (int)(Math.random()*MAX)+1;
}
while ((drawNum[3] == drawNum[1]) || (drawNum[3] == drawNum[2]) )
{
drawNum[3] = (int)(Math.random()*MAX)+1;
}
while ((drawNum[4] == drawNum[1]) || (drawNum[4] == drawNum[2]) || (drawNum[4] == drawNum[3]) )
{
drawNum[4] = (int)(Math.random()*MAX)+1;
}
while ((drawNum[5] == drawNum[1]) ||
(drawNum[5] == drawNum[2]) ||
(drawNum[5] == drawNum[3]) ||
(drawNum[5] == drawNum[4]) )
{
drawNum[5] = (int)(Math.random()*MAX)+1;
}
}
The simplest way would be to create a list of the possible numbers (1..20 or whatever) and then shuffle them with Collections.shuffle. Then just take however many elements you want. This is great if your range is equal to the number of elements you need in the end (e.g. for shuffling a deck of cards).
That doesn't work so well if you want (say) 10 random elements in the range 1..10,000 - you'd end up doing a lot of work unnecessarily. At that point, it's probably better to keep a set of values you've generated so far, and just keep generating numbers in a loop until the next one isn't already present:
if (max < numbersNeeded)
{
throw new IllegalArgumentException("Can't ask for more numbers than are available");
}
Random rng = new Random(); // Ideally just create one instance globally
// Note: use LinkedHashSet to maintain insertion order
Set<Integer> generated = new LinkedHashSet<Integer>();
while (generated.size() < numbersNeeded)
{
Integer next = rng.nextInt(max) + 1;
// As we're adding to a set, this will automatically do a containment check
generated.add(next);
}
Be careful with the set choice though - I've very deliberately used LinkedHashSet as it maintains insertion order, which we care about here.
Yet another option is to always make progress, by reducing the range each time and compensating for existing values. So for example, suppose you wanted 3 values in the range 0..9. On the first iteration you'd generate any number in the range 0..9 - let's say you generate a 4.
On the second iteration you'd then generate a number in the range 0..8. If the generated number is less than 4, you'd keep it as is... otherwise you add one to it. That gets you a result range of 0..9 without 4. Suppose we get 7 that way.
On the third iteration you'd generate a number in the range 0..7. If the generated number is less than 4, you'd keep it as is. If it's 4 or 5, you'd add one. If it's 6 or 7, you'd add two. That way the result range is 0..9 without 4 or 6.
Here's how I'd do it
import java.util.ArrayList;
import java.util.Random;
public class Test {
public static void main(String[] args) {
int size = 20;
ArrayList<Integer> list = new ArrayList<Integer>(size);
for(int i = 1; i <= size; i++) {
list.add(i);
}
Random rand = new Random();
while(list.size() > 0) {
int index = rand.nextInt(list.size());
System.out.println("Selected: "+list.remove(index));
}
}
}
As the esteemed Mr Skeet has pointed out:
If n is the number of randomly selected numbers you wish to choose and N is the total sample space of numbers available for selection:
If n << N, you should just store the numbers that you have picked and check a list to see if the number selected is in it.
If n ~= N, you should probably use my method, by populating a list containing the entire sample space and then removing numbers from it as you select them.
//random numbers are 0,1,2,3
ArrayList<Integer> numbers = new ArrayList<Integer>();
Random randomGenerator = new Random();
while (numbers.size() < 4) {
int random = randomGenerator .nextInt(4);
if (!numbers.contains(random)) {
numbers.add(random);
}
}
This would be a lot simpler in java-8:
Stream.generate(new Random()::ints)
.flatMap(IntStream::boxed)
.distinct()
.limit(16) // whatever limit you might need
.toArray(Integer[]::new);
There is another way of doing "random" ordered numbers with LFSR, take a look at:
http://en.wikipedia.org/wiki/Linear_feedback_shift_register
with this technique you can achieve the ordered random number by index and making sure the values are not duplicated.
But these are not TRUE random numbers because the random generation is deterministic.
But depending your case you can use this technique reducing the amount of processing on random number generation when using shuffling.
Here a LFSR algorithm in java, (I took it somewhere I don't remeber):
public final class LFSR {
private static final int M = 15;
// hard-coded for 15-bits
private static final int[] TAPS = {14, 15};
private final boolean[] bits = new boolean[M + 1];
public LFSR() {
this((int)System.currentTimeMillis());
}
public LFSR(int seed) {
for(int i = 0; i < M; i++) {
bits[i] = (((1 << i) & seed) >>> i) == 1;
}
}
/* generate a random int uniformly on the interval [-2^31 + 1, 2^31 - 1] */
public short nextShort() {
//printBits();
// calculate the integer value from the registers
short next = 0;
for(int i = 0; i < M; i++) {
next |= (bits[i] ? 1 : 0) << i;
}
// allow for zero without allowing for -2^31
if (next < 0) next++;
// calculate the last register from all the preceding
bits[M] = false;
for(int i = 0; i < TAPS.length; i++) {
bits[M] ^= bits[M - TAPS[i]];
}
// shift all the registers
for(int i = 0; i < M; i++) {
bits[i] = bits[i + 1];
}
return next;
}
/** returns random double uniformly over [0, 1) */
public double nextDouble() {
return ((nextShort() / (Integer.MAX_VALUE + 1.0)) + 1.0) / 2.0;
}
/** returns random boolean */
public boolean nextBoolean() {
return nextShort() >= 0;
}
public void printBits() {
System.out.print(bits[M] ? 1 : 0);
System.out.print(" -> ");
for(int i = M - 1; i >= 0; i--) {
System.out.print(bits[i] ? 1 : 0);
}
System.out.println();
}
public static void main(String[] args) {
LFSR rng = new LFSR();
Vector<Short> vec = new Vector<Short>();
for(int i = 0; i <= 32766; i++) {
short next = rng.nextShort();
// just testing/asserting to make
// sure the number doesn't repeat on a given list
if (vec.contains(next))
throw new RuntimeException("Index repeat: " + i);
vec.add(next);
System.out.println(next);
}
}
}
Another approach which allows you to specify how many numbers you want with size and the min and max values of the returned numbers
public static int getRandomInt(int min, int max) {
Random random = new Random();
return random.nextInt((max - min) + 1) + min;
}
public static ArrayList<Integer> getRandomNonRepeatingIntegers(int size, int min,
int max) {
ArrayList<Integer> numbers = new ArrayList<Integer>();
while (numbers.size() < size) {
int random = getRandomInt(min, max);
if (!numbers.contains(random)) {
numbers.add(random);
}
}
return numbers;
}
To use it returning 7 numbers between 0 and 25.
ArrayList<Integer> list = getRandomNonRepeatingIntegers(7, 0, 25);
for (int i = 0; i < list.size(); i++) {
System.out.println("" + list.get(i));
}
The most efficient, basic way to have non-repeating random numbers is explained by this pseudo-code. There is no need to have nested loops or hashed lookups:
// get 5 unique random numbers, possible values 0 - 19
// (assume desired number of selections < number of choices)
const int POOL_SIZE = 20;
const int VAL_COUNT = 5;
declare Array mapping[POOL_SIZE];
declare Array results[VAL_COUNT];
declare i int;
declare r int;
declare max_rand int;
// create mapping array
for (i=0; i<POOL_SIZE; i++) {
mapping[i] = i;
}
max_rand = POOL_SIZE-1; // start loop searching for maximum value (19)
for (i=0; i<VAL_COUNT; i++) {
r = Random(0, max_rand); // get random number
results[i] = mapping[r]; // grab number from map array
mapping[r] = max_rand; // place item past range at selected location
max_rand = max_rand - 1; // reduce random scope by 1
}
Suppose first iteration generated random number 3 to start (from 0 - 19). This would make results[0] = mapping[3], i.e., the value 3. We'd then assign mapping[3] to 19.
In the next iteration, the random number was 5 (from 0 - 18). This would make results[1] = mapping[5], i.e., the value 5. We'd then assign mapping[5] to 18.
Now suppose the next iteration chose 3 again (from 0 - 17). results[2] would be assigned the value of mapping[3], but now, this value is not 3, but 19.
This same protection persists for all numbers, even if you got the same number 5 times in a row. E.g., if the random number generator gave you 0 five times in a row, the results would be: [ 0, 19, 18, 17, 16 ].
You would never get the same number twice.
Generating all the indices of a sequence is generally a bad idea, as it might take a lot of time, especially if the ratio of the numbers to be chosen to MAX is low (the complexity becomes dominated by O(MAX)). This gets worse if the ratio of the numbers to be chosen to MAX approaches one, as then removing the chosen indices from the sequence of all also becomes expensive (we approach O(MAX^2/2)). But for small numbers, this generally works well and is not particularly error-prone.
Filtering the generated indices by using a collection is also a bad idea, as some time is spent in inserting the indices into the sequence, and progress is not guaranteed as the same random number can be drawn several times (but for large enough MAX it is unlikely). This could be close to complexity O(k n log^2(n)/2), ignoring the duplicates and assuming the collection uses a tree for efficient lookup (but with a significant constant cost k of allocating the tree nodes and possibly having to rebalance).
Another option is to generate the random values uniquely from the beginning, guaranteeing progress is being made. That means in the first round, a random index in [0, MAX] is generated:
items i0 i1 i2 i3 i4 i5 i6 (total 7 items)
idx 0 ^^ (index 2)
In the second round, only [0, MAX - 1] is generated (as one item was already selected):
items i0 i1 i3 i4 i5 i6 (total 6 items)
idx 1 ^^ (index 2 out of these 6, but 3 out of the original 7)
The values of the indices then need to be adjusted: if the second index falls in the second half of the sequence (after the first index), it needs to be incremented to account for the gap. We can implement this as a loop, allowing us to select arbitrary number of unique items.
For short sequences, this is quite fast O(n^2/2) algorithm:
void RandomUniqueSequence(std::vector<int> &rand_num,
const size_t n_select_num, const size_t n_item_num)
{
assert(n_select_num <= n_item_num);
rand_num.clear(); // !!
// b1: 3187.000 msec (the fastest)
// b2: 3734.000 msec
for(size_t i = 0; i < n_select_num; ++ i) {
int n = n_Rand(n_item_num - i - 1);
// get a random number
size_t n_where = i;
for(size_t j = 0; j < i; ++ j) {
if(n + j < rand_num[j]) {
n_where = j;
break;
}
}
// see where it should be inserted
rand_num.insert(rand_num.begin() + n_where, 1, n + n_where);
// insert it in the list, maintain a sorted sequence
}
// tier 1 - use comparison with offset instead of increment
}
Where n_select_num is your 5 and n_number_num is your MAX. The n_Rand(x) returns random integers in [0, x] (inclusive). This can be made a bit faster if selecting a lot of items (e.g. not 5 but 500) by using binary search to find the insertion point. To do that, we need to make sure that we meet the requirements.
We will do binary search with the comparison n + j < rand_num[j] which is the same as n < rand_num[j] - j. We need to show that rand_num[j] - j is still a sorted sequence for a sorted sequence rand_num[j]. This is fortunately easily shown, as the lowest distance between two elements of the original rand_num is one (the generated numbers are unique, so there is always difference of at least 1). At the same time, if we subtract the indices j from all the elements rand_num[j], the differences in index are exactly 1. So in the "worst" case, we get a constant sequence - but never decreasing. The binary search can therefore be used, yielding O(n log(n)) algorithm:
struct TNeedle { // in the comparison operator we need to make clear which argument is the needle and which is already in the list; we do that using the type system.
int n;
TNeedle(int _n)
:n(_n)
{}
};
class CCompareWithOffset { // custom comparison "n < rand_num[j] - j"
protected:
std::vector<int>::iterator m_p_begin_it;
public:
CCompareWithOffset(std::vector<int>::iterator p_begin_it)
:m_p_begin_it(p_begin_it)
{}
bool operator ()(const int &r_value, TNeedle n) const
{
size_t n_index = &r_value - &*m_p_begin_it;
// calculate index in the array
return r_value < n.n + n_index; // or r_value - n_index < n.n
}
bool operator ()(TNeedle n, const int &r_value) const
{
size_t n_index = &r_value - &*m_p_begin_it;
// calculate index in the array
return n.n + n_index < r_value; // or n.n < r_value - n_index
}
};
And finally:
void RandomUniqueSequence(std::vector<int> &rand_num,
const size_t n_select_num, const size_t n_item_num)
{
assert(n_select_num <= n_item_num);
rand_num.clear(); // !!
// b1: 3578.000 msec
// b2: 1703.000 msec (the fastest)
for(size_t i = 0; i < n_select_num; ++ i) {
int n = n_Rand(n_item_num - i - 1);
// get a random number
std::vector<int>::iterator p_where_it = std::upper_bound(rand_num.begin(), rand_num.end(),
TNeedle(n), CCompareWithOffset(rand_num.begin()));
// see where it should be inserted
rand_num.insert(p_where_it, 1, n + p_where_it - rand_num.begin());
// insert it in the list, maintain a sorted sequence
}
// tier 4 - use binary search
}
I have tested this on three benchmarks. First, 3 numbers were chosen out of 7 items, and a histogram of the items chosen was accumulated over 10,000 runs:
4265 4229 4351 4267 4267 4364 4257
This shows that each of the 7 items was chosen approximately the same number of times, and there is no apparent bias caused by the algorithm. All the sequences were also checked for correctness (uniqueness of contents).
The second benchmark involved choosing 7 numbers out of 5000 items. The time of several versions of the algorithm was accumulated over 10,000,000 runs. The results are denoted in comments in the code as b1. The simple version of the algorithm is slightly faster.
The third benchmark involved choosing 700 numbers out of 5000 items. The time of several versions of the algorithm was again accumulated, this time over 10,000 runs. The results are denoted in comments in the code as b2. The binary search version of the algorithm is now more than two times faster than the simple one.
The second method starts being faster for choosing more than cca 75 items on my machine (note that the complexity of either algorithm does not depend on the number of items, MAX).
It is worth mentioning that the above algorithms generate the random numbers in ascending order. But it would be simple to add another array to which the numbers would be saved in the order in which they were generated, and returning that instead (at negligible additional cost O(n)). It is not necessary to shuffle the output: that would be much slower.
Note that the sources are in C++, I don't have Java on my machine, but the concept should be clear.
EDIT:
For amusement, I have also implemented the approach that generates a list with all the indices 0 .. MAX, chooses them randomly and removes them from the list to guarantee uniqueness. Since I've chosen quite high MAX (5000), the performance is catastrophic:
// b1: 519515.000 msec
// b2: 20312.000 msec
std::vector<int> all_numbers(n_item_num);
std::iota(all_numbers.begin(), all_numbers.end(), 0);
// generate all the numbers
for(size_t i = 0; i < n_number_num; ++ i) {
assert(all_numbers.size() == n_item_num - i);
int n = n_Rand(n_item_num - i - 1);
// get a random number
rand_num.push_back(all_numbers[n]); // put it in the output list
all_numbers.erase(all_numbers.begin() + n); // erase it from the input
}
// generate random numbers
I have also implemented the approach with a set (a C++ collection), which actually comes second on benchmark b2, being only about 50% slower than the approach with the binary search. That is understandable, as the set uses a binary tree, where the insertion cost is similar to binary search. The only difference is the chance of getting duplicate items, which slows down the progress.
// b1: 20250.000 msec
// b2: 2296.000 msec
std::set<int> numbers;
while(numbers.size() < n_number_num)
numbers.insert(n_Rand(n_item_num - 1)); // might have duplicates here
// generate unique random numbers
rand_num.resize(numbers.size());
std::copy(numbers.begin(), numbers.end(), rand_num.begin());
// copy the numbers from a set to a vector
Full source code is here.
Your problem seems to reduce to choose k elements at random from a collection of n elements. The Collections.shuffle answer is thus correct, but as pointed out inefficient: its O(n).
Wikipedia: Fisher–Yates shuffle has a O(k) version when the array already exists. In your case, there is no array of elements and creating the array of elements could be very expensive, say if max were 10000000 instead of 20.
The shuffle algorithm involves initializing an array of size n where every element is equal to its index, picking k random numbers each number in a range with the max one less than the previous range, then swapping elements towards the end of the array.
You can do the same operation in O(k) time with a hashmap although I admit its kind of a pain. Note that this is only worthwhile if k is much less than n. (ie k ~ lg(n) or so), otherwise you should use the shuffle directly.
You will use your hashmap as an efficient representation of the backing array in the shuffle algorithm. Any element of the array that is equal to its index need not appear in the map. This allows you to represent an array of size n in constant time, there is no time spent initializing it.
Pick k random numbers: the first is in the range 0 to n-1, the second 0 to n-2, the third 0 to n-3 and so on, thru n-k.
Treat your random numbers as a set of swaps. The first random index swaps to the final position. The second random index swaps to the second to last position. However, instead of working against a backing array, work against your hashmap. Your hashmap will store every item that is out of position.
int getValue(i)
{
if (map.contains(i))
return map[i];
return i;
}
void setValue(i, val)
{
if (i == val)
map.remove(i);
else
map[i] = val;
}
int[] chooseK(int n, int k)
{
for (int i = 0; i < k; i++)
{
int randomIndex = nextRandom(0, n - i); //(n - i is exclusive)
int desiredIndex = n-i-1;
int valAtRandom = getValue(randomIndex);
int valAtDesired = getValue(desiredIndex);
setValue(desiredIndex, valAtRandom);
setValue(randomIndex, valAtDesired);
}
int[] output = new int[k];
for (int i = 0; i < k; i++)
{
output[i] = (getValue(n-i-1));
}
return output;
}
You could use one of the classes implementing the Set interface (API), and then each number you generate, use Set.add() to insert it.
If the return value is false, you know the number has already been generated before.
Instead of doing all this create a LinkedHashSet object and random numbers to it by Math.random() function .... if any duplicated entry occurs the LinkedHashSet object won't add that number to its List ... Since in this Collection Class no duplicate values are allowed .. in the end u get a list of random numbers having no duplicated values .... :D
With Java 8 upwards you can use the ints method from the IntStream interface:
Returns an effectively unlimited stream of pseudorandom int values.
Random r = new Random();
int randomNumberOrigin = 0;
int randomNumberBound = 10;
int size = 5;
int[] unique = r.ints(randomNumberOrigin, randomNumberBound)
.distinct()
.limit(size)
.toArray();
Following code create a sequence random number between [1,m] that was not generated before.
public class NewClass {
public List<Integer> keys = new ArrayList<Integer>();
public int rand(int m) {
int n = (int) (Math.random() * m + 1);
if (!keys.contains(n)) {
keys.add(n);
return n;
} else {
return rand(m);
}
}
public static void main(String[] args) {
int m = 4;
NewClass ne = new NewClass();
for (int i = 0; i < 4; i++) {
System.out.println(ne.rand(m));
}
System.out.println("list: " + ne.keys);
}
}
The most easy way is use nano DateTime as long format.
System.nanoTime();
There is algorithm of card batch: you create ordered array of numbers (the "card batch") and in every iteration you select a number at random position from it (removing the selected number from the "card batch" of course).
Here is an efficient solution for fast creation of a randomized array. After randomization you can simply pick the n-th element e of the array, increment n and return e. This solution has O(1) for getting a random number and O(n) for initialization, but as a tradeoff requires a good amount of memory if n gets large enough.
There is a more efficient and less cumbersome solution for integers than a Collections.shuffle.
The problem is the same as successively picking items from only the un-picked items in a set and setting them in order somewhere else. This is exactly like randomly dealing cards or drawing winning raffle tickets from a hat or bin.
This algorithm works for loading any array and achieving a random order at the end of the load. It also works for adding into a List collection (or any other indexed collection) and achieving a random sequence in the collection at the end of the adds.
It can be done with a single array, created once, or a numerically ordered collectio, such as a List, in place. For an array, the initial array size needs to be the exact size to contain all the intended values. If you don't know how many values might occur in advance, using a numerically orderred collection, such as an ArrayList or List, where the size is not immutable, will also work. It will work universally for an array of any size up to Integer.MAX_VALUE which is just over 2,000,000,000. List objects will have the same index limits. Your machine may run out of memory before you get to an array of that size. It may be more efficient to load an array typed to the object types and convert it to some collection, after loading the array. This is especially true if the target collection is not numerically indexed.
This algorithm, exactly as written, will create a very even distribution where there are no duplicates. One aspect that is VERY IMPORTANT is that it has to be possible for the insertion of the next item to occur up to the current size + 1. Thus, for the second item, it could be possible to store it in location 0 or location 1. For the 20th item, it could be possible to store it in any location, 0 through 19. It is just as possible the first item to stay in location 0 as it is for it to end up in any other location. It is just as possible for the next new item to go anywhere, including the next new location.
The randomness of the sequence will be as random as the randomness of the random number generator.
This algorithm can also be used to load reference types into random locations in an array. Since this works with an array, it can also work with collections. That means you don't have to create the collection and then shuffle it or have it ordered on whatever orders the objects being inserted. The collection need only have the ability to insert an item anywhere in the collection or append it.
// RandomSequence.java
import java.util.Random;
public class RandomSequence {
public static void main(String[] args) {
// create an array of the size and type for which
// you want a random sequence
int[] randomSequence = new int[20];
Random randomNumbers = new Random();
for (int i = 0; i < randomSequence.length; i++ ) {
if (i == 0) { // seed first entry in array with item 0
randomSequence[i] = 0;
} else { // for all other items...
// choose a random pointer to the segment of the
// array already containing items
int pointer = randomNumbers.nextInt(i + 1);
randomSequence[i] = randomSequence[pointer];
randomSequence[pointer] = i;
// note that if pointer & i are equal
// the new value will just go into location i and possibly stay there
// this is VERY IMPORTANT to ensure the sequence is really random
// and not biased
} // end if...else
} // end for
for (int number: randomSequence) {
System.out.printf("%2d ", number);
} // end for
} // end main
} // end class RandomSequence
It really all depends on exactly WHAT you need the random generation for, but here's my take.
First, create a standalone method for generating the random number.
Be sure to allow for limits.
public static int newRandom(int limit){
return generatedRandom.nextInt(limit); }
Next, you will want to create a very simple decision structure that compares values. This can be done in one of two ways. If you have a very limited amount of numbers to verify, a simple IF statement will suffice:
public static int testDuplicates(int int1, int int2, int int3, int int4, int int5){
boolean loopFlag = true;
while(loopFlag == true){
if(int1 == int2 || int1 == int3 || int1 == int4 || int1 == int5 || int1 == 0){
int1 = newRandom(75);
loopFlag = true; }
else{
loopFlag = false; }}
return int1; }
The above compares int1 to int2 through int5, as well as making sure that there are no zeroes in the randoms.
With these two methods in place, we can do the following:
num1 = newRandom(limit1);
num2 = newRandom(limit1);
num3 = newRandom(limit1);
num4 = newRandom(limit1);
num5 = newRandom(limit1);
Followed By:
num1 = testDuplicates(num1, num2, num3, num4, num5);
num2 = testDuplicates(num2, num1, num3, num4, num5);
num3 = testDuplicates(num3, num1, num2, num4, num5);
num4 = testDuplicates(num4, num1, num2, num3, num5);
num5 = testDuplicates(num5, num1, num2, num3, num5);
If you have a longer list to verify, then a more complex method will yield better results both in clarity of code and in processing resources.
Hope this helps. This site has helped me so much, I felt obliged to at least TRY to help as well.
I created a snippet that generates no duplicate random integer. the advantage of this snippet is that you can assign the list of an array to it and generate the random item, too.
No duplication random generator class
With Java 8 using the below code, you can create 10 distinct random Integer Numbers within a range of 1000.
Random random = new Random();
Integer[] input9 = IntStream.range(1, 10).map(i -> random.nextInt(1000)).boxed().distinct()
.toArray(Integer[]::new);
System.out.println(Arrays.toString(input9));
Modify the range to generate more numbers example : range(1,X). It will generate X distinct random numbers.
Modify the nextInt value to select the random number range : random.nextInt(Y)::random number will be generated within the range Y
In this case, the MAX is only 5, so I could check the duplicates one by one, but how could I do this in a simpler way? For example, what if the MAX has a value of 20?
Thanks.
int MAX = 5;
for (i = 1 , i <= MAX; i++)
{
drawNum[1] = (int)(Math.random()*MAX)+1;
while (drawNum[2] == drawNum[1])
{
drawNum[2] = (int)(Math.random()*MAX)+1;
}
while ((drawNum[3] == drawNum[1]) || (drawNum[3] == drawNum[2]) )
{
drawNum[3] = (int)(Math.random()*MAX)+1;
}
while ((drawNum[4] == drawNum[1]) || (drawNum[4] == drawNum[2]) || (drawNum[4] == drawNum[3]) )
{
drawNum[4] = (int)(Math.random()*MAX)+1;
}
while ((drawNum[5] == drawNum[1]) ||
(drawNum[5] == drawNum[2]) ||
(drawNum[5] == drawNum[3]) ||
(drawNum[5] == drawNum[4]) )
{
drawNum[5] = (int)(Math.random()*MAX)+1;
}
}
The simplest way would be to create a list of the possible numbers (1..20 or whatever) and then shuffle them with Collections.shuffle. Then just take however many elements you want. This is great if your range is equal to the number of elements you need in the end (e.g. for shuffling a deck of cards).
That doesn't work so well if you want (say) 10 random elements in the range 1..10,000 - you'd end up doing a lot of work unnecessarily. At that point, it's probably better to keep a set of values you've generated so far, and just keep generating numbers in a loop until the next one isn't already present:
if (max < numbersNeeded)
{
throw new IllegalArgumentException("Can't ask for more numbers than are available");
}
Random rng = new Random(); // Ideally just create one instance globally
// Note: use LinkedHashSet to maintain insertion order
Set<Integer> generated = new LinkedHashSet<Integer>();
while (generated.size() < numbersNeeded)
{
Integer next = rng.nextInt(max) + 1;
// As we're adding to a set, this will automatically do a containment check
generated.add(next);
}
Be careful with the set choice though - I've very deliberately used LinkedHashSet as it maintains insertion order, which we care about here.
Yet another option is to always make progress, by reducing the range each time and compensating for existing values. So for example, suppose you wanted 3 values in the range 0..9. On the first iteration you'd generate any number in the range 0..9 - let's say you generate a 4.
On the second iteration you'd then generate a number in the range 0..8. If the generated number is less than 4, you'd keep it as is... otherwise you add one to it. That gets you a result range of 0..9 without 4. Suppose we get 7 that way.
On the third iteration you'd generate a number in the range 0..7. If the generated number is less than 4, you'd keep it as is. If it's 4 or 5, you'd add one. If it's 6 or 7, you'd add two. That way the result range is 0..9 without 4 or 6.
Here's how I'd do it
import java.util.ArrayList;
import java.util.Random;
public class Test {
public static void main(String[] args) {
int size = 20;
ArrayList<Integer> list = new ArrayList<Integer>(size);
for(int i = 1; i <= size; i++) {
list.add(i);
}
Random rand = new Random();
while(list.size() > 0) {
int index = rand.nextInt(list.size());
System.out.println("Selected: "+list.remove(index));
}
}
}
As the esteemed Mr Skeet has pointed out:
If n is the number of randomly selected numbers you wish to choose and N is the total sample space of numbers available for selection:
If n << N, you should just store the numbers that you have picked and check a list to see if the number selected is in it.
If n ~= N, you should probably use my method, by populating a list containing the entire sample space and then removing numbers from it as you select them.
//random numbers are 0,1,2,3
ArrayList<Integer> numbers = new ArrayList<Integer>();
Random randomGenerator = new Random();
while (numbers.size() < 4) {
int random = randomGenerator .nextInt(4);
if (!numbers.contains(random)) {
numbers.add(random);
}
}
This would be a lot simpler in java-8:
Stream.generate(new Random()::ints)
.flatMap(IntStream::boxed)
.distinct()
.limit(16) // whatever limit you might need
.toArray(Integer[]::new);
There is another way of doing "random" ordered numbers with LFSR, take a look at:
http://en.wikipedia.org/wiki/Linear_feedback_shift_register
with this technique you can achieve the ordered random number by index and making sure the values are not duplicated.
But these are not TRUE random numbers because the random generation is deterministic.
But depending your case you can use this technique reducing the amount of processing on random number generation when using shuffling.
Here a LFSR algorithm in java, (I took it somewhere I don't remeber):
public final class LFSR {
private static final int M = 15;
// hard-coded for 15-bits
private static final int[] TAPS = {14, 15};
private final boolean[] bits = new boolean[M + 1];
public LFSR() {
this((int)System.currentTimeMillis());
}
public LFSR(int seed) {
for(int i = 0; i < M; i++) {
bits[i] = (((1 << i) & seed) >>> i) == 1;
}
}
/* generate a random int uniformly on the interval [-2^31 + 1, 2^31 - 1] */
public short nextShort() {
//printBits();
// calculate the integer value from the registers
short next = 0;
for(int i = 0; i < M; i++) {
next |= (bits[i] ? 1 : 0) << i;
}
// allow for zero without allowing for -2^31
if (next < 0) next++;
// calculate the last register from all the preceding
bits[M] = false;
for(int i = 0; i < TAPS.length; i++) {
bits[M] ^= bits[M - TAPS[i]];
}
// shift all the registers
for(int i = 0; i < M; i++) {
bits[i] = bits[i + 1];
}
return next;
}
/** returns random double uniformly over [0, 1) */
public double nextDouble() {
return ((nextShort() / (Integer.MAX_VALUE + 1.0)) + 1.0) / 2.0;
}
/** returns random boolean */
public boolean nextBoolean() {
return nextShort() >= 0;
}
public void printBits() {
System.out.print(bits[M] ? 1 : 0);
System.out.print(" -> ");
for(int i = M - 1; i >= 0; i--) {
System.out.print(bits[i] ? 1 : 0);
}
System.out.println();
}
public static void main(String[] args) {
LFSR rng = new LFSR();
Vector<Short> vec = new Vector<Short>();
for(int i = 0; i <= 32766; i++) {
short next = rng.nextShort();
// just testing/asserting to make
// sure the number doesn't repeat on a given list
if (vec.contains(next))
throw new RuntimeException("Index repeat: " + i);
vec.add(next);
System.out.println(next);
}
}
}
Another approach which allows you to specify how many numbers you want with size and the min and max values of the returned numbers
public static int getRandomInt(int min, int max) {
Random random = new Random();
return random.nextInt((max - min) + 1) + min;
}
public static ArrayList<Integer> getRandomNonRepeatingIntegers(int size, int min,
int max) {
ArrayList<Integer> numbers = new ArrayList<Integer>();
while (numbers.size() < size) {
int random = getRandomInt(min, max);
if (!numbers.contains(random)) {
numbers.add(random);
}
}
return numbers;
}
To use it returning 7 numbers between 0 and 25.
ArrayList<Integer> list = getRandomNonRepeatingIntegers(7, 0, 25);
for (int i = 0; i < list.size(); i++) {
System.out.println("" + list.get(i));
}
The most efficient, basic way to have non-repeating random numbers is explained by this pseudo-code. There is no need to have nested loops or hashed lookups:
// get 5 unique random numbers, possible values 0 - 19
// (assume desired number of selections < number of choices)
const int POOL_SIZE = 20;
const int VAL_COUNT = 5;
declare Array mapping[POOL_SIZE];
declare Array results[VAL_COUNT];
declare i int;
declare r int;
declare max_rand int;
// create mapping array
for (i=0; i<POOL_SIZE; i++) {
mapping[i] = i;
}
max_rand = POOL_SIZE-1; // start loop searching for maximum value (19)
for (i=0; i<VAL_COUNT; i++) {
r = Random(0, max_rand); // get random number
results[i] = mapping[r]; // grab number from map array
mapping[r] = max_rand; // place item past range at selected location
max_rand = max_rand - 1; // reduce random scope by 1
}
Suppose first iteration generated random number 3 to start (from 0 - 19). This would make results[0] = mapping[3], i.e., the value 3. We'd then assign mapping[3] to 19.
In the next iteration, the random number was 5 (from 0 - 18). This would make results[1] = mapping[5], i.e., the value 5. We'd then assign mapping[5] to 18.
Now suppose the next iteration chose 3 again (from 0 - 17). results[2] would be assigned the value of mapping[3], but now, this value is not 3, but 19.
This same protection persists for all numbers, even if you got the same number 5 times in a row. E.g., if the random number generator gave you 0 five times in a row, the results would be: [ 0, 19, 18, 17, 16 ].
You would never get the same number twice.
Generating all the indices of a sequence is generally a bad idea, as it might take a lot of time, especially if the ratio of the numbers to be chosen to MAX is low (the complexity becomes dominated by O(MAX)). This gets worse if the ratio of the numbers to be chosen to MAX approaches one, as then removing the chosen indices from the sequence of all also becomes expensive (we approach O(MAX^2/2)). But for small numbers, this generally works well and is not particularly error-prone.
Filtering the generated indices by using a collection is also a bad idea, as some time is spent in inserting the indices into the sequence, and progress is not guaranteed as the same random number can be drawn several times (but for large enough MAX it is unlikely). This could be close to complexity O(k n log^2(n)/2), ignoring the duplicates and assuming the collection uses a tree for efficient lookup (but with a significant constant cost k of allocating the tree nodes and possibly having to rebalance).
Another option is to generate the random values uniquely from the beginning, guaranteeing progress is being made. That means in the first round, a random index in [0, MAX] is generated:
items i0 i1 i2 i3 i4 i5 i6 (total 7 items)
idx 0 ^^ (index 2)
In the second round, only [0, MAX - 1] is generated (as one item was already selected):
items i0 i1 i3 i4 i5 i6 (total 6 items)
idx 1 ^^ (index 2 out of these 6, but 3 out of the original 7)
The values of the indices then need to be adjusted: if the second index falls in the second half of the sequence (after the first index), it needs to be incremented to account for the gap. We can implement this as a loop, allowing us to select arbitrary number of unique items.
For short sequences, this is quite fast O(n^2/2) algorithm:
void RandomUniqueSequence(std::vector<int> &rand_num,
const size_t n_select_num, const size_t n_item_num)
{
assert(n_select_num <= n_item_num);
rand_num.clear(); // !!
// b1: 3187.000 msec (the fastest)
// b2: 3734.000 msec
for(size_t i = 0; i < n_select_num; ++ i) {
int n = n_Rand(n_item_num - i - 1);
// get a random number
size_t n_where = i;
for(size_t j = 0; j < i; ++ j) {
if(n + j < rand_num[j]) {
n_where = j;
break;
}
}
// see where it should be inserted
rand_num.insert(rand_num.begin() + n_where, 1, n + n_where);
// insert it in the list, maintain a sorted sequence
}
// tier 1 - use comparison with offset instead of increment
}
Where n_select_num is your 5 and n_number_num is your MAX. The n_Rand(x) returns random integers in [0, x] (inclusive). This can be made a bit faster if selecting a lot of items (e.g. not 5 but 500) by using binary search to find the insertion point. To do that, we need to make sure that we meet the requirements.
We will do binary search with the comparison n + j < rand_num[j] which is the same as n < rand_num[j] - j. We need to show that rand_num[j] - j is still a sorted sequence for a sorted sequence rand_num[j]. This is fortunately easily shown, as the lowest distance between two elements of the original rand_num is one (the generated numbers are unique, so there is always difference of at least 1). At the same time, if we subtract the indices j from all the elements rand_num[j], the differences in index are exactly 1. So in the "worst" case, we get a constant sequence - but never decreasing. The binary search can therefore be used, yielding O(n log(n)) algorithm:
struct TNeedle { // in the comparison operator we need to make clear which argument is the needle and which is already in the list; we do that using the type system.
int n;
TNeedle(int _n)
:n(_n)
{}
};
class CCompareWithOffset { // custom comparison "n < rand_num[j] - j"
protected:
std::vector<int>::iterator m_p_begin_it;
public:
CCompareWithOffset(std::vector<int>::iterator p_begin_it)
:m_p_begin_it(p_begin_it)
{}
bool operator ()(const int &r_value, TNeedle n) const
{
size_t n_index = &r_value - &*m_p_begin_it;
// calculate index in the array
return r_value < n.n + n_index; // or r_value - n_index < n.n
}
bool operator ()(TNeedle n, const int &r_value) const
{
size_t n_index = &r_value - &*m_p_begin_it;
// calculate index in the array
return n.n + n_index < r_value; // or n.n < r_value - n_index
}
};
And finally:
void RandomUniqueSequence(std::vector<int> &rand_num,
const size_t n_select_num, const size_t n_item_num)
{
assert(n_select_num <= n_item_num);
rand_num.clear(); // !!
// b1: 3578.000 msec
// b2: 1703.000 msec (the fastest)
for(size_t i = 0; i < n_select_num; ++ i) {
int n = n_Rand(n_item_num - i - 1);
// get a random number
std::vector<int>::iterator p_where_it = std::upper_bound(rand_num.begin(), rand_num.end(),
TNeedle(n), CCompareWithOffset(rand_num.begin()));
// see where it should be inserted
rand_num.insert(p_where_it, 1, n + p_where_it - rand_num.begin());
// insert it in the list, maintain a sorted sequence
}
// tier 4 - use binary search
}
I have tested this on three benchmarks. First, 3 numbers were chosen out of 7 items, and a histogram of the items chosen was accumulated over 10,000 runs:
4265 4229 4351 4267 4267 4364 4257
This shows that each of the 7 items was chosen approximately the same number of times, and there is no apparent bias caused by the algorithm. All the sequences were also checked for correctness (uniqueness of contents).
The second benchmark involved choosing 7 numbers out of 5000 items. The time of several versions of the algorithm was accumulated over 10,000,000 runs. The results are denoted in comments in the code as b1. The simple version of the algorithm is slightly faster.
The third benchmark involved choosing 700 numbers out of 5000 items. The time of several versions of the algorithm was again accumulated, this time over 10,000 runs. The results are denoted in comments in the code as b2. The binary search version of the algorithm is now more than two times faster than the simple one.
The second method starts being faster for choosing more than cca 75 items on my machine (note that the complexity of either algorithm does not depend on the number of items, MAX).
It is worth mentioning that the above algorithms generate the random numbers in ascending order. But it would be simple to add another array to which the numbers would be saved in the order in which they were generated, and returning that instead (at negligible additional cost O(n)). It is not necessary to shuffle the output: that would be much slower.
Note that the sources are in C++, I don't have Java on my machine, but the concept should be clear.
EDIT:
For amusement, I have also implemented the approach that generates a list with all the indices 0 .. MAX, chooses them randomly and removes them from the list to guarantee uniqueness. Since I've chosen quite high MAX (5000), the performance is catastrophic:
// b1: 519515.000 msec
// b2: 20312.000 msec
std::vector<int> all_numbers(n_item_num);
std::iota(all_numbers.begin(), all_numbers.end(), 0);
// generate all the numbers
for(size_t i = 0; i < n_number_num; ++ i) {
assert(all_numbers.size() == n_item_num - i);
int n = n_Rand(n_item_num - i - 1);
// get a random number
rand_num.push_back(all_numbers[n]); // put it in the output list
all_numbers.erase(all_numbers.begin() + n); // erase it from the input
}
// generate random numbers
I have also implemented the approach with a set (a C++ collection), which actually comes second on benchmark b2, being only about 50% slower than the approach with the binary search. That is understandable, as the set uses a binary tree, where the insertion cost is similar to binary search. The only difference is the chance of getting duplicate items, which slows down the progress.
// b1: 20250.000 msec
// b2: 2296.000 msec
std::set<int> numbers;
while(numbers.size() < n_number_num)
numbers.insert(n_Rand(n_item_num - 1)); // might have duplicates here
// generate unique random numbers
rand_num.resize(numbers.size());
std::copy(numbers.begin(), numbers.end(), rand_num.begin());
// copy the numbers from a set to a vector
Full source code is here.
Your problem seems to reduce to choose k elements at random from a collection of n elements. The Collections.shuffle answer is thus correct, but as pointed out inefficient: its O(n).
Wikipedia: Fisher–Yates shuffle has a O(k) version when the array already exists. In your case, there is no array of elements and creating the array of elements could be very expensive, say if max were 10000000 instead of 20.
The shuffle algorithm involves initializing an array of size n where every element is equal to its index, picking k random numbers each number in a range with the max one less than the previous range, then swapping elements towards the end of the array.
You can do the same operation in O(k) time with a hashmap although I admit its kind of a pain. Note that this is only worthwhile if k is much less than n. (ie k ~ lg(n) or so), otherwise you should use the shuffle directly.
You will use your hashmap as an efficient representation of the backing array in the shuffle algorithm. Any element of the array that is equal to its index need not appear in the map. This allows you to represent an array of size n in constant time, there is no time spent initializing it.
Pick k random numbers: the first is in the range 0 to n-1, the second 0 to n-2, the third 0 to n-3 and so on, thru n-k.
Treat your random numbers as a set of swaps. The first random index swaps to the final position. The second random index swaps to the second to last position. However, instead of working against a backing array, work against your hashmap. Your hashmap will store every item that is out of position.
int getValue(i)
{
if (map.contains(i))
return map[i];
return i;
}
void setValue(i, val)
{
if (i == val)
map.remove(i);
else
map[i] = val;
}
int[] chooseK(int n, int k)
{
for (int i = 0; i < k; i++)
{
int randomIndex = nextRandom(0, n - i); //(n - i is exclusive)
int desiredIndex = n-i-1;
int valAtRandom = getValue(randomIndex);
int valAtDesired = getValue(desiredIndex);
setValue(desiredIndex, valAtRandom);
setValue(randomIndex, valAtDesired);
}
int[] output = new int[k];
for (int i = 0; i < k; i++)
{
output[i] = (getValue(n-i-1));
}
return output;
}
You could use one of the classes implementing the Set interface (API), and then each number you generate, use Set.add() to insert it.
If the return value is false, you know the number has already been generated before.
Instead of doing all this create a LinkedHashSet object and random numbers to it by Math.random() function .... if any duplicated entry occurs the LinkedHashSet object won't add that number to its List ... Since in this Collection Class no duplicate values are allowed .. in the end u get a list of random numbers having no duplicated values .... :D
With Java 8 upwards you can use the ints method from the IntStream interface:
Returns an effectively unlimited stream of pseudorandom int values.
Random r = new Random();
int randomNumberOrigin = 0;
int randomNumberBound = 10;
int size = 5;
int[] unique = r.ints(randomNumberOrigin, randomNumberBound)
.distinct()
.limit(size)
.toArray();
Following code create a sequence random number between [1,m] that was not generated before.
public class NewClass {
public List<Integer> keys = new ArrayList<Integer>();
public int rand(int m) {
int n = (int) (Math.random() * m + 1);
if (!keys.contains(n)) {
keys.add(n);
return n;
} else {
return rand(m);
}
}
public static void main(String[] args) {
int m = 4;
NewClass ne = new NewClass();
for (int i = 0; i < 4; i++) {
System.out.println(ne.rand(m));
}
System.out.println("list: " + ne.keys);
}
}
The most easy way is use nano DateTime as long format.
System.nanoTime();
There is algorithm of card batch: you create ordered array of numbers (the "card batch") and in every iteration you select a number at random position from it (removing the selected number from the "card batch" of course).
Here is an efficient solution for fast creation of a randomized array. After randomization you can simply pick the n-th element e of the array, increment n and return e. This solution has O(1) for getting a random number and O(n) for initialization, but as a tradeoff requires a good amount of memory if n gets large enough.
There is a more efficient and less cumbersome solution for integers than a Collections.shuffle.
The problem is the same as successively picking items from only the un-picked items in a set and setting them in order somewhere else. This is exactly like randomly dealing cards or drawing winning raffle tickets from a hat or bin.
This algorithm works for loading any array and achieving a random order at the end of the load. It also works for adding into a List collection (or any other indexed collection) and achieving a random sequence in the collection at the end of the adds.
It can be done with a single array, created once, or a numerically ordered collectio, such as a List, in place. For an array, the initial array size needs to be the exact size to contain all the intended values. If you don't know how many values might occur in advance, using a numerically orderred collection, such as an ArrayList or List, where the size is not immutable, will also work. It will work universally for an array of any size up to Integer.MAX_VALUE which is just over 2,000,000,000. List objects will have the same index limits. Your machine may run out of memory before you get to an array of that size. It may be more efficient to load an array typed to the object types and convert it to some collection, after loading the array. This is especially true if the target collection is not numerically indexed.
This algorithm, exactly as written, will create a very even distribution where there are no duplicates. One aspect that is VERY IMPORTANT is that it has to be possible for the insertion of the next item to occur up to the current size + 1. Thus, for the second item, it could be possible to store it in location 0 or location 1. For the 20th item, it could be possible to store it in any location, 0 through 19. It is just as possible the first item to stay in location 0 as it is for it to end up in any other location. It is just as possible for the next new item to go anywhere, including the next new location.
The randomness of the sequence will be as random as the randomness of the random number generator.
This algorithm can also be used to load reference types into random locations in an array. Since this works with an array, it can also work with collections. That means you don't have to create the collection and then shuffle it or have it ordered on whatever orders the objects being inserted. The collection need only have the ability to insert an item anywhere in the collection or append it.
// RandomSequence.java
import java.util.Random;
public class RandomSequence {
public static void main(String[] args) {
// create an array of the size and type for which
// you want a random sequence
int[] randomSequence = new int[20];
Random randomNumbers = new Random();
for (int i = 0; i < randomSequence.length; i++ ) {
if (i == 0) { // seed first entry in array with item 0
randomSequence[i] = 0;
} else { // for all other items...
// choose a random pointer to the segment of the
// array already containing items
int pointer = randomNumbers.nextInt(i + 1);
randomSequence[i] = randomSequence[pointer];
randomSequence[pointer] = i;
// note that if pointer & i are equal
// the new value will just go into location i and possibly stay there
// this is VERY IMPORTANT to ensure the sequence is really random
// and not biased
} // end if...else
} // end for
for (int number: randomSequence) {
System.out.printf("%2d ", number);
} // end for
} // end main
} // end class RandomSequence
It really all depends on exactly WHAT you need the random generation for, but here's my take.
First, create a standalone method for generating the random number.
Be sure to allow for limits.
public static int newRandom(int limit){
return generatedRandom.nextInt(limit); }
Next, you will want to create a very simple decision structure that compares values. This can be done in one of two ways. If you have a very limited amount of numbers to verify, a simple IF statement will suffice:
public static int testDuplicates(int int1, int int2, int int3, int int4, int int5){
boolean loopFlag = true;
while(loopFlag == true){
if(int1 == int2 || int1 == int3 || int1 == int4 || int1 == int5 || int1 == 0){
int1 = newRandom(75);
loopFlag = true; }
else{
loopFlag = false; }}
return int1; }
The above compares int1 to int2 through int5, as well as making sure that there are no zeroes in the randoms.
With these two methods in place, we can do the following:
num1 = newRandom(limit1);
num2 = newRandom(limit1);
num3 = newRandom(limit1);
num4 = newRandom(limit1);
num5 = newRandom(limit1);
Followed By:
num1 = testDuplicates(num1, num2, num3, num4, num5);
num2 = testDuplicates(num2, num1, num3, num4, num5);
num3 = testDuplicates(num3, num1, num2, num4, num5);
num4 = testDuplicates(num4, num1, num2, num3, num5);
num5 = testDuplicates(num5, num1, num2, num3, num5);
If you have a longer list to verify, then a more complex method will yield better results both in clarity of code and in processing resources.
Hope this helps. This site has helped me so much, I felt obliged to at least TRY to help as well.
I created a snippet that generates no duplicate random integer. the advantage of this snippet is that you can assign the list of an array to it and generate the random item, too.
No duplication random generator class
With Java 8 using the below code, you can create 10 distinct random Integer Numbers within a range of 1000.
Random random = new Random();
Integer[] input9 = IntStream.range(1, 10).map(i -> random.nextInt(1000)).boxed().distinct()
.toArray(Integer[]::new);
System.out.println(Arrays.toString(input9));
Modify the range to generate more numbers example : range(1,X). It will generate X distinct random numbers.
Modify the nextInt value to select the random number range : random.nextInt(Y)::random number will be generated within the range Y
recently I met a question like this:
Assume you have an int N, and you also have an int[] and each element in this array can only be used once time. And we need to design an algorithm to get 1 to N by adding those numbers and finally return the least numbers we need to add.
For example:
N = 6, array is [1,3]
1 : we already have.
2 : we need to add it to the array.
3 : we can get it by doing 1 + 2.
4: 1 + 3.
5 : 2 + 3.
6 : 1 + 2 + 3.
So we just need to add 2 to our array and finally we return 1.
I am thinking of solving this by using DFS.
Do you have some better solutions? Thanks!
Here's an explanation for why the solution the OP posted works (the algorithm, briefly, is to traverse the sorted existing elements, keep an accumulating sum of the preceding existing elements and add an element to the array and sum if it does not exist and exceeds the current sum):
The loop tests in order each element that must be formed and sums the preceding elements. It alerts us if there is an element needed that's greater than the current sum. If you think about it, it's really simple! How could we make the element when we've already used all the preceding elements, which is what the sum represents!
In contrast, how do we know that all the intermediate elements will be able to be formed when the sum is larger than the current element? For example, consider n = 7, a = {}:
The function adds {1,2,4...}
So we are up to 4 and we know 1,2,3,4 are covered,
each can be formed from equal or lower numbers in the array.
At any point, m, in the traversal, we know for sure that
X0 + X1 ... + Xm make the largest number we can make, call it Y.
But we also know that we can make 1,2,3...Xm
Therefore, we can make Y-1, Y-2, Y-3...Y-Xm
(In this example: Xm = 4; Y = 1+2+4 = 7; Y-1 = 6; Y-2 = 5)
Q.E.D.
I don't know if this is a good solution or not:
I would create a second array (boolean array) remembering all numbers I can calculate.
Then I would write a method simulating the adding of a number to the array. (In your example the 1, 3 and 2 are added to the array).
The boolean array will be updated to always remember which values (numbers) can be calculated with the added numbers.
After calling the add method on the initial array values, you test for every Number x ( 1 <= x <= N ) if x can be calculated. If not call the add method for x.
since my explanation is no good I will add (untested) Java code:
static int[] arr = {3,5};
static int N = 20;
//An Array remembering which values can be calculated so far
static boolean[] canCalculate = new boolean[N];
//Calculate how many numbers must be added to the array ( Runtime O(N^2) )
public static int method(){
//Preperation (adding every given Number in the array)
for(int i=0; i<arr.length; i++){
addNumber(arr[i]);
}
//The number of elements added to the initial array
int result = 0;
//Adding (and counting) the missing numbers (Runtime O(N^2) )
for(int i=1; i<=N; i++){
if( !canCalculate[i-1] ){
addNumber(i);
result++;
}
}
return result;
}
//This Method is called whenever a new number is added to your array
//runtime O(N)
public static void addNumber( int number ){
System.out.println("Add Number: "+(number));
boolean[] newarray = new boolean[N];
newarray[number-1] = true;
//Test which values can be calculated after adding this number
//And update the array
for(int i=1; i<=N; i++){
if( canCalculate[i-1] ){
newarray[i-1] = true;
if( i + number <= N ){
newarray[i+number-1] = true;
}
}
}
canCalculate = newarray;
}
Edit: Tested the code and changed some errors (but rachel's solution seems to be better anyway)
It is a famous problem from dynamic programming. You can refer to complete solution here https://www.youtube.com/watch?v=s6FhG--P7z0
I just found a possible solution like this
public static int getNum(int n, int[] a) {
ArrayList<Integer> output = new ArrayList<Integer>();
Arrays.sort(a);
int sum = 0;
int i = 0;
while(true) {
if (i >= a.length || a[i] > sum + 1) {
output.add(sum + 1);
sum += sum + 1;
} else {
sum += a[i];
i++;
}
if (sum >= n) {
break;
}
}
return output.size();
};
And I test some cases and it looks correct.
But the one who write this didn't give us any hints and I am really confused with this one. Can anybody come up with some explanations ? Thanks!
I have an array with positive integers in random order. A number x
from the list is given ,we need to find any two numbers in the list
having sum equal to x.Running time must be less than n^2.
{edit}
What I did is that , I put all the numbers less than half of x in one array and greater than half of x in another array and all greater than x are discarded and then the idea is that the required two numbers must from the two arrays (not from a single array) and by iterating I can get the two numbers.
Now for the worst case I am little confuse is that approach is good? or if anyone guide me something more better than this also can we achieve log n or n *log n ?
Your solution is both wrong, and in O(n^2).
It is wrong since consider x=5 and arr=[1,2,3,5] - the two numbers needed are from one array, not from both.
What if arr=[3,3,6], x=6, you will place both 3s in one list (not greater than x/2 for example), and will fail to find 3+3=6.
Your algorithm runs in O(n^2), because assume exactly half of the elements are greater than x1, and half are smaller than x. Then, the number of combinations you have to check are (n/2*n/2) /2 = n^2/8
To solve it in O(nlogn), think what happens if you sort the data, given a number arr[i], can you find efficiently if there is a number x-arr[i] in the now sorted array?
You can even enhance the above to O(n) average case by placing the elements in a hash-set, and now, given an number y, can you find efficiently if x-y is also in the set?
EDIT:
Stroked out parts are not relevant anymore since OP editted the question, added a new cause of concern instead.
(1) than x/2 in the editted question.
Here is O(n) solution for finding the first pair of indices of array which sums to the expected target. The solution will stop when it finds the first 2 indices that sum to target, if you need all the pairs that add up to target then instead of using int[] result, you can use ArrayList or even a Map, process the complete array and return it with all the pairs of indices. There is an obvious assumption that the Map's hashcode function is really good and there are not much collisions so that map operations perform in O(1) time.
import java.util.*;
public class Solution {
public static void main(String[] args) {
int[] array = new int[] {1,2,4,7,12,67,12,5,9,1,10};
System.out.println(Arrays.toString(sum(array, 68)));
}
public static int[] sum(int[] array, int target) {
int[] result = new int[2];
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
// n iterations
for (int index = 0; index < array.length; index++) {
// constant
if (map.containsKey(target - array[index])) {
result[1] = index;
// constant
result[0] = map.get(target - array[index]);
return result;
}
// constant
map.put(array[index], index);
}
return result;
}
}
Here you go,
Sort the array using merge sort (Time complexity: n logn). Take two pointers/counters, say i & j, one starts from index 0 and another from n-1 (assuming n size of array is n).
if array[i]+array[j]=sum
return;
else if (array[i]+array[j]<sum) i++;
else j--;
Do it until i>j.
Overall time complexity: n logn
/* Time Complexity = O(n)-since HashMap operations take O(1) time*/
public static ArrayList<Integer> twoSum(int[] arr , int target){
if (arr == null){
throw new IllegalArgumentException();
}
ArrayList<Integer> targetHolder = new ArrayList<>();
HashMap<Integer, Integer> map = new HashMap<>();
for (int i = 0 ; i < arr.length ; i++){
if (map.containsKey(arr[i])){
int index = map.get(arr[i]);
targetHolder.add(index+1);
targetHolder.add(i+1);
}
else{
map.put(target-arr[i], i);
}
}
return targetHolder;
}
public static void main(String[] args) {
int[] A = {1,2,3,4,5,6};
System.out.println(twoSum(A, 6));
}
}
public void function(int[] array, int sum){
for(int i = 0; i < array.length/2; i ++){
for(int j = array.length-1;; j--){
if(array[i]+array[j] < sum) break;
if(array[i]+array[j] == sum) System.out.println(array[i]+" + "+array[j]+" = "+sum);
}
}
}
I want a combination algorithm,...to multiple the elements in the array, to every other element but itself....
please help me to combine eg:: {1,2,3,4,5,6}
output:: 1*2,1*3....1*6, 1*2*3 !*2*4.......1*2*3*4*5*6.......5*6
code removed it was irrelevant to my logical requirement of question...
I believe this is what you are looking for:
//This method return a list of lists, where each "inner list" contains as
//its first number the number for which the factors are being found, and
//every other number is a factor.
//It takes an array of all the numbers whose factor you wish to find
public List<List<Integer>> getAllFactors(int[] toCalculate){
List<List<Integer>> toReturn = new ArrayList<List<Integer>>();
List<Integer> factors;
for(int i = 0; i < toCalculate.length; i++){
factors = new ArrayList<Integer>();
factors.add(toCalculate[i]); //add the number whose factors will be calculated
//the square root is used because it is the largest number you can divide by without getting "overlap"
for(int j = 1; j <= Math.sqrt(toCalculate[i]); j++){
if(toCalculate[i]%j==0){ //if it divides evenly, add it
factors.add(j);
factors.add((Integer)toCalculate[i]/j); //also add its "partner" number
}
}
toReturn.add(factors);
}
return toReturn;
}
I put in class Test... Here is my testing method:
public static void main(String[] args){
Test t = new Test();
List<List<Integer>> blah = t.getAllFactors(new int[]{10, 12, 1, 5});
for(List<Integer> i: blah)
System.out.println(Arrays.toString(i.toArray(new Integer[i.size()])));
}
I realized that this wasn't what the question asked for... I think... I can't really tell...
Anyway, I wrote an alternative method:
public List<Integer> getAllFactors(int number){
List<Integer> factors = new ArrayList<Integer>();
for(int i = 2; i <= Math.sqrt(number); i++){
if(number%i==0){
factors.add(number);
factors.addAll(getAllFactors(i));
factors.addAll(getAllFactors(number/i));
}
}
if(factors.isEmpty())
factors.add(number);
return factors;
}
But then I realized that might not be what you want either. The fact is, I actually have no fricking clue what you are looking for, I can't understand your post. I have just been trying to glean info from the comments.
Why not just declare arr as a Set from the start?
Set<Integer> arr = new LinkedHashSet<Integer>();
And leave it at that. You never want duplicates, and if order is important, a LinkedHashSet preserves insertion order.
First, finding factors. Here is a fragment from my own code. It builds a list of factors of target in an ArrayList called factors. As each factor is found it is recorded once and divided out as many time as is needed. The upper limit is then reduced accordingly. The variable residue holds the unfactored portion of target.
int trialFactor = 0;
int residue = target;
limit = iSqrt(residue);
while (trialFactor < limit) {
trialFactor = nextPrime(trialFactor);
if (residue % trialFactor == 0) {
factors.add(trialFactor);
do {
// Remove repeated factors.
residue /= trialFactor;
} while (residue % trialFactor == 0);
limit = iSqrt(residue);
}
}
// Record largest factor, if present.
if (residue > 1) { factors.add(residue); }
There are two of my own functions used:
int nextPrime(int) which returns the next highest prime.
int iSqrt(int) which returns the integer square root; iSqrt(10) returns 3.
Now for the second part of your question, combinations. You have a group of items and you want all the possible combinations. If there are n items then just iterate through all the numbers 0 to (2^n) - 1. That will give you all the bit patterns from 000 ... 000 to 111 ... 111. For each position in your group a '0' means not to include it in your output while a '1' means to include it.
So, given your {1,2,3,4,5,6} example, you need numbers from 0 to 2^6 - 1 = 63. Take an example, 45 is 101101 in binary, so your output for 45 is {1,3,4,6}.