Programmatic way to tell if your visual form is being previewed - java

We use the NetBeans GUI builder to create our visual forms.
We try to make them JavaBean compliant so that we can just drag and drop components onto the screen.
However sometimes this becomes difficult as the component needs to connect to a service that is not available to NetBeans at preview/design time and thus throws an exception and stops you from dragging and dropping the component onto the form.
As a work around I've added try catches around the connections to the services that I know will fail when NetBeans tries to instantiate the form so that it can be previewed.
This feels rather hackish though, I would prefer it if there was a way to check if the component is in design mode and if that is the case then just not instatiate the objects that will throw exceptions.
Anybody got any ideas as to how I can achieve this?

It sounds like you have too much logic built into your form classes. You should consider taking all of that code that connects to your services and bundle it into one or more classes, and then inject those classes into your form at runtime. Then, make sure that the code that calls that object doesn't throw null pointer exceptions if that object is unavailable, as it would be in preview.

Related

Is there a way to specify in Java docs that a method should be called from a non-UI thread

I was writing a set of functions for accessing/writing data to the SQLite database in my android application. Since I need to use getWritableDatabase() to get the database instance and this needs to be called in a non-UI thread, I was wondering if there a clean way to specify the same warning in the java docs of these functions?
Also, I needed one more clarification about getting handle over the database instance using getWritableDatabase(). I should call this wherever I need to write things into database right? Or can I call this once at the application level and use the same handle to access db at different places in the app?
There are no fixed rules for such things. You can only rely on conventions/style.
In other words: try to come up with explicit, unambiguous wording and make sure that this part is easy to read and quick to spot in your javadoc (check the generated HTML as well for these properties).
And then be prepared for bug reports from people ignoring your javadoc.
Rather than just leaving a warning in the javadoc, you might add validation, i.e. detect if you're on the UI thread (see How to check if current thread is not main thread), then throw an exception.
Document that exception.

Restoring from component rendering failures in Wicket

Let's consider the case:
Wicket page contains several components and rendering of one of them fails with some common runtime exception (like NullPointerException).
The result I see by default is: the whole page fails to render.
How to recover from this error in Wicket? What should be done, not render or replace the failing component only?
A custom IRequestCycleListener is the solution you are looking for. Read Carl-Eric's answer here:
How to handle exceptions thrown in Wicket custom model?
In a "classical" wicket application where pages and components are instantiated by code in constructors and initializers you probably have to add try-catch blocks manually to each and every possible constructor call. Wicket is not a managed framework, meaning there isn't a central component factory that could be decorated by such functionality. That does not mean though that you can't create such a component factory yourself.
In a CMS-like application we've been developing since 2006 all wicket components are instantiated by builders that themselves are created from xml or json documents (so the full layout and configuration of the app is externalized and the wicket components are just small building boxes that can be mixed and matched together like lego pieces) - so I know such an approach works and performs well. In our case each builder method that creates a component has a try-catch block that creates an empty Label instead if any RuntimeException happens.
This is weird requirement, in my humble opinion.
What is the rendering of the replacement component fails too ? Add extra logic ?! Or let it fail with stack overflow error ?
What if half of the components in the page fail ? You will show half page with proper content and the other with "Oopsies" ?!
If there is an error then it should be fixed!

Questions: controlling a Swing GUI from an external class and separating logic from user interface

UPDATE: I'm using Netbeans and Matise and it's possible that it could be Matise causing the problems I describe below.
UPDATE 2: Thanks to those who offered constructive suggestions. After rewriting the code without Matise's help, the answer offered by ignis worked as he described. I'm still not sure how the code the Netbeans code generator interfered.
Though I've been programming in Java for awhile I've never done any GUI programming until now. I would like to control a certain part of my program externally (updating a jTextArea field with output from an external source) without requiring any user action to trigger the display of this output in the jTextArea.
Specifically, I want this output to begin displaying on startup and to start and stop depending on external conditions that have nothing to do with the GUI or what the user is doing. From what I understand so far you can trigger such events through action listeners, but these action listeners assume they are listening for user activity. If I must use action listeners, is there a way to trick the GUI into thinking user interaction has happened or is there a more straightforward way to achieve what I want to do?
Also, I'd really like to know more about best practices for separating GUI code from the application logic. From the docs I've come across, it seems that GUI development demands more of a messy integration of logic and user interface than, say, a web application where one can achieve complete separation. I'd be very interested in any leads in this area.
There is no need to use listeners. GUI objects are just like any other objects in the program, so actually
you can use the listener pattern in any part of the program, even if it is unrelated to the GUI
you can invoke methods of objects of the GUI whenever you want during the program execution, even if you do not attach any listeners to the objects in the GUI.
The main "rule" you must follow is that every method invocation performed on objects of the GUI must be run on the AWT Event Dispatch Thread (yes, that's true for Swing also).
http://download.oracle.com/javase/tutorial/uiswing/concurrency/dispatch.html
So you must wrap code accessing the GUI objects, into either
javax.swing.SwingUtilities.invokeLater( new Runnable() { ... } )
or
javax.swing.SwingUtilities.invokeAndWait( new Runnable() { ... } )
http://download.oracle.com/javase/6/docs/api/javax/swing/SwingUtilities.html
About "separating GUI code from the application logic": google "MVC" or "model view controller". This is the "standard" way of separating these things. It consists in making the GUI code (the "view") just a "facade" for the contents (the "model"). Another part of the application (the "controller") creates and invokes the model and the view as needed (it "controls" program execution, or it should do that, so it is named "controller"), and connects them with each other.
http://download.oracle.com/javase/tutorial/uiswing/components/model.html
For example, a JFoo class in the javax.swing package, that defines a Swing component, acts as the view for one or more FooModel class or interface defined either under javax.swing or one of its subpackages. You program will be the "controller" which instantiates the view and an implementation of the model properly (which may be one of the default implementations found under those packages I mentioned, or a custom implementation defined among your custom packages in the program).
http://download.oracle.com/javase/1.4.2/docs/api/javax/swing/package-summary.html
That's a really good question, IMHO... one I asked a couple of years ago on Sun's Java Forums (now basically defunct, thanx to Oracle, the half-witted pack of febrile fiscal fascists).
On the front of bringing order to kaos that is your typical "first cut" of an GUI, Google for Swing MVC. The first article I read on the topic was JavaWorld's "MVC meets Swing". I got lucky, because it explains the PROBLEMS as well as proposes sane solutions (with examples). Read through it, and google yourself for "extended reading" and hit us with any specific questions arrising from that.
On the "simulated user activity" front you've got nothing to worry about really... you need only observe your external conditions, say you detect that a local-file has been updated (for instance) and in turn "raise" a notification to registered listener(s)... the only difference being that in this case you're implementing both the "talker" and the "listener". Swings Listener interface may be re-used for the messaging (or not, at your distretion). Nothing tricky here.
"Raising" an "event" is totally straight forward. Basically you'd just invoke the "EventHappened" method on each of the listeners which is currently registered. The only tricky bit is dealing with "multithreaded-ness" innate to all non-trivial Swing apps... otherwise they'd run like three-legged-dogs, coz the EDT (google it) is constantly off doing everything, instead of just painting and message brokering (i.e. what it was designed for). (As said earlier by Ignis) The SwingUtilies class exposes a couple of handy invoke methods for "raising events" on the EDT.
There's nothing really special about Swing apps... Swing just has a pretty steep learning curve, that's all, especially multithreading... a topic which I had previously avoided like the plague, as "too complicated for a humble brain like mine". Needless to say that turned out to be a baseless fear. Even an old idiot like myself can understand it... it just takes longer, that's all.
Cheers. Keith.
This doesn't exactly answer your question, but you might be interested in using Netbeans for Java GUI development. You can use GUI in Netbeans to do Java GUI development.
Here's a good place to get started -
http://netbeans.org/kb/trails/matisse.html

need design/pattern/structure help on coding up a java 'world'

I've always wanted to write a simple world in Java, but which I could then run the 'world' and then add new objects (that didn't exist at the time the world started running) at a later date (to simulate/observe different behaviours between future objects).
The problem is that I don't want to ever stop or restart the world once it's started, I want it to run for a week without having to recompile it, but have the ability to drop in objects and redo/rewrite/delete/create/mutate them over time.
The world could be as simple as a 10 x 10 array of x/y 'locations' (think chessboard), but I guess would need some kind of ticktimer process to monitor objects and give each one (if any) a chance to 'act' (if they want to).
Example: I code up World.java on Monday and leave it running. Then on Tuesday I write a new class called Rock.java (that doesn't move). I then drop it (somehow) into this already running world (which just drops it someplace random in the 10x10 array and never moves).
Then on Wednesday I create a new class called Cat.java and drop that into the world, again placed randomly, but this new object can move around the world (over some unit of time), then on Thursday i write a class called Dog.java which also moves around but can 'act' on another object if it's in the neighbour location and vice versa.
Here's the thing. I don't know what kinda of structure/design I would need to code the actual world class to know how to detect/load/track future objects.
So, any ideas on how you would do something like this?
I don't know if there is a pattern/strategy for a problem like this, but this is how I would approach it:
I would have all of these different classes that you are planning to make would have to be objectsof some common class(maybe a WorldObject class) and then put their differentiating features in a separate configuration files.
Creation
When your program is running, it would routinely check that configuration folder for new items. If it sees that a new config file exists (say Cat.config), then it would create a new WorldObject object and give it features that it reads from the Cat.config file and drops that new object into the world.
Mutation
If your program detects that one of these item's configuration file has changed, then it find that object in the World, edit its features and then redisplay it.
Deletion
When the program looks in the folder and sees that the config file does not exist anymore, then it deletes the object from the World and checks how that affects all the other objects.
I wouldn't bet too much on the JVM itself running forever. There are too many ways this could fail (computer trouble, unexepected out-of-memory, permgen problems due to repeated classloading).
Instead I'd design a system that can reliably persist the state of each object involved (simplest approach: make each object serializable, but that would not really solve versioning problems).
So as the first step, I'd simply implement some nice classloader-magic to allow jars to be "dropped" into the world simulation which will be loaded dynamically. But once you reach a point where that no longer works (because you need to modify the World itself, or need to do incompatible changes to some object), then you could persist the state, switch out the libraries for new versions and reload the state.
Being able to persist the state also allows you to easily produce test scenarios or replay scenarios with different parameters.
Have a look at OSGi - this framework allows installing and removing packages at runtime.
The framework is a container for so called bundles, java libraries with some extra configuration data in the jars manifest file.
You could install a "world" bundle and keep it running. Then, after a while, install a bundle that contributes rocks or sand to the world. If you don't like it anymore, disable it. If you need other rocks, install an updated version of the very same bundle and activate it.
And with OSGi, you can keep the world spinning and moving around the sun.
The reference implementation is equinox
BTW: "I don't know what kinda of structure/design" - at least you need to define an interface for a "geolocatable object", otherwise you won't be able to place and display it. But for the "world", it really maybe enough to know, that "there is something at coordinates x/y/z" and for the world viewer, that this "something" has a method to "display itself".
If you only care about adding classes (and not modifying) here is what I'd do:
there is an interface Entity with all business methods you need (insertIntoWorld(), isMovable(), getName(), getIcon() etc)
there is a specific package where entities reside
there is a scheduled job in your application which every 30 seconds lists the class files of the package
keep track of the classes and for any new class attempt to load class and cast to Entity
for any newlly loaded Entity create a new instance and call it's insertIntoWorld().
You could also skip the scheduler and automatic discovery thing and have a UI control in the World where from you could specify the classname to be loaded.
Some problems:
you cannot easily update an Entity. You'll most probably need to do some classloader magic
you cannot extend the Entity interface to add new business bethod, so you are bound to the contract you initially started your application with
Too long explanation for too simple problem.
By other words you just want to perform dynamic class loading.
First if you somehow know the class name you can load it using Class.forName(). This is the way to get class itself. Then you can instantiate it using Class.newInstance(). If you class has public default constructor it is enough. For more details read about reflection API.
But how to pass the name of new class to program that is already running?
I'd suggest 2 ways.
Program may perform polling of predefined file. When you wish to deploy new class you have to register it, i.e. write its name into this file. Additionally this class has to be available in classpath of your application.
application may perform polling of (for example) special directory that contains jar files. Once it detects new jar file it may read its content (see JarInputStream), then call instantiate new class using ClaasLoader.defineClass(), then call newInstane() etc.
What you're basically creating here is called an application container. Fortunately there's no need to reinvent the wheel, there are already great pieces of software out there that are designed to stay running for long periods of time executing code that can change over time. My advice would be to pick your IDE first, and that will lead you someways to what app container you should use (some are better integrated than others).
You will need a persistence layer, the JVM is reliable but eventually someone will trip over the power cord and wipe your world out. Again with JPA et al. there's no need to reinvent the wheel here either. Hibernate is probably the 'standard', but with your requirements I'd try for something a little more fancy with one of the graph based NoSQL solutions.
what you probably want to have a look at, is the "dynamic object model" pattern/approach. I implemented it some time ago. With it you can create/modify objecttypes at runtime that are kind of templates for objects. Here is a paper that describes the idea:
http://hillside.net/plop/plop2k/proceedings/Riehle/Riehle.pdf
There are more papers but I was not able to post them, because this is my first answer and I dont have enough reputation. But Google is your friend :-)

Where to put business logic in Eclipse RCP program

I'm writing a small application in RCP to wrap around the business logic in another (non-RCP) simulation library. I can access and use the library fine from any of my plugins, but I don't know where I should put the instance of the Simulation library so that, say, one of the command handlers can make calls to it.
From reading the docs it sounds like I should be storing 'global' information like this in the workbench - but I still don't really understand how to do that.
Help?
First, the business layer (BL) can and should reside in its' own plugin. That will provide decent decoupling between the layers.
Second, you should carefully decide what the interface should be and which classes are exposed. Ideally, you should mostly expose interfaces and data objects.
Finally, decide how the "hand shake" works. E.g., how to obtain the initial interface to the BL. Since it is a Plugin, it could have an Activator which loads it. You could add a method in the activator which returns the BL interface.
If you are looking for something more decoupled, you could create an extension point or deploy the BL as an OSGi service, but that's a bit of an overkill for you need.
If I understand you correctly, I see two ways:
Store the instance in the model plug-in itself, using ‘SimulationFactory.getInstance(String myAppId)‘. The passed String is a constant in you app that is always used, when obtaining the reference.
Define a new class e.g. GlobalAccess in you app that is initilized with an instance of your model and has some getter (whether you use a single instance again or only provide public static methods is a matter of taste).
The seocond way is similar to some classes in eclipse like platfom or platformui, where you can obtain initial references and navigate through the workbench.
edit
i just found a tutorial that might help you:
Passing Data between Plug-ins

Categories