Updating highly read Lists/Maps in a concurrent environment - java

The following class acts as a simple cache that gets updated very infrequently (say e.g. twice a day) and gets read quite a lot (up to several times a second). There are two different types, a List and a Map. My question is about the new assignment after the data gets updated in the update method. What's the best (safest) way for the new data to get applied?
I should add that it isn't necessary for readers to see the absolute latest value. The requirements are just to get either the old or the new value at any given time.
public class Foo {
private ThreadPoolExecutor _executor;
private List<Object> _listObjects = new ArrayList<Object>(0);
private Map<Integer, Object> _mapObjects = new HashMap<Integer, Object>();
private Object _mutex = new Object();
private boolean _updateInProgress;
public void update() {
synchronized (_mutex) {
if (_updateInProgress) {
return;
} else {
_updateInProgress = true;
}
}
_executor.execute(new Runnable() {
#Override
public void run() {
try {
List<Object> newObjects = loadListObjectsFromDatabase();
Map<Integer, Object> newMapObjects = loadMapObjectsFromDatabase();
/*
* this is the interesting part
*/
_listObjects = newObjects;
_mapObjects = newMapObjects;
} catch (final Exception ex) {
// error handling
} finally {
synchronized (_mutex) {
_updateInProgress = false;
}
}
}
});
}
public Object getObjectById(Integer id) {
return _mapObjects.get(id);
}
public List<Object> getListObjects() {
return new ArrayList<Object>(_listObjects);
}
}
As you see, currently no ConcurrentHashMap or CopyOnWriteArrayList is used. The only synchronisation is done in the update method.
Although not necessary for my current problem, it would be also great to know the best solution for cases where it is essential for readers to always get the absolute latest value.

You could use plan synchronization unless you are reading over 10,000 times per second.
If you want concurrent access I would use on of the concurrent collections like ConcurrentHashMap or CopyOnWriteArrayList. These are simpler to use than synchronizing the collection. (i.e. you don't need them for performance reasons, use them for simplicity)
BTW: A modern CPU can perform billions of operations in 0.1 seconds so several times a second is an eternity to a computer.

I am also seeing this issue and think of multiple solutions:
Use synchronization block on the both codes, one where reading and other where writing.
Make a separate remove list, add all removable items in that list. Remove in the same thread where reading the list just after reading is done. This way reading and deleting will happen in sequence and no error will come.

Related

Missing updates with locks and ConcurrentHashMap

I have a scenario where I have to maintain a Map which can be populated by multiple threads, each modifying their respective List (unique identifier/key being the thread name), and when the list size for a thread exceeds a fixed batch size, we have to persist the records to the database.
Aggregator class
private volatile ConcurrentHashMap<String, List<T>> instrumentMap = new ConcurrentHashMap<String, List<T>>();
private ReentrantLock lock ;
public void addAll(List<T> entityList, String threadName) {
try {
lock.lock();
List<T> instrumentList = instrumentMap.get(threadName);
if(instrumentList == null) {
instrumentList = new ArrayList<T>(batchSize);
instrumentMap.put(threadName, instrumentList);
}
if(instrumentList.size() >= batchSize -1){
instrumentList.addAll(entityList);
recordSaver.persist(instrumentList);
instrumentList.clear();
} else {
instrumentList.addAll(entityList);
}
} finally {
lock.unlock();
}
}
There is one more separate thread running after every 2 minutes (using the same lock) to persist all the records in Map (to make sure we have something persisted after every 2 minutes and the map size does not gets too big)
if(//Some condition) {
Thread.sleep(//2 minutes);
aggregator.getLock().lock();
List<T> instrumentList = instrumentMap.values().stream().flatMap(x->x.stream()).collect(Collectors.toList());
if(instrumentList.size() > 0) {
saver.persist(instrumentList);
instrumentMap .values().parallelStream().forEach(x -> x.clear());
aggregator.getLock().unlock();
}
}
This solution is working fine in almost for every scenario that we tested, except sometimes we see some of the records went missing, i.e. they are not persisted at all, although they were added fine to the Map.
My questions are:
What is the problem with this code?
Is ConcurrentHashMap not the best solution here?
Does the List that is used with the ConcurrentHashMap have an issue?
Should I use the compute method of ConcurrentHashMap here (no need I think, as ReentrantLock is already doing the same job)?
The answer provided by #Slaw in the comments did the trick. We were letting the instrumentList instance escape in non-synchronized way i.e. access/operations are happening over list without any synchonization. Fixing the same by passing the copy to further methods did the trick.
Following line of code is the one where this issue was happening
recordSaver.persist(instrumentList);
instrumentList.clear();
Here we are allowing the instrumentList instance to escape in non-synchronized way i.e. it is passed to another class (recordSaver.persist) where it was to be actioned on but we are also clearing the list in very next line(in Aggregator class) and all of this is happening in non-synchronized way. List state can't be predicted in record saver... a really stupid mistake.
We fixed the issue by passing a cloned copy of instrumentList to recordSaver.persist(...) method. In this way instrumentList.clear() has no affect on list available in recordSaver for further operations.
I see, that you are using ConcurrentHashMap's parallelStream within a lock. I am not knowledgeable about Java 8+ stream support, but quick searching shows, that
ConcurrentHashMap is a complex data structure, that used to have concurrency bugs in past
Parallel streams must abide to complex and poorly documented usage restrictions
You are modifying your data within a parallel stream
Based on that information (and my gut-driven concurrency bugs detector™), I wager a guess, that removing the call to parallelStream might improve robustness of your code. In addition, as mentioned by #Slaw, you should use ordinary HashMap in place of ConcurrentHashMap if all instrumentMap usage is already guarded by lock.
Of course, since you don't post the code of recordSaver, it is possible, that it too has bugs (and not necessarily concurrency-related ones). In particular, you should make sure, that the code that reads records from persistent storage — the one, that you are using to detect loss of records — is safe, correct, and properly synchronized with rest of your system (preferably by using a robust, industry-standard SQL database).
It looks like this was an attempt at optimization where it was not needed. In that case, less is more and simpler is better. In the code below, only two concepts for concurrency are used: synchronized to ensure a shared list is properly updated and final to ensure all threads see the same value.
import java.util.ArrayList;
import java.util.List;
public class Aggregator<T> implements Runnable {
private final List<T> instruments = new ArrayList<>();
private final RecordSaver recordSaver;
private final int batchSize;
public Aggregator(RecordSaver recordSaver, int batchSize) {
super();
this.recordSaver = recordSaver;
this.batchSize = batchSize;
}
public synchronized void addAll(List<T> moreInstruments) {
instruments.addAll(moreInstruments);
if (instruments.size() >= batchSize) {
storeInstruments();
}
}
public synchronized void storeInstruments() {
if (instruments.size() > 0) {
// in case recordSaver works async
// recordSaver.persist(new ArrayList<T>(instruments));
// else just:
recordSaver.persist(instruments);
instruments.clear();
}
}
#Override
public void run() {
while (true) {
try { Thread.sleep(1L); } catch (Exception ignored) {
break;
}
storeInstruments();
}
}
class RecordSaver {
void persist(List<?> l) {}
}
}

Synchronizing searches and modifications

What's a good way of allowing searches from multiple threads on a list (or other data structure), but preventing searches on the list and edits to the list on different threads from interleaving? I tried using synchronized blocks in the searching and editing methods, but that can cause unnecessary blocking when trying to run searches in multiple threads.
EDIT: The ReadWriteLock is exactly what I was looking for! Thanks.
Usually, yes ReadWriteLock is good enough.
But, if you're using Java 8 you can get a performance boost with the new StampedLock that lets you avoid the read lock. This applies when you have much more frequent reads(searches) compared with writes(edits).
private StampedLock sl = new StampedLock();
public void edit() { // write method
long stamp = sl.writeLock();
try {
doEdit();
} finally {
sl.unlockWrite(stamp);
}
}
public Object search() { // read method
long stamp = sl.tryOptimisticRead();
Object result = doSearch(); //first try without lock, search ideally should be fast
if (!sl.validate(stamp)) { //if something has modified
stamp = sl.readLock(); //acquire read lock and search again
try {
result = doSearch();
} finally {
sl.unlockRead(stamp);
}
}
return result;
}

How to use Multithreading to effectively

I want to do a task that I've already completed except this time using multithreading. I have to read a lot of data from a file (line by line), grab some information from each line, and then add it to a Map. The file is over a million lines long so I thought it may benefit from multithreading.
I'm not sure about my approach here since I have never used multithreading in Java before.
I want to have the main method do the reading, and then giving the line that has been read to another thread which will format a String, and then give it to another thread to put into a map.
public static void main(String[] args)
{
//Some information read from file
BufferedReader br = null;
String line = '';
try {
br = new BufferedReader(new FileReader("somefile.txt"));
while((line = br.readLine()) != null) {
// Pass line to another task
}
// Here I want to get a total from B, but I'm not sure how to go about doing that
}
public class Parser extends Thread
{
private Mapper m1;
// Some reference to B
public Parse (Mapper m) {
m1 = m;
}
public parse (String s, int i) {
// Do some work on S
key = DoSomethingWithString(s);
m1.add(key, i);
}
}
public class Mapper extends Thread
{
private SortedMap<String, Integer> sm;
private String key;
private int value;
boolean hasNewItem;
public Mapper() {
sm = new TreeMap<String, Integer>;
hasNewItem = false;
}
public void add(String s, int i) {
hasNewItem = true;
key = s;
value = i;
}
public void run() {
while (!Thread.currentThread().isInterrupted()) {
try {
if (hasNewItem) {
// Find if street name exists in map
sm.put(key, value);
newEntry = false;
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
// I'm not sure how to give the Map back to main.
}
}
I'm not sure if I am taking the right approach. I also do not know how to terminate the Mapper thread and retrieve the map in the main. I will have multiple Mapper threads but I have only instantiated one in the code above.
I also just realized that my Parse class is not a thread, but only another class if it does not override the run() method so I am thinking that the Parse class should be some sort of queue.
And ideas? Thanks.
EDIT:
Thanks for all of the replies. It seems that since I/O will be the major bottleneck there would be little efficiency benefit from parallelizing this. However, for demonstration purpose, am I going on the right track? I'm still a bit bothered by not knowing how to use multithreading.
Why do you need multiple threads? You only have one disk and it can only go so fast. Multithreading it won't help in this case, almost certainly. And if it does, it will be very minimal from a user's perspective. Multithreading isn't your problem. Reading from a huge file is your bottle neck.
Frequently I/O will take much longer than the in-memory tasks. We refer to such work as I/O-bound. Parallelism may have a marginal improvement at best, and can actually make things worse.
You certainly don't need a different thread to put something into a map. Unless your parsing is unusually expensive, you don't need a different thread for it either.
If you had other threads for these tasks, they might spend most of their time sitting around waiting for the next line to be read.
Even parallelizing the I/O won't necessarily help, and may hurt. Even if your CPUs support parallel threads, your hard drive might not support parallel reads.
EDIT:
All of us who commented on this assumed the task was probably I/O-bound -- because that's frequently true. However, from the comments below, this case turned out to be an exception. A better answer would have included the fourth comment below:
Measure the time it takes to read all the lines in the file without processing them. Compare to the time it takes to both read and process them. That will give you a loose upper bound on how much time you could save. This may be decreased by a new cost for thread synchronization.
You may wish to read Amdahl's Law. Since the majority of your work is strictly serial (the IO) you will get negligible improvements by multi-threading the remainder. Certainly not worth the cost of creating watertight multi-threaded code.
Perhaps you should look for a new toy-example to parallelise.

Java threads locking on a specific object

I have a web application and I am using Oracle database and I have a method basically like this:
public static void saveSomethingImportantToDataBase(Object theObjectIwantToSave) {
if (!methodThatChecksThatObjectAlreadyExists) {
storemyObject() //pseudo code
}
// Have to do a lot other saving stuff, because it either saves everything or nothing
commit() // pseudo code to actually commit all my changes to the database.
}
Right now there is no synchronization of any kind so n threads can of course access this method freely, the problem arises when 2 threads enter this method both check and of course there is nothing just yet, and then they can both commit the transaction, creating a duplicate object.
I do not want to solve this with a unique key identifier in my Database, because I don't think I should be catching that SQLException.
I also cannot check right before the commit, because there are several checks not only 1, which would take a considerable amount of time.
My experience with locks and threads is limited, but my idea is basically to lock this code on the object that it is receiving. I don't know if for example say I receive an Integer Object, and I lock on my Integer with value 1, would that only prevent threads with another Integer with value 1 from entering, and all the other threads with value != 1 can enter freely?, is this how it works?.
Also if this is how it works, how is the lock object compared? how is it determined that they are in fact the same object?. A good article on this would also be appreciated.
How would you solve this?.
Your idea is a good one. This is the simplistic/naive version, but it's unlikely to work:
public static void saveSomethingImportantToDataBase(Object theObjectIwantToSave) {
synchronized (theObjectIwantToSave) {
if (!methodThatChecksThatObjectAlreadyExists) {
storemyObject() //pseudo code
}
// Have to do a lot other saving stuff, because it either saves everything or nothing
commit() // pseudo code to actually commit all my changes to the database.
}
}
This code uses the object itself as the lock. But it has to be the same object (ie objectInThreadA == objectInThreadB) if it's to work. If two threads are operating on an object that is a copy of each other - ie has the same "id" for example, then you'll need to either synchronize the whole method:
public static synchronized void saveSomethingImportantToDataBase(Object theObjectIwantToSave) ...
which will of course greatly reduce concurrency (throughput will drop to one thread at a time using the method - to be avoided).
Or find a way to get the same lock object based on the save object, like this approach:
private static final ConcurrentHashMap<Object, Object> LOCKS = new ConcurrentHashMap<Object, Object>();
public static void saveSomethingImportantToDataBase(Object theObjectIwantToSave) {
synchronized (LOCKS.putIfAbsent(theObjectIwantToSave.getId(), new Object())) {
....
}
LOCKS.remove(theObjectIwantToSave.getId()); // Clean up lock object to stop memory leak
}
This last version it the recommended one: It will ensure that two save objects that share the same "id" are locked with the same lock object - the method ConcurrentHashMap.putIfAbsent() is threadsafe, so "this will work", and it requires only that objectInThreadA.getId().equals(objectInThreadB.getId()) to work properly. Also, the datatype of getId() can be anything, including primitives (eg int) due to java's autoboxing.
If you override equals() and hashcode() for your object, then you could use the object itself instead of object.getId(), and that would be an improvement (Thanks #TheCapn for pointing this out)
This solution will only work with in one JVM. If your servers are clustered, that a whole different ball game and java's locking mechanism will not help you. You'll have to use a clustered locking solution, which is beyond the scope of this answer.
Here is an option adapted from And360's comment on Bohemian's answer, that tries to avoid race conditions, etc. Though I prefer my other answer to this question over this one, slightly:
import java.util.HashMap;
import java.util.concurrent.atomic.AtomicInteger;
// it is no advantage of using ConcurrentHashMap, since we synchronize access to it
// (we need to in order to "get" the lock and increment/decrement it safely)
// AtomicInteger is just a mutable int value holder
// we don't actually need it to be atomic
static final HashMap<Object, AtomicInteger> locks = new HashMap<Integer, AtomicInteger>();
public static void saveSomethingImportantToDataBase(Object objectToSave) {
AtomicInteger lock;
synchronized (locks) {
lock = locks.get(objectToSave.getId());
if (lock == null) {
lock = new AtomicInteger(1);
locks.put(objectToSave.getId(), lock);
}
else
lock.incrementAndGet();
}
try {
synchronized (lock) {
// do synchronized work here (synchronized by objectToSave's id)
}
} finally {
synchronized (locks) {
lock.decrementAndGet();
if (lock.get() == 0)
locks.remove(id);
}
}
}
You could split these out into helper methods "get lock object" and "release lock" or what not, as well, to cleanup the code. This way feels a little more kludgey than my other answer.
Bohemian's answer seems to have race condition problems if one thread is in the synchronized section while another thread removes the synchro-object from the Map, etc. So here is an alternative that leverages WeakRef's.
// there is no synchronized weak hash map, apparently
// and Collections.synchronizedMap has no putIfAbsent method, so we use synchronized(locks) down below
WeakHashMap<Integer, Integer> locks = new WeakHashMap<>();
public void saveSomethingImportantToDataBase(DatabaseObject objectToSave) {
Integer lock;
synchronized (locks) {
lock = locks.get(objectToSave.getId());
if (lock == null) {
lock = new Integer(objectToSave.getId());
locks.put(lock, lock);
}
}
synchronized (lock) {
// synchronized work here (synchronized by objectToSave's id)
}
// no releasing needed, weakref does that for us, we're done!
}
And a more concrete example of how to use the above style system:
static WeakHashMap<Integer, Integer> locks = new WeakHashMap<>();
static Object getSyncObjectForId(int id) {
synchronized (locks) {
Integer lock = locks.get(id);
if (lock == null) {
lock = new Integer(id);
locks.put(lock, lock);
}
return lock;
}
}
Then use it elsewhere like this:
...
synchronized (getSyncObjectForId(id)) {
// synchronized work here
}
...
The reason this works is basically that if two objects with matching keys enter the critical block, the second will retrieve the lock the first is already using (or the one that is left behind and hasn't been GC'ed yet). However if it is unused, both will have left the method behind and removed their references to the lock object, so it is safely collected.
If you have a limited "known size" of synchronization points you want to use (one that doesn't have to decrease in size eventually), you could probably avoid using a HashMap and use a ConcurrentHashMap instead, with its putIfAbsent method which might be easier to understand.
My opinion is you are not struggling with a real threading problem.
You would be better off letting the DBMS automatically assign a non conflicting row id.
If you need to work with existing row ids store them as thread local variables.
If there is no need for shared data do not share data between threads.
http://download.oracle.com/javase/6/docs/api/java/lang/ThreadLocal.html
An Oracle dbms is much better in keeping the data consistent when an application server or a web container.
"Many database systems automatically generate a unique key field when a row is inserted. Oracle Database provides the same functionality with the help of sequences and triggers. JDBC 3.0 introduces the retrieval of auto-generated keys feature that enables you to retrieve such generated values. In JDBC 3.0, the following interfaces are enhanced to support the retrieval of auto-generated keys feature ...."
http://download.oracle.com/docs/cd/B19306_01/java.102/b14355/jdbcvers.htm#CHDEGDHJ
If you can live with occasional over-synchronization (ie. work done sequentially when not needed) try this:
Create a table with lock objects. The bigger table, the fewer chances for over-synchronizaton.
Apply some hashing function to your id to compute table index. If your id is numeric, you can just use a remainder (modulo) function, if it is a String, use hashCode() and a remainder.
Get a lock from the table and synchronize on it.
An IdLock class:
public class IdLock {
private Object[] locks = new Object[10000];
public IdLock() {
for (int i = 0; i < locks.length; i++) {
locks[i] = new Object();
}
}
public Object getLock(int id) {
int index = id % locks.length;
return locks[index];
}
}
and its use:
private idLock = new IdLock();
public void saveSomethingImportantToDataBase(Object theObjectIwantToSave) {
synchronized (idLock.getLock(theObjectIwantToSave.getId())) {
// synchronized work here
}
}
public static void saveSomethingImportantToDataBase(Object theObjectIwantToSave) {
synchronized (theObjectIwantToSave) {
if (!methodThatChecksThatObjectAlreadyExists) {
storemyObject() //pseudo code
}
// Have to do a lot other saving stuff, because it either saves everything or nothing
commit() // pseudo code to actually commit all my changes to the database.
}
}
The synchronized keyword locks the object you want so that no other method could access it.
I don't think you have any choice but to take one of the solutions that you do not seem to want to do.
In your case, I don't think any type of synchronization on the objectYouWantToSave is going to work since they are based on web requests. Therefore each request (on its own thread) is most likely going to have it's own instance of the object. Even though they might be considered logically equal, that doesn't matter for synchronization.
synchronized keyword (or another sync operation) is must but is not enough for your problem. You should use a data structure to store which integer values are used. In our example HashSet is used. Do not forget clean too old record from hashset.
private static HashSet <Integer>isUsed= new HashSet <Integer>();
public synchronized static void saveSomethingImportantToDataBase(Object theObjectIwantToSave) {
if(isUsed.contains(theObjectIwantToSave.your_integer_value) != null) {
if (!methodThatChecksThatObjectAlreadyExists) {
storemyObject() //pseudo code
}
// Have to do a lot other saving stuff, because it either saves everything or nothing
commit() // pseudo code to actually commit all my changes to the database.
isUsed.add(theObjectIwantToSave.your_integer_value);
}
}
To answer your question about locking the Integer, the short answer is NO - it won't prevent threads with another Integer instance with the same value from entering. The long answer: depends on how you obtain the Integer - by constructor, by reusing some instances or by valueOf (that uses some caching). Anyway, I wouldn't rely on it.
A working solution that will work is to make the method synchronized:
public static synchronized void saveSomethingImportantToDataBase(Object theObjectIwantToSave) {
if (!methodThatChecksThatObjectAlreadyExists) {
storemyObject() //pseudo code
}
// Have to do a lot other saving stuff, because it either saves everything or nothing
commit() // pseudo code to actually commit all my changes to the database.
}
This is probably not the best solution performance-wise, but it is guaranteed to work (note, if you are not in a clustered environment) until you find a better solution.
private static final Set<Object> lockedObjects = new HashSet<>();
private void lockObject(Object dbObject) throws InterruptedException {
synchronized (lockedObjects) {
while (!lockedObjects.add(dbObject)) {
lockedObjects.wait();
}
}
}
private void unlockObject(Object dbObject) {
synchronized (lockedObjects) {
lockedObjects.remove(dbObject);
lockedObjects.notifyAll();
}
}
public void saveSomethingImportantToDatabase(Object theObjectIwantToSave) throws InterruptedException {
try {
lockObject(theObjectIwantToSave);
if (!methodThatChecksThatObjectAlreadyExists(theObjectIwantToSave)) {
storeMyObject(theObjectIwantToSave);
}
commit();
} finally {
unlockObject(theObjectIwantToSave);
}
}
You must correctly override methods 'equals' and 'hashCode' for your objects' classes. If you have unique id (String or Number) inside your object then you can just check this id instead of the whole object and no need to override 'equals' and 'hashCode'.
try-finally - is very important - you must guarantee to unlock waiting threads after your operation even if your operation threw exception.
This approach will not work if your back-end is distributed across multiple servers.

Threadsafe double buffered cache (not for graphics) in Java?

I was recently looking for a way to implement a doubly buffered thread-safe cache for regular objects.
The need arose because we had some cached data structures that were being hit numerous times for each request and needed to be reloaded from cache from a very large document (1s+ unmarshalling time) and we couldn't afford to let all requests be delayed by that long every minute.
Since I couldn't find a good threadsafe implementation I wrote my own and now I am wondering if it's correct and if it can be made smaller... Here it is:
package nl.trimpe.michiel
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
/**
* Abstract class implementing a double buffered cache for a single object.
*
* Implementing classes can load the object to be cached by implementing the
* {#link #retrieve()} method.
*
* #param <T>
* The type of the object to be cached.
*/
public abstract class DoublyBufferedCache<T> {
private static final Log log = LogFactory.getLog(DoublyBufferedCache.class);
private Long timeToLive;
private long lastRetrieval;
private T cachedObject;
private Object lock = new Object();
private volatile Boolean isLoading = false;
public T getCachedObject() {
checkForReload();
return cachedObject;
}
private void checkForReload() {
if (cachedObject == null || isExpired()) {
if (!isReloading()) {
synchronized (lock) {
// Recheck expiration because another thread might have
// refreshed the cache before we were allowed into the
// synchronized block.
if (isExpired()) {
isLoading = true;
try {
cachedObject = retrieve();
lastRetrieval = System.currentTimeMillis();
} catch (Exception e) {
log.error("Exception occurred retrieving cached object", e);
} finally {
isLoading = false;
}
}
}
}
}
}
protected abstract T retrieve() throws Exception;
private boolean isExpired() {
return (timeToLive > 0) ? ((System.currentTimeMillis() - lastRetrieval) > (timeToLive * 1000)) : true;
}
private boolean isReloading() {
return cachedObject != null && isLoading;
}
public void setTimeToLive(Long timeToLive) {
this.timeToLive = timeToLive;
}
}
What you've written isn't threadsafe. In fact, you've stumbled onto a common fallacy that is quite a famous problem. It's called the double-checked locking problem and many such solutions as yours (and there are several variations on this theme) all have issues.
There are a few potential solutions to this but imho the easiest is simply to use a ScheduledThreadExecutorService and reload what you need every minute or however often you need to. When you reload it put it into the cache result and the calls for it just return the latest version. This is threadsafe and easy to implement. Sure it's not on-demand loaded but, apart from the initial value, you'll never take a performance hit while you retrieve the value. I'd call this over-eager loading rather than lazy-loading.
For example:
public class Cache<T> {
private final ScheduledExecutorsService executor =
Executors.newSingleThreadExecutorService();
private final Callable<T> method;
private final Runnable refresh;
private Future<T> result;
private final long ttl;
public Cache(Callable<T> method, long ttl) {
if (method == null) {
throw new NullPointerException("method cannot be null");
}
if (ttl <= 0) {
throw new IllegalArgumentException("ttl must be positive");
}
this.method = method;
this.ttl = ttl;
// initial hits may result in a delay until we've loaded
// the result once, after which there will never be another
// delay because we will only refresh with complete results
result = executor.submit(method);
// schedule the refresh process
refresh = new Runnable() {
public void run() {
Future<T> future = executor.submit(method);
future.get();
result = future;
executor.schedule(refresh, ttl, TimeUnit.MILLISECONDS);
}
}
executor.schedule(refresh, ttl, TimeUnit.MILLISECONDS);
}
public T getResult() {
return result.get();
}
}
That takes a little explanation. Basically, you're creating a generic interface for caching the result of a Callable, which will be your document load. Submitting a Callable (or Runnable) returns a Future. Calling Future.get() blocks until it returns (completes).
So what this does is implement a get() method in terms of a Future so initial queries won't fail (they will block). After that, every 'ttl' milliseconds the refresh method is called. It submits the method to the scheduler and calls Future.get(), which yields and waits for the result to complete. Once complete, it replaces the 'result' member. Subsequence Cache.get() calls will return the new value.
There is a scheduleWithFixedRate() method on ScheduledExecutorService but I avoid it because if the Callable takes longer than the scheduled delay you will end up with multiple running at the same time and then have to worry about that or throttling. It's easier just for the process to submit itself at the end of a refresh.
I'm not sure I understand your need. Is your need to a have a faster loading (and reloading) of the cache, for a portion of the values?
If so, I would suggest breaking your datastructure into smaller pieces.
Just load the piece that you need at the time. If you divide the size by 10, you will divide the loading time by something related to 10.
This could apply to the original document you are reading, if possible. Otherwise, it would be the way you read it, where you skip a large part of it and load only the relevant part.
I believe that most data can be broken down into pieces. Choose the more appropriate, here are examples:
by starting letter : A*, B* ...
partition your id into two part : first part is a category, look for it in the cache, load it if needed, then look for your second part inside.
If your need is not the initial loading time, but the reloading, maybe you don't mind the actual time for reloading, but want to be able to use the old version while loading the new?
If that is your need, I suggest making your cache an instance (as opposed to static) that is available in a field.
You trigger reloading every minute with a dedicated thread (or a least not the regular threads), so that you don't delay your regular threads.
Reloading creates a new instance, load it with data (takes 1 second), and then simply replace the old instance with the new. (The old will get garbage-collected.) Replacing an object with another is an atomic operation.
Analysis: What happens in that case is that any other thread can get access to the old cache until the last instant ?
In the worst case, the instruction just after getting the old cache instance, another thread replaces the old instance with a new. But this doesn't make your code faulty, asking the old cache instance will still give a value that was correct just before, which is acceptable by the requirement I gave as first sentence.
To make your code more correct, you can create your cache instance as immutable (no setters available, no way to modify internal state). This makes it clearer that it is correct to use it in a multi-threaded context.
You appare to be locking more then is required, in your good case (cache full and valid) every request aquires a lock. you can get away with only locking if the cache is expired.
If we are reloading, do nothing.
If we are not reloading, check if expired if not expired go ahead.
If we are not reloading and we are expired, get the lock and double check expired to make sure we have not sucessfuly loaded seince last check.
Also note you may wish to reload the cache in a background thread so not event the one requrest is heldup waiting for cache to fill.
private void checkForReload() {
if (cachedObject == null || isExpired()) {
if (!isReloading()) {
// Recheck expiration because another thread might have
// refreshed the cache before we were allowed into the
// synchronized block.
if (isExpired()) {
synchronized (lock) {
if (isExpired()) {
isLoading = true;
try {
cachedObject = retrieve();
lastRetrieval = System.currentTimeMillis();
} catch (Exception e) {
log.error("Exception occurred retrieving cached object", e);
} finally {
isLoading = false;
}
}
}
}
}
}

Categories