heavy prime number in java - java

A prime heavy number is defined to be one that is the sum of more than one pair of prime numbers. Recall that a prime number is a number greater than 1 whose only divisors are 1 and itself.
For example, 16 is prime heavy because 16=3+13 and 5+11 (note that 3, 5, 11, and 13 are all prime). 24 is prime heavy because 24 = 5+19, 7+17 and 11+13. However, 8 is not prime heavy because 8 = 3+5 but no other pair of primes sums to 8.
Write a function named isPrimeHeavy that returns 1 if its argument is prime heavy, otherwise it returns 0.
The function signature is
int isPrimeHeavy (int n)
You may assume that a function named isPrime already exists that returns 1 if its argument is a prime. You can call this function but do not have to write it.
I did this but it cant return a heavy prime..just returns a prime number...
public class Prime {
public static boolean isPrimeHeavy(int n) {
if (n <= 1) {
return false;
}
if (n == 2) {
return true;
}
for (int i = 2; i <= Math.sqrt(n) + 1; i++) {
if (n % i == 0) {
return false;
}
}
return true;
}
public static boolean isPrimeHeavy(int n) {
if (n <= 1) {
return false;
}
if (n == 2) {
return true;
}
if (n % 2 == 0) {
return false;
}
for (int i = 3; i <= Math.sqrt(n) + 1; i = i + 2) {
if (n % i == 0) {
return false;
}
}
return true;
}
}
public class PrimeTest {
public PrimeTest() {
}
#Test
public void testIsPrime() throws IllegalArgumentException, IllegalAccessException, InvocationTargetException {
Prime prime = new Prime();
TreeMap<Long, String> methodMap = new TreeMap<Long, String>();
for (Method method : Prime.class.getDeclaredMethods()) {
long startTime = System.currentTimeMillis();
int primeCount = 0;
for (int i = 0; i < 1000000; i++) {
if ((Boolean) method.invoke(prime, i)) {
primeCount++;
}
}
long endTime = System.currentTimeMillis();
Assert.assertEquals(method.getName() + " failed ", 78498, primeCount);
methodMap.put(endTime - startTime, method.getName());
}
for (Entry<Long, String> entry : methodMap.entrySet()) {
System.out.println(entry.getValue() + " " + entry.getKey() + " Milli seconds ");
}
}
}

You can use a single loop to try all the possible first values and you can calculate the second, when you find there is more than one pair, return 1, otherwise return 0.
I have given you this much as a hint because its maths really rather than programming. You will find problems like this at Project Euler. IMHO You shouldn't be expected to know how to solve the maths problem unless you are employed for a maths role, but you should be able to write the code if you are a professional developer.

if((argument % 2 == 0 && argument > 12) || argument == 10) {
return 1;
} else {
return 0;
}

public class Prime {
public static boolean isPrimeHeavy(int n) {
if (n % 2 != 0) {
return false;
}
int found = 0;
for (int i = n-3; i >= (n/2); i -= 2) {
if (isPrime(i) && isPrime(n - i)) {
found++;
if (found == 2)
return true;
}
}
return false;
}
}

Related

guys any possible refractory code for the above code

Guys I want to modify this if or block so dynamically it divide the value x based on what or condition got executed.
public boolean isUgly(int n) {
boolean isUgly=true;
while(n>0)
{
if(n%2==0||n%3==0||n%5==0)
{
n = n/x //<-------- here i want x should be based on the if condition where or is true
}
else {
isUgly=false;
break;
}
}
return isUgly;
}
You looking for something like this?
public static boolean isUgly(int n) {
final int[] uglyPrimes = {2, 3, 5};
boolean isUgly = true;
while (n > 1 && isUgly) {
isUgly = false;
for (int x : uglyPrimes) {
if (n % x == 0) {
n = n / x;
isUgly = true;
}
}
}
return isUgly;
}
Of course, I would just implement it like this:
public static boolean isUgly(int n) {
while (n > 1 && n % 2 == 0)
n /= 2;
while (n > 1 && n % 3 == 0)
n /= 3;
while (n > 1 && n % 5 == 0)
n /= 5;
return (n <= 1);
}
Or this:
public static boolean isUgly(int n) {
for (int x : new int[] { 2, 3, 5 })
while (n > 1 && n % x == 0)
n /= x;
return (n <= 1);
}
All 3 solutions really should have the following added to the beginning of the method, but that's outside the scope of the challenge:
if (n <= 0)
throw new IllegalArgumentException("Invalid value: " + n);
Try the following code, in this way you can divide n depending on the condition, but this method will always return false as in any case, it will execute the else statement for sure. What is your goal?
public boolean isUgly(int n)
{
boolean isUgly=true;
while(n>0)
{
if(n%2==0)
{
n = n/2;
}
else if(n%3==0)
{
n = n/3;
}
else if(n%5==0)
{
n = n/5;
}
else
{
isUgly=false;
break;
}
}
return isUgly;
}

Optimal way to find next prime number (Java)

I was asked to write a program to find next prime number in an optimal way. I wrote this code, but I could not find an optimal answer to it. Any suggestions?
public static int nextPrime(int input) {
input++;
//now find if the number is prime or not
for(int i=2;i<input;i++) {
if(input % i ==0 ) {
input++;
i=2;
}
else{
continue;
}
}
return input;
}
public int nextPrime(int input){
int counter;
input++;
while(true){
int l = (int) sqrt(input);
counter = 0;
for(int i = 2; i <= l; i ++){
if(input % i == 0) counter++;
}
if(counter == 0)
return input;
else{
input++;
continue;
}
}
}
There is no need to check up on input number. It is enough to check up to the square root of a number. Sorry, I didn't remember the theorem name. Here we are incrementing the input for next prime.
The time complexity of this solution O(n^(3/2)).
#Ephraim - I've replaced the recursive code with "while" loop. It's running more faster.
int nextPrime(int M) {
while(!isPrime(++M))
// no need ++M; as I already added in the isPrime method's parameter.
return M;
}
boolean isPrime(int M) {
for(int i = 2; i <= M; i++)
if(M % i == 0)
return false;
return true;
}
#Scott Parent- I've tested the the recursive code; "while" loop and steam code (IntStream and LongStream) - the Stream's code is running slowly, very slowly.
Example:
Input value: 60000000000
Output: 60000000029
Elapsed time for recursive algorithm = 7 milliseconds
Output: 60000000029
Elapsed time for traversal algorithm = 4 milliseconds
Output: 60000000029
Elapsed time for LongStream.range(2, number).noneMatch(...) algorithm = 615825 milliseconds
If I use IntStream - the elapsed time is about 230 milliseconds for the max Integer number. It's too much slowly. The "while" loop in nextPrime(int n) is running 1-4 milliseconds for the max integer number, but usage of LongStream for 600000000000 input value - the result I couldnt see in 1 hour.
I'm running now for the 600000000000 long number:
Elapsed time for recursive algorithm = 36 milliseconds
Output: 60000000029
Elapsed time for traversal algorithm = 27 milliseconds
Output: 60000000029
Elapsed time for LongStream.range(2, number).noneMatch(...)
it's still running more than 58 minutes, but it's not finished yet.
long n = 12345;
BigInteger b = new BigInteger(String.valueOf(n));
long res = Long.parseLong(b.nextProbablePrime().toString());
System.out.println("Next prime no. is "+ res);
Generate all prime numbers up to your limit using sieve of eratosthenes. And then input your number n and search if n> prime[i] , prime[i] is the answer.
You can also do the same using recursions like this:
int nextPrime(int M) {
if(!isPrime(M)) M = nextPrime(++M);
return M;
}
boolean isPrime(int M) {
for(int i = 2; i <= Math.sqrt(M); i++)
if(M % i == 0) return false;
return true;
}
My son has written his own algorithm - in one method.
But it's written on python - you can find it here.
On Java it looks like:
static long nextPrime(long number) {
boolean prime = false;
long n = number;
while (!prime && n < number * 2) {
n++;
prime = true;
for (int i = 2; i < n; i++) {
if (n % i == 0) {
prime = false;
break;
}
}
}
return n;
}
Here I add a solution algorithm. First of all, the while loop grabs the next number to be tested within the range of number + 1 to number * 2. Then the number is sent to the isPrime method (which uses Java 8 streams) that iterates the stream to look for numbers that have no other factors.
private static int nextPrime(final int number) {
int i = number + 1;
while (!isPrime(i) && i < number * 2)
i++;
return i;
}
private static boolean isPrime(final int number) {
return number > 1 && IntStream.range(2, number).noneMatch(index -> number % index == 0);
}
Dude check this code.
isPrime() in the while loop checks for the next prime number after incrementing the current prime/non-prime number. I did used the long datatype (that's what I got as assignment).
if (isPrime(num)) {
System.out.println("Current Prime number: " + num);
} else {
long a = getNextPrime(num);
System.out.println("Next Prime:" + a);
}
public static long getNextPrime(long num) {
long nextPrime = 0;
while (true) {
num++;
boolean x = isPrime(num);
if (x) {
nextPrime = num;
break;
}
}
return nextPrime;
}
public static boolean isPrime(long num) {
if (num == 0 || num == 1) {
return false;
}
for (long i = 2; i <= num / 2; ++i) {
if (num % i == 0) {
return false;
}
}
return true;
}
This is functional way of finding next prime number.
public void printFirstNPrimes(long n) {
Stream.iterate(2, i->nextPrime(i))
.limit(n).forEach(System.out::println);
}
public static boolean isPrime(long x) {
return Stream.iterate(2, i->i+1)
.limit((long)(Math.sqrt(x)))
.allMatch(n -> x % n != 0);
}
public static int nextPrime(int x) {
return isPrime(x+1)? x+1 : nextPrime(x+1);
}
So, I was reading the first answer and saw some potential upgrades.
I made them and got a really significant improvement.
The original code could calculate 200000 prime numbers in 22.32s
With a little changes I managed to execute the same operation in 11.41s, with the same results.
Notice I executed the code on my laptop #2.50 GHz, running on IntelIJ.
public static int nextPrime(int n) {
boolean isPrime;
n++;
while (true) {
int sqrt = (int) Math.sqrt(n);
isprime = true;
for (int i = 2; i <= sqrt; i++) {
if (n % i == 0) isPrime = false;
}
if (isPrime)
return n;
else {
n++;
}
}
}
Hope you like it!
public class ClosestPrimeNumber {
static boolean isPrime(int n) {
for (int x = 2; x <= Math.sqrt(n); x++) {
if (n % x ==0) {
return false;
}
}
return true;
}
static int next_forward = 0;
static int next_backward = 0;
static int next = 0;
static int closestPrimeNumberForward(int n) {
if (isPrime(n)) {
next_forward = n;
return next_forward;
}else {
next_forward = n+1;
closestPrimeNumberForward(next_forward);
}
return next_forward;
}
static int closestPrimeNumberBackward(int n) {
if (isPrime(n)) {
next_backward = n;
return next_backward;
}else {
next_backward = n-1;
closestPrimeNumberBackward(next_backward);
}
return next_backward;
}
static int closestCompare(int forward, int backward, int num) {
return (Math.abs(num-backward) > Math.abs(num-forward) ) ? forward : backward;
}
public static void main(String[] args) {
int valor = 102;
System.out.println(closestCompare(closestPrimeNumberForward(valor), closestPrimeNumberBackward(valor), valor));
}
}
public int nextPrime(int input){
int counter;
while(true){
counter = 0;
for(int i = 1; i <= input; i ++){
if(input % i == 0) counter++;
}
if(counter == 2)
return input;
else{
input++;
continue;
}
}
}
This will return the nextPrime but cannot say is most optimal way
It is simple as it execute an infinite while loop which break when
prime number is returned.
In while is finds whether the number is prime or not
If it is prime it returns that number, if not it increment input and continue the while loop

Slow calculation of sum of primes for large datasets [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 5 years ago.
Improve this question
My program that calculates the sum of primes is very slow for very large nth term. Please how do I optimize the processing time of my program? The fastest program will be appreciated and the reason why mine is slow for large sets of data. Thanks.
Here's the Java program:
public class SumOfPrimes {
public static void main(String[] args) {
primeNumber(2000000);
}
public static void primeNumber(int nth) {
int counter = 0, i = 2;
while(i>=2) {
if(isPrime(i)) {
counter += i;
}
i++;
if(i == nth) {
break;
}
}
System.out.println(counter);
}
public static boolean isPrime(int n) {
boolean prime = true;
int i;
for(i= 2; i < n; i++) {
if (n % i == 0) {
prime = false;
for (int j = 3; j * j < n; j += 2) {
if (n % j == 0) prime = false;
}
}
}
return prime;
}
}
Well, it's unclear why you have an inner for loop in your isPrime. Removing it will save much time.
Besides, once you find that n is not prime, you should return immediately. Either break out of the loop, or just return false.
Another optimization would be not to test all the number until i < n. It's enough to test until i * i <= n.
public static boolean isPrime(int n) {
int i;
for(i = 2; i * i <= n; i++) {
if (n % i == 0) {
return false;
}
}
return true;
}
Remember primes you have found, and only test them.
Remove the inner loop.
Test 2, 3, then all odds.
Something like...
public boolean isPrime( ArrayList<Long> primes, long n ){
for( Long t : primes ){
if( n % t == 0 ){
return false;
}
if( t * t > n )return true;
}
return true;
}
public void sumOfPrimes()
{
ArrayList<Long> primes = new ArrayList<Long>();
long n;
double count = 0;
for( n = 2; n < 2000000; n++ ){
if( isPrime( primes, n ) ){
primes.add( n );
count += n;
}
}
}
This should be your isPrime function-
bool isPrime (int number) {
if (number < 2) return false;
if (number == 2) return true;
if (number % 2 == 0) return false;
for (int i=3; (i*i) <= number; i+=2) {
if (number % i == 0 ) return false;
}
return true;
}
Putting together all the answers to my question above, my program has been re-written and it is much faster for very large datasets.
public class SumOfPrimes {
public static void main(String[] args) {
primeNumber(2000000);
}
public static void primeNumber(int nth) {
int i = 2;
long counter = 0;
while(i>=2) {
if(isPrime(i)) {
counter += i;
}
i++;
if(i == nth) {
break;
}
}
System.out.println(counter);
}
public static boolean isPrime (int n) {
if (n < 2) return false;
if (n == 2) return true;
if (n % 2 == 0) return false;
for (int i=3; (i*i) <= n; i+=2) {
if (n % i == 0 ) return false;
}
return true;
}
}
#aega's solution for the isPrime function did the trick. Now 2 million datasets can be calculated for less than 2 secs.
We no need to test from 1 to n, even 3 to n/2 or 3 to sqrt(n) is also too much for testing for a bigger number.
To make the testing the least, we can only test n with the previous prime that have been found up to sqrt(n), like what mksteve has mentioned.
static List<Integer> primes = new ArrayList<>();
static boolean isPrime (int number) {
if (number < 2) return false;
if (number == 2) return true;
if (number % 2 == 0) return false;
int limit = (int) Math.sqrt(number);
for (i : primes) {
if (i > limit) break;
if (number % i == 0 ) return false;
}
return true;
}
public static void primeNumber(int nth) {
int i = 2;
long counter = 0;
while(i <= nth) {
if(isPrime(i)) {
counter += i;
primes.add(i);
}
i++;
}
System.out.println(counter);
}
A faster program will be to store the generated prime numbers in an array and use only those elements for divisibility check. The number of iterations will reduce dramatically. An element of self-learning is there in this.
I don't have time right now. But, when I'm free, will write a java code to implement this.
Use the power of Lambda for dynamic functional referencing and streams for optimized performance with inbuilt filter conditions.
public static boolean isPrime(final int number) {
return IntStream.range(2,(long) Math.ceil(Math.sqrt(number + 1))).noneMatch(x -> number % x == 0);
}

identify prime number using recursive method [java]

the problem is below. main() checks numbers 1-10 by calling isPrime(). I think I have the math right however every number other than 2 comes back as not prime.
I have checked some of the solutions and questions on SO, however, I can't seem to achieve the same results.
original problem:
public class PrimeChecker {
// Returns 0 if value is not prime, 1 if value is prime
public static int isPrime(int testVal, int divVal) {
// Base case 1: 0 and 1 are not prime, testVal is not prime
// Base case 2: testVal only divisible by 1, testVal is prime
// Recursive Case
// Check if testVal can be evenly divided by divVal
// Hint: use the % operator
// If not, recursive call to isPrime with testVal and (divVal - 1)
return 0;
}
public static void main(String[] args) {
int primeCheckVal = 0; // Value checked for prime
// Check primes for values 1 to 10
for (primeCheckVal = 1; primeCheckVal <= 10; ++primeCheckVal) {
if (isPrime(primeCheckVal, (primeCheckVal - 1)) == 1) {
System.out.println(primeCheckVal + " is prime.");
}
else {
System.out.println(primeCheckVal + " is not prime.");
}
}
}
}
My solution so far:
public class PrimeChecker {
// Returns 0 if value is not prime, 1 if value is prime
public static int isPrime(int testVal, int divVal) {
int resultVal = 0;
if ((testVal == 0) || (testVal == 1)){
resultVal = 0;
}// Base case 1: 0 and 1 are not prime, testVal is not prime
else if (divVal == 1) {
resultVal = 1;
}// Base case 2: testVal only divisible by 1, testVal is prime
else {
if((testVal % divVal != 0) && (testVal / divVal == 1)) {
isPrime(testVal, (divVal-1));
}
else {
resultVal = 1;
}
}
return resultVal;
}
public static void main(String[] args) {
int primeCheckVal = 0; // Value checked for prime
// Check primes for values 1 to 10
for (primeCheckVal = 1; primeCheckVal <= 10; ++primeCheckVal) {
if (isPrime(primeCheckVal, (primeCheckVal - 1)) == 1) {
System.out.println(primeCheckVal + " is prime.");
}
else {
System.out.println(primeCheckVal + " is not prime.");
}
}
}
}
Change the if/else block
if((testVal % divVal != 0) && (testVal / divVal == 1)) {
isPrime(testVal, (divVal-1));
}
else {
resultVal = 1;
}
to
if (testVal % divVal != 0) {
return isPrime(testVal, (divVal-1));
} else {
resultVal = 0;
}
Basically, you've forgotten to return the result of your recursion, so the code carries on to return the wrong thing. If testVal % divVal == 0, the number is non-prime so you return zero. Also, don't use ints that only take the value of zero or one; use a boolean.
According your question, I think the following code would be easier.
public class PrimeChecker {
// Returns 0 if value is not prime, 1 if value is prime
public static int isPrime(int testVal, int divVal) {
// Base case 1: 0 and 1 are not prime, testVal is not prime
if (testVal <= 1) {
return 0;
}
// Base case 2: testVal only divisible by 1, testVal is prime
if (divVal == 1) {
return 1;
}
// Recursive Case
// Check if testVal can be evenly divided by divVal
// Hint: use the % operator
if (testVal % divVal == 0) {
return 0;
}
// If not, recursive call to isPrime with testVal and (divVal - 1)
return isPrime(testVal, divVal - 1);
}
public static void main(String[] args) {
int primeCheckVal; // Value checked for prime
// Check primes for values 1 to 10
for (primeCheckVal = 1; primeCheckVal <= 10; ++primeCheckVal) {
if (isPrime(primeCheckVal, (primeCheckVal - 1)) == 1) {
System.out.println(primeCheckVal + " is prime.");
}
else {
System.out.println(primeCheckVal + " is not prime.");
}
}
}
}

Can't figure out the error Luhn check

Its supose to tell me if a card is valid or invalid using luhn check
4388576018402626 invalid
4388576018410707 valid
but it keeps telling me that everything is invalid :/
Any tips on what to do, or where to look, would be amazing. I have been stuck for a few hours.
It would also help if people tell me any tips on how to find why a code is not working as intended.
im using eclipse and java
public class Task11 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
System.out.print("Enter a credit card number as a long integer: ");
long number = input.nextLong();
if (isValid(number)) {
System.out.println(number + " is valid");
} else {
System.out.println(number + " is invalid");
}
}
public static boolean isValid(long number) {
return (getSize(number) >= 13) && (getSize(number) <= 16)
&& (prefixMatched(number, 4) || prefixMatched(number, 5) || prefixMatched(number, 6) || prefixMatched(number, 37))
&& (sumOfDoubleEvenPlace(number) + sumOfOddPlace(number)) % 10 == 0;
}
public static int sumOfDoubleEvenPlace(long number) {
int result = 0;
long start = 0;
String digits = Long.toString(number);
if ((digits.length() % 2) == 0) {
start = digits.length() - 1;
} else {
start = digits.length() - 2;
}
while (start != 0) {
result += (int) ((((start % 10) * 2) % 10) + (((start % 10) * 2) / 2));
start = start / 100;
}
return result;
}
public static int getDigit(int number) {
return number % 10 + (number / 10);
}
public static int sumOfOddPlace(long number) {
int result = 0;
while (number != 0) {
result += (int) (number % 10);
number = number / 100;
}
return result;
}
public static boolean prefixMatched(long number, int d) {
return getPrefix(number, getSize(d)) == d;
}
public static int getSize(long d) {
int numberOfDigits = 0;
String sizeString = Long.toString(d);
numberOfDigits = sizeString.length();
return numberOfDigits;
}
public static long getPrefix(long number, int k) {
String size = Long.toString(number);
if (size.length() <= k) {
return number;
} else {
return Long.parseLong(size.substring(0, k));
}
}
}
You should modiffy your isValid() method to write down when it doesn't work, like this:
public static boolean isValid(long number) {
System.err.println();
if(getSize(number) < 13){
System.out.println("Err: Number "+number+" is too short");
return false;
} else if (getSize(number) > 16){
public static boolean isValid(long number) {
System.err.println();
if(getSize(number) < 13){
System.out.println("Err: Number "+number+" is too short");
return false;
} else if (getSize(number) > 16){
System.out.println("Err: Number "+number+" is too long");
return false;
} else if (! (prefixMatched(number, 4) || prefixMatched(number, 5) || prefixMatched(number, 6) || prefixMatched(number, 37)) ){
System.out.println("Err: Number "+number+" prefix doesn't match");
return false;
} else if( (sumOfDoubleEvenPlace(number) + sumOfOddPlace(number)) % 10 != 0){
System.out.println("Err: Number "+number+" doesn't have sum of odd and evens % 10. ");
return false;
}
return true;
}
My guess for your problem is on the getPrefix() method, you should add some logs here too.
EDIT: so, got more time to help you (don't know if it's still necessary but anyway). Also, I corrected the method I wrote, there were some errors (like, the opposite of getSize(number) >= 13 is getSize(number) < 13)...
First it will be faster to test with a set of data instead of entering the values each time yourself (add the values you want to check):
public static void main(String[] args) {
long[] luhnCheckSet = {
0, // too short
1111111111111111111L, // too long (19)
222222222222222l // prefix doesn't match
4388576018402626l, // should work ?
};
//System.out.print("Enter a credit card number as a long integer: ");
//long number = input.nextLong();
for(long number : luhnCheckSet){
System.out.println("Checking number: "+number);
if (isValid(number)) {
System.out.println(number + " is valid");
} else {
System.out.println(number + " is invalid");
}
System.out.println("-");
}
}
I don't know the details of this, but I think you should work with String all along, and parse to long only if needed (if number is more than 19 characters, it might not parse it long).
Still, going with longs.
I detailed your getPrefix() with more logs AND put the d in parameter in long (it's good habit to be carefull what primitive types you compare):
public static boolean prefixMatched(long number, long d) {
int prefixSize = getSize(d);
long numberPrefix = getPrefix(number, prefixSize);
System.out.println("Testing prefix of size "+prefixSize+" from number: "+number+". Prefix is: "+numberPrefix+", should be:"+d+", are they equals ? "+(numberPrefix == d));
return numberPrefix == d;
}
Still don't know what's wrong with this code, but it looks like it comes from the last test:
I didn't do it but you should make one method from sumOfDoubleEvenPlace(number) + sumOfOddPlace(number)) % 10 and log both numbers and the sum (like i did in prefixMatched() ). Add logs in both method to be sure it gets the result you want/ works like it should.
Have you used a debugger ? if you can, do it, it can be faster than adding a lot of logs !
Good luck
EDIT:
Here are the working functions and below I provided a shorter, more efficient solution too:
public class CreditCardValidation {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int count = 0;
long array[] = new long [16];
do
{
count = 0;
array = new long [16];
System.out.print("Enter your Credit Card Number : ");
long number = in.nextLong();
for (int i = 0; number != 0; i++) {
array[i] = number % 10;
number = number / 10;
count++;
}
}
while(count < 13);
if ((array[count - 1] == 4) || (array[count - 1] == 5) || (array[count- 1] == 3 && array[count - 2] == 7)){
if (isValid(array) == true) {
System.out.println("\n The Credit Card Number is Valid. ");
} else {
System.out.println("\n The Credit Card Number is Invalid. ");
}
} else{
System.out.println("\n The Credit Card Number is Invalid. ");
}
in.close();
}
public static boolean isValid(long[] array) {
int total = sumOfDoubleEvenPlace(array) + sumOfOddPlace(array);
if ((total % 10 == 0)) {
for (int i=0; i< array.length; i++){
System.out.println(array[i]);}
return true;
} else {
for (int i=0; i< array.length; i++){
System.out.println(array[i]);}
return false;
}
}
public static int getDigit(int number) {
if (number <= 9) {
return number;
} else {
int firstDigit = number % 10;
int secondDigit = (int) (number / 10);
return firstDigit + secondDigit;
}
}
public static int sumOfOddPlace(long[] array) {
int result = 0;
for (int i=0; i< array.length; i++)
{
while (array[i] > 0) {
result += (int) (array[i] % 10);
array[i] = array[i] / 100;
}
}
System.out.println("\n The sum of odd place is " + result);
return result;
}
public static int sumOfDoubleEvenPlace(long[] array) {
int result = 0;
long temp = 0;
for (int i=0; i< array.length; i++){
while (array[i] > 0) {
temp = array[i] % 100;
result += getDigit((int) (temp / 10) * 2);
array[i] = array[i] / 100;
}
}
System.out.println("\n The sum of double even place is " + result);
return result;
}
}
I also found a solution with less lines of logic. I know you're probably searching for an OO approach with functions, building from this could be of some help.
Similar question regarding error in Luhn algorithm logic:
Check Credit Card Validity using Luhn Algorithm
Link to shorter solution:
https://code.google.com/p/gnuc-credit-card-checker/source/browse/trunk/CCCheckerPro/src/com/gnuc/java/ccc/Luhn.java
And here I tested the solution with real CC numbers:
public class CreditCardValidation{
public static boolean Check(String ccNumber)
{
int sum = 0;
boolean alternate = false;
for (int i = ccNumber.length() - 1; i >= 0; i--)
{
int n = Integer.parseInt(ccNumber.substring(i, i + 1));
if (alternate)
{
n *= 2;
if (n > 9)
{
n = (n % 10) + 1;
}
}
sum += n;
alternate = !alternate;
}
return (sum % 10 == 0);
}
public static void main(String[] args){
//String num = "REPLACE WITH VALID NUMBER"; //Valid
String num = REPLACE WITH INVALID NUMBER; //Invalid
num = num.trim();
if(Check(num)){
System.out.println("Valid");
}
else
System.out.println("Invalid");
//Check();
}
}

Categories