I have a generator class that owns a Thread in which a number of "records" to be generated is determined, then generates that many records (which get placed in a BlockingQueue for retrieval by another thread).
I'd like the other thread to know how many records are going to be generated (for sensible progress reporting among other things).
It seems Future gives me exactly the interface I'm after, but I'm new to Java, and not sure of the idiomatic way of implementing it.
My background is in C++/Win32, so I'd normally use a win32 "Event" (as created by CreateEvent(0, true, false, 0), with SetEvent and WaitForSingleObject for my signal and wait implementations). I've noticed Java has a CountDownLatch, but this somehow feels heavier than what I'm after (somewhat akin to using an int when I really want a boolean), and it seems unintuitive for this purpose (to me, anyway).
So here's my code using CountDownLatch and a Future. I've distilled my real code down a bit here (removed irrelevant implementation details and ignoring all error handling).
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.Future;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.TimeUnit;
public abstract class Generator {
private CountDownLatch numRecordsSignal = new CountDownLatch(1);
private int numRecords;
private BlockingQueue<Record> queue = new LinkedBlockingQueue<Record>();
public Generator() {
new Thread(new Runnable() {
#Override
public void run() {
numRecords = calculateNumRecords();
numRecordsSignal.countDown();
for (Record r : generateRecords()) {
try {
queue.put(r);
} catch (InterruptedException e) {
// [ ... snip ... ]
}
}
}
}).start();
}
public Future<Integer> numRecords() {
return new Future<Integer>() {
// Ignore cancel for now (It wouldn't make sense to cancel
// just this part of the Generator's work, anyway).
public boolean cancel(boolean mayInterruptIfRunning) {
return false;
}
public Integer get() throws InterruptedException {
numRecordsSignal.await();
return numRecords;
}
public Integer get(long timeout, TimeUnit unit)
throws InterruptedException {
numRecordsSignal.await(timeout, unit);
return numRecords;
}
public boolean isCancelled() {
return false;
}
public boolean isDone() {
// Since we can't cancel, just check the state of the
// signal
return numRecordsSignal.getCount() == 0;
}
};
}
public Record nextRecord() throws InterruptedException {
return queue.take();
}
/** --- Boring stuff below this line --- */
public interface Record { }
protected abstract int calculateNumRecords();
protected abstract Iterable<Record> generateRecords();
}
Now for my actual questions:
Is there a better mechanism than CountDownLatch for single-shot signalling?
I want callers to be able to either wait or poll on the result, but don't need them to be able to cancel the operation. Is Future the right way to expose this stuff?
Does any of this stuff look particularly "un-Java"? Am I on the wrong track completely?
Edit:
Just to clarify, I expect the caller to be able to do the following:
Generator gen = new Generator();
Integer numRecords = gen.numRecords().get(); // This call might block waiting for the result
numRecords = gen.numRecords().get(); // This call will never block, as the result is already available.
It's just a slow-to-initialise value I'm trying to implement. Once the "initialised" condition is met, it should latch. The value doesn't get re-evaluated once it's known.
Side comment
You should not start a thread in a constructor - it is very conceivable that the Generator object is not fully created when the thread starts, and the countdown latch could well be null for example. You can create the thread in the constructor, but should start it in a seperate method. Your calling code would become:
Generator g = new Generator();
g.start();
Your question
You are reimplementing a Future yourself, which is not necessary nor desirable in my opinion. I would redesign the class and make Generator implement Callable<Integer> and run it through an executor. That provides you with several things:
remove the threading logic from the Generator, which enables you a more efficient management of your threads at a higher level in your call stack
the integer is returned via the future in your calling code and you rely on the JDK to handle the implementation
I have assumed that it's ok to first populate the queue then return the integer
you can call future.get() as many times as you want - it will only block the first time it is called.
public static void main(String[] args) {
ExecutorService executor = Executors.newFixedThreadPool(1);
Future<Integer> future = executor.submit(new GeneratorImpl()); //a concrete implementation of Generator
int numRecords = 0;
try {
numRecords = future.get(); //you can use a get with timeout here
} catch (ExecutionException e) {
//an exception happened in Generator#call()
} catch (InterruptedException e) {
//handle it
}
//don't forget to call executor.shutdown() when you don't need it any longer
}
public abstract class Generator implements Callable<Integer> {
private BlockingQueue<Record> queue = new LinkedBlockingQueue<Record>();
#Override
public Integer call() {
int numRecords = calculateNumRecords();
for (Record r : generateRecords()) {
try {
queue.put(r);
} catch (InterruptedException e) {
// [ ... snip ... ]
}
}
return numRecords;
}
public Record nextRecord() throws InterruptedException {
return queue.take();
}
/**
* --- Boring stuff below this line ---
*/
public interface Record {
}
protected abstract int calculateNumRecords();
protected abstract Iterable<Record> generateRecords();
}
EDIT
If you need to return numRecods asap, you can populate your queue in a separate thread:
public Integer call() {
int numRecords = calculateNumRecords();
new Thread(new Runnable() {
#Override
public void run() {
for (Record r : generateRecords()) {
try {
queue.put(r);
} catch (InterruptedException e) {
// [ ... snip ... ]
}
}
}
}).start(); //returns immediately
return numRecords;
}
The standard Java equivalents of "WaitOnSingleEvent()" and "SetEvent()" for Java threads are "wait()", "notify()" and "notifyAll()".
After looking at implementing my own signal mechanism and following the bread-crumb trail left by others doing the same thing, I came across the javadoc for AbstractQueuedSynchronizer, which includes a code snippet for a "BooleanLatch", which perfectly meets my needs:
class BooleanLatch {
private static class Sync extends AbstractQueuedSynchronizer {
boolean isSignalled() { return getState() != 0; }
protected int tryAcquireShared(int ignore) {
return isSignalled()? 1 : -1;
}
protected boolean tryReleaseShared(int ignore) {
setState(1);
return true;
}
}
private final Sync sync = new Sync();
public boolean isSignalled() { return sync.isSignalled(); }
public void signal() { sync.releaseShared(1); }
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
}
Doing a bit more searching, I found that a number of frameworks include a BooleanLatch (Apache Qpid being one). Some implementations (such as Atlassian's), are auto-resetting, which would make them inappropriate for my needs.
Standard observer notification pattern can be helpful here, if i understood your problem correctly.
For one shot signalling in this scenario Semaphore is better as it remembers the "signal".
Condition object [wait() is on a condition] won't remember the signal.
Semaphore numRecordsUpdated = new Semaphore(0);
In Generator
numRecordsUpdated.release();
In consumer
numRecordsUpdated.acquire();
Related
this is my first question here so please bear with me.
I am currently working on a UNI assignment on multithreading and concurrency in Java where we are asked to implement various versions of a "Call Center" using different thread locking methods, with one of them being Semaphores. I'll get right into the code to show what my problem is:
Producer Class:
public final class Caller implements Runnable {
private final CallCenter callCenter;
public Caller(long id, CallCenter callCenter) {
this.callCenter = callCenter;
}
#Override
public void run() {
try {
callCenter.receive(new Call());
} catch(Exception ex) {
throw new RuntimeException(ex);
}
}
}
Consumer Class:
public final class Operator implements Runnable {
private final CallCenter callCenter;
private Call call;
public Operator(CallCenter callCenter) {
this.callCenter = callCenter;
}
#Override
public void run() {
try {
this.call = callCenter.answer();
} catch(InterruptedException ex) {
throw new RuntimeException(ex);
}
}
public Call getCall() {
return this.call;
}
}
Service:
import java.util.Queue;
import java.util.concurrent.Semaphore;
import java.util.LinkedList;
public final class BoundedCallCenterSemaphore implements BoundedCallCenter {
private final Queue<Call> pendingCalls = new LinkedList<Call>();
private Semaphore semaphore = new Semaphore(MAX_NUMBER_OF_PENDING_CALLS, true);
public void receive(Call call) throws Exception {
semaphore.acquire();
pendingCalls.add(call);
}
public Call answer() throws InterruptedException {
semaphore.release();
return pendingCalls.poll();
}
}
Call Implementation:
import java.util.concurrent.atomic.AtomicLong;
public final class Call {
private static final AtomicLong currentId = new AtomicLong();
private final long id = currentId.getAndIncrement();
public long getId() {
return id;
}
}
Disclaimer
I know I am probably not using the semaphore the way it is intended to be used, but reading the official docs an other blogs/answers does not help at all.
We have the following constraints: only modify the Service Class, solve using Semaphores and only use Semaphore.acquire() and Semaphore.receive() to avoid racing and busy waiting, no other method or thread-locking structure is allowed
Actual Problem:
I'll avoid posting here the entirety of the tests written by our professor, just know that 100 calls are sent to the Service, for simplicity each caller only calls once and each operator only responds once. When implementing the callcenter without semaphores you'll get busy waits generated by a while loop and concurrency is not well-managed as some calls can be answered twice or more if the different threads act simultaneously. The mission here is to eliminate busy waits and ensure each call is received and answered only once. I tried using semaphores as reported above, and while busy wait is eliminated some of the calls end up not being answered at all. Any advice on what I am doing wrong? How do I ensure that each and every call is answered only once?
In the end, I did it using three semaphores. The first semaphore new Semaphore(MAX_NUMBER_OF_PENDING_CALLS, true) guards the queue in the sense of blocking new entries when pendingCalls.size() >= MAX_NUMBER_OF_PENDING_CALLS . The second semaphore new Semaphore(1, true) guards the producer threads, allowing just one thread at a time to access the queue for adding operations. The third and last semaphore starts with no permits and waits for the first producer thread to insert the first call into the buffer new Semaphore(0, true) .
Code
public final class BoundedCallCenterSemaphore implements BoundedCallCenter {
private final LinkedList<Call> pendingCalls = new LinkedList<Call>();
static Semaphore receiver = new Semaphore(1, true);
static Semaphore storage = new Semaphore(MAX_NUMBER_OF_PENDING_CALLS, true);
static Semaphore operants = new Semaphore(0, true);
public void receive(Call call) throws Exception {
try {
storage.acquire();
}
catch (InterruptedException e)
{
}
try {
receiver.acquire();
}
catch (InterruptedException e)
{
}
synchronized (pendingCalls) {
pendingCalls.add(call);
operants.release();
}
}
public Call answer() throws InterruptedException {
try
{
operants.acquire();
}
catch (InterruptedException e)
{
}
Call call = null;
synchronized (pendingCalls) {
call = pendingCalls.poll();
storage.release();
receiver.release();
}
return call;
}
}
I need to provide code that using ExecutorService, Callable and Future will be doing some calculations and printing the partial results until defined condition is reached. First thing that comes to my mind is using while loop. Unfortunately as I understand ExecutorService.get() waits until the task is done, so I cannot do something like (pseudo code):
public Object call() throws Exception {
try {
while(!condition) {
//perform calc
return partialCalculationResult;
}
}
catch(InterruptedException e){
}
}
Could anyone guide me what's the proper direction I should go for?
This here:
while(!condition) {
//perform calc
return partialCalculationResult;
}
indicates a "hole" in your logic. This should probably go like this instead:
while(!condition) {
// perform computation
push intermediate results somewhere
}
return finalResult;
In other words: you are talking about two different elements here. For those "progress" updates you will need some kind of shared data structure; for example a Queue.
You see, in difference to other languages, there is no built-in "generator" concept that would allow you to yield values from a loop; like you can do in python or scala for example.
The dirty option is putting a System.out.println within the while loop.
The cleaner option would be a publish/subscriber pattern, like:
interface Subscriber {
void onPartialResult(double partialResult);
}
class SystemOutSubscriber implements Subscriber{
#Override
void onPartialResult(double partialResult) {
System.out.println(partialResult);
}
}
class YourCalculatorClass {
List<Subscriber> subscribers = ...
public Object call() throws Exception {
while(!condition) {
//perform calc
for(Subscriber s : subscribers) {
s.onPartialResult(partialCalculationResult);
}
}
}
}
You can use Thread.interrupt to stop the thread inside while loop and add remaining result in list
while(!condition){ list.add(addResultHere)
Thread.interrupt(); }
Below is a small example of using an ExecutorService
to push callable tasks. I push them inside a while loop now for the ease of the example, but they can come from anywhere. The callable itself uses the most silly easy example of course where it takes in a number. If the number is below 5, all is good, and we return a text. If not, we return nothing. When the future is evaluated and the result is empty, we shut down the ExecutorService and call it a day. So, this is an example of using an ExecutorService, Callable, and Future to do something at least similar to what I could discern from your explanation.
public ExecutorServiceTest() {
ExecutorService service = Executors.newCachedThreadPool();
int num = 0;
while (true) {
Future<Optional<String>> future = service.submit(new MyCallable(num++));
try {
Optional<String> result = future.get();
if (!result.isPresent()) {
service.shutdown();
break;
}
System.out.println(result.get());
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
service.shutdown();
}
}
}
private static class MyCallable implements Callable<Optional<String>> {
private final int num;
MyCallable(int num) {
this.num = num;
}
#Override
public Optional<String> call() throws Exception {
if (num < 5)
return Optional.of("My number is " + num);
return Optional.empty();
}
}
public static void main(String[] args) {
new ExecutorServiceTest();
}
This question already has answers here:
How do determine if an object is locked (synchronized) so not to block in Java?
(8 answers)
Closed 6 years ago.
I have synchronisation block in syncCmd function:
public Object Sync = new Object();
public void syncCmd(String controlCmd) {
synchronized(Sync) {
...
}
}
I need to add some logic in case if one thread has occupied Sync and doing its job. In this case I would like to report "too busy" to system and not get to queue. What is the best way to know if somebody has occupied Sync section? How to know how many threads is waiting in this section? Everything is in Java 1.4.
Have a look at the Lock interface and its implementation ReentrantLock. It allows you to use tryLock() method, including the variant that allows to wait for some time if the resource is already locked:
private ReentrantLock lock = new ReentrantLock();
public void syncCmd(String controlCmd) {
if (lock.tryLock()) {
try {
// Use your synchronized resource here
} finally {
lock.unlock();
}
} else {
// Failed to lock
}
}
Java 1.4, unfortunately, has no java.util.concurrency package and I think the best choice you have is to implement the same logic by means of synchronized and double checks:
public class Lock {
private final Object lock = new Object();
private volatile boolean locked = false;
public boolean tryLock() {
if (!locked) {
synchronized (lock) {
if (!locked) {
locked = true;
return true;
}
}
}
return false;
}
public void unlock() {
synchronized (lock) {
locked = false;
}
}
}
It will not work as fast as ReentrantLock that uses CAS loop backed by processor instructions in modern JVMs, but it will do the job.
This implementation is also not reentrant, you can extend it to track the locking thread and locks count if you need reentrance.
Important update: #Stephen C made a good point that double check is broken in Java 1.4 and one always must keep it in mind. But there're exceptions. For instance, short primitive types. So, I think it will work in this particular case. For more details, please, look at the "Double-Checked Locking is Broken" Declaration.
Synchronized blocks / methods and primitive mutexes can't do that in Java.
But if you use a Lock instead (javadoc), you can use tryLock either to never block or to only block for a limited time.
Example:
Lock l = new ReentrantLock();
if (l.tryLock()) {
try {
// access the resource protected by this lock
} finally {
l.unlock();
}
else {
// report "too busy"
}
But note that it is essential to use "try ... finally" and an explicit unlock() call to ensure that the lock is always released. (Unlike the synchronized constructs, which takes care of that for you automatically.)
Prior to Java 1.5 there is no solution that I am aware of in pure Java. It might be possible with native code trickery, but I don't know how.
You / your management should be looking to ditch support in your products for Java 1.4, and to migrating away from any third-party product that depends on top of it. Java 1.5 itself was EOL'd many years ago. In fact, all releases prior to Java 1.8 have been EOL'd; see the Oracle Java SE Support Roadmap document.
Two of the answers above talked about java.util.concurrent.locks.ReentrantLock, but it doesn't exist in Java 1.4.
Too bad so sad?
No! If system libraries and 3rd party libraries don't hand you what you want, then write it yourself!
The code below does what you asked for, and absolutely nothing more. I personally would not use it without first adding some features that would make it more useable, more testable, and most importantly, more foolproof.
I'm just offering it to you as an example of where to begin.
public class ExtremelySimplisticNonReentrantLock {
boolean isLocked = false;
/**
* #return true if the lock was acquired, false otherwise.
*/
public synchronized boolean tryToAcquire() {
if (isLocked) {
return false;
}
isLocked = true;
return true;
}
public synchronized void release() {
lsLocked = false;
}
}
Share and Enjoy!
Try this (Two classes - Executor and Tracker ) :
Executor :
package com.example.so.jdk1_4.synch;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.Random;
/**
* <p> For http://stackoverflow.com/questions/38671520/not-wait-in-case-synchronized-section-is-occupied </p>
* #author Ravindra HV
*/
public class InUseExample {
public synchronized void execute(String command) {
InUseTracker.obtainClassInstance().setInuse(true);
try {
System.out.println("Executing :"+command);
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}// do work
InUseTracker.obtainClassInstance().setInuse(false);
}
/**
* #param args
*/
public static void main(String[] args) {
System.out.println("Start :"+new Date());
testInUseExample();
System.out.println("Final wait count :"+InUseTracker.obtainClassInstance().waitCount());
System.out.println("End :"+new Date());
}
private static void testInUseExample() {
final InUseExample inUseExample = new InUseExample();
Runnable runnable = new Runnable() {
#Override
public void run() {
try {
InUseTracker.obtainClassInstance().incrementWaitCount();
while(true) {
if( InUseTracker.obtainClassInstance().isInuse() == false ) { // reduces the chances of this thread going to a block mode..
inUseExample.execute(Thread.currentThread().getName());
break;
}
else {
try {
Random random = new Random();
String message = Thread.currentThread().getName()+" - block in use by :"+InUseTracker.obtainClassInstance().getInUseBy();
message = message+" "+". Wait Count :"+InUseTracker.obtainClassInstance().waitCount();
System.out.println(message);
Thread.sleep(random.nextInt(1000));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
} catch (Exception e) {
e.printStackTrace();
} finally {
InUseTracker.obtainClassInstance().decrementWaitCount();
}
}
};
int threadCount = 10;
List<Thread> threadPoolTemp = new ArrayList<Thread>();
for(int i=0;i<threadCount;i++) {
Thread thread = new Thread(runnable);
threadPoolTemp.add(thread);
}
for (Thread thread : threadPoolTemp) {
thread.start();
}
for (Thread thread : threadPoolTemp) {
try {
thread.join(); // wait until all threads have executed..
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
Tracker :
package com.example.so.jdk1_4.synch;
/**
* <p> For http://stackoverflow.com/questions/38671520/not-wait-in-case-synchronized-section-is-occupied </p>
* #author Ravindra HV
*/
public class InUseTracker {
private boolean inuse;
private int waitCount;
private String inUseBy;
private static InUseTracker DEFAULT_INSTANCE = new InUseTracker();
private InUseTracker() {
}
public static InUseTracker obtainClassInstance() {
return DEFAULT_INSTANCE;
}
public synchronized boolean isInuse() {
return inuse;
}
public synchronized void setInuse(boolean inuse) {
this.inuse = inuse;
if(inuse) {
setInUseBy(Thread.currentThread().getName());
}
else {
setInUseBy("");
}
}
private void setInUseBy(String inUseBy) {
this.inUseBy = inUseBy;
}
public synchronized String getInUseBy() {
return inUseBy;
}
public synchronized void incrementWaitCount() {
waitCount++;
}
public synchronized void decrementWaitCount() {
waitCount--;
}
public synchronized int waitCount() {
return waitCount;
}
}
PS: Guess you'd have to move the
InUseTracker.obtainClassInstance().setInuse(false);
within a finally if or as appropriate.
Here's what I want to do. Given a function
public void foo() {
}
I would like to have it end after certain time has elapsed. That is, imagine this is some kind of random generator which has to produce random objects that satisfy some difficult constraints and hence it may or may not succeed under a given time allotment. That is, the function may actually be something like this
public void foo() {
//task1
while(fails) {
//...
}
//task2
while(fails2) {
//...
}
//more tasks may follow, which use the data from the previous tasks to further try to satisfy difficult conditions
}
That is simply just an example. But the point is that the function consists of many while loops, many test cases, and lots of heavy computation.
The goal: I want to be able to say "run foo() and if 4 seconds has elapsed and foo() is still not done, then stop foo() immediately."
What I have tried: I have tried to include conditions on just about every line of foo() to see how much time has elapsed and to return out of the function if the 4 seconds has passed. But given how complicated foo() is, this is clearly very difficult to do code wise because this requires testing the time on every single line of the function.
My thought logic: I think this should be possible because there are functions that do this sort of thing, that terminate code regardless of the state, such as System.exit(1). That is the idea. I'd like to be able to call, from the outside, to have this function foo() terminate.
// foo method and global variables used
private static ArrayList<Integer> foo() {
// info class
class Info {
public boolean run, completed;
public ArrayList<Integer> list;
}
// declare info object, list
final Info info = new Info();
final Object wait = new Object();
// run a new thread
Thread t = new Thread(
new Runnable() {
// run method
#Override
public void run() {
// setup run
info.run = true;
info.completed = false;
info.list = new ArrayList<>();
// loop to modify list. Don't put a big piece of code that will
// take a long time to execute in here.
while(info.run) {
// example of what you should be doing in here:
info.list.add(1);
// and if you are done modifying the list, use:
break;
}
// done modifying list
info.completed = true;
synchronized(wait) {
wait.notify();
}
}
}
);
t.start();
// wait for four seconds, then return list
try {
synchronized(wait) {
wait.wait(4000);
}
} catch (InterruptedException e) { e.printStackTrace(); }
info.run = false;
return info.completed ? info.list : null;
}
// main method
public static void main(String[] args) {
// get list
ArrayList<Integer> list = foo();
System.out.println("Done!");
}
What the foo() method does?
Begins to modify the list it will eventually return
If the time took modifying this list exceeds four seconds, it will stop modifying the list and return the list.
It will return null if the list was stopped early.
It now only uses local variables!
Nice bonus, it will immediately return the list the second modifying it is done.
Submit it as a runnable to an executor service and call get on the returned future with the desired timeout. Then in the catch block for the timeout exception you can cancel the future.
EDIT: Code sample
import com.google.common.base.Throwables;
import java.util.concurrent.*;
public class ExecutorExample {
private static final ExecutorService executor = Executors.newSingleThreadExecutor();
public void example() {
Future<String> future = executor.submit(new Callable<String>() {
#Override
public String call() throws Exception {
return "Do your complicated stuff";
}
});
try {
future.get(4, TimeUnit.SECONDS);
} catch (InterruptedException e) {
Throwables.propagate(e);
} catch (ExecutionException e) {
//handle
} catch (TimeoutException e) {
future.cancel(true);
}
}
}
Something like this will do the trick, but beware:
public static void main(String[] args){
Runnable fooRunner = new Runnable(){ public void run(){
foo();
}
Thread fooThread = new Thread(fooRunner);
fooThread.start();
Thread.sleep(4000);
fooThread.stop(); //warning -- this is deprecated!
}
The problem is that Thread.stop is deprecated.
Multi-threading in Java is fundamentally a cooperative endeavor. Because foo() may be manipulating shared state, probably protected by a lock that it currently owns, stopping it at an arbitrary point is potentially very dangerous and could lead to unpredictable failures, bugs, etc. later on in the program. (Indeed, since foo's return type is void, it must manipulate some shared state at some point in order to store its result.)
The language does provide a way to tell a thread that it should stop at the next convenient point: Thread.interrupt(), Thread.interrupted(), and InterruptedException. Your foo() method does need to check whether it's been interrupted periodically; that's the way it's done, and any higher-level library constructs (like Future.cancel()) rely on this.
You must enter into the hellish arena of writing threaded code.
http://docs.oracle.com/javase/tutorial/essential/concurrency/
Pseudo code (mutableboolean available in apache commons http://commons.apache.org/lang/download_lang.cgi)
...
final MutableBoolean finished = new MutableBoolean(false);
new Thread(new Runnable(){
public void run() {
doComplicatedStuff(finished);
}
}).start();
Thread.sleep(4000);
finished.setValue(true);
Is there a standard nice way to call a blocking method with a timeout in Java? I want to be able to do:
// call something.blockingMethod();
// if it hasn't come back within 2 seconds, forget it
if that makes sense.
Thanks.
You could use an Executor:
ExecutorService executor = Executors.newCachedThreadPool();
Callable<Object> task = new Callable<Object>() {
public Object call() {
return something.blockingMethod();
}
};
Future<Object> future = executor.submit(task);
try {
Object result = future.get(5, TimeUnit.SECONDS);
} catch (TimeoutException ex) {
// handle the timeout
} catch (InterruptedException e) {
// handle the interrupts
} catch (ExecutionException e) {
// handle other exceptions
} finally {
future.cancel(true); // may or may not desire this
}
If the future.get doesn't return in 5 seconds, it throws a TimeoutException. The timeout can be configured in seconds, minutes, milliseconds or any unit available as a constant in TimeUnit.
See the JavaDoc for more detail.
You could wrap the call in a FutureTask and use the timeout version of get().
See http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/FutureTask.html
See also Guava's TimeLimiter which uses an Executor behind the scenes.
It's really great that people try to implement this in so many ways. But the truth is, there is NO way.
Most developers would try to put the blocking call in a different thread and have a future or some timer. BUT there is no way in Java to stop a thread externally, let alone a few very specific cases like the Thread.sleep() and Lock.lockInterruptibly() methods that explicitly handle thread interruption.
So really you have only 3 generic options:
Put your blocking call on a new thread and if the time expires you just move on, leaving that thread hanging. In that case you should make sure the thread is set to be a Daemon thread. This way the thread will not stop your application from terminating.
Use non blocking Java APIs. So for network for example, use NIO2 and use the non blocking methods. For reading from the console use Scanner.hasNext() before blocking etc.
If your blocking call is not an IO, but your logic, then you can repeatedly check for Thread.isInterrupted() to check if it was interrupted externally, and have another thread call thread.interrupt() on the blocking thread
This course about concurrency https://www.udemy.com/java-multithreading-concurrency-performance-optimization/?couponCode=CONCURRENCY
really walks through those fundamentals if you really want to understand how it works in Java. It actually talks about those specific limitations and scenarios, and how to go about them in one of the lectures.
I personally try to program without using blocking calls as much as possible. There are toolkits like Vert.x for example that make it really easy and performant to do IO and no IO operations asynchronously and in a non blocking way.
I hope it helps
There is also an AspectJ solution for that with jcabi-aspects library.
#Timeable(limit = 30, unit = TimeUnit.MINUTES)
public Soup cookSoup() {
// Cook soup, but for no more than 30 minutes (throw and exception if it takes any longer
}
It can't get more succinct, but you have to depend on AspectJ and introduce it in your build lifecycle, of course.
There is an article explaining it further: Limit Java Method Execution Time
I'm giving you here the complete code. In place of the method I'm calling, you can use your method:
public class NewTimeout {
public String simpleMethod() {
return "simple method";
}
public static void main(String[] args) {
ExecutorService executor = Executors.newSingleThreadScheduledExecutor();
Callable<Object> task = new Callable<Object>() {
public Object call() throws InterruptedException {
Thread.sleep(1100);
return new NewTimeout().simpleMethod();
}
};
Future<Object> future = executor.submit(task);
try {
Object result = future.get(1, TimeUnit.SECONDS);
System.out.println(result);
} catch (TimeoutException ex) {
System.out.println("Timeout............Timeout...........");
} catch (InterruptedException e) {
// handle the interrupts
} catch (ExecutionException e) {
// handle other exceptions
} finally {
executor.shutdown(); // may or may not desire this
}
}
}
Thread thread = new Thread(new Runnable() {
public void run() {
something.blockingMethod();
}
});
thread.start();
thread.join(2000);
if (thread.isAlive()) {
thread.stop();
}
Note, that stop is deprecated, better alternative is to set some volatile boolean flag, inside blockingMethod() check it and exit, like this:
import org.junit.*;
import java.util.*;
import junit.framework.TestCase;
public class ThreadTest extends TestCase {
static class Something implements Runnable {
private volatile boolean stopRequested;
private final int steps;
private final long waitPerStep;
public Something(int steps, long waitPerStep) {
this.steps = steps;
this.waitPerStep = waitPerStep;
}
#Override
public void run() {
blockingMethod();
}
public void blockingMethod() {
try {
for (int i = 0; i < steps && !stopRequested; i++) {
doALittleBit();
}
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
public void doALittleBit() throws InterruptedException {
Thread.sleep(waitPerStep);
}
public void setStopRequested(boolean stopRequested) {
this.stopRequested = stopRequested;
}
}
#Test
public void test() throws InterruptedException {
final Something somethingRunnable = new Something(5, 1000);
Thread thread = new Thread(somethingRunnable);
thread.start();
thread.join(2000);
if (thread.isAlive()) {
somethingRunnable.setStopRequested(true);
thread.join(2000);
assertFalse(thread.isAlive());
} else {
fail("Exptected to be alive (5 * 1000 > 2000)");
}
}
}
You need a circuit breaker implementation like the one present in the failsafe project on GitHub.
Try this. More simple solution. Guarantees that if block didn't execute within the time limit. the process will terminate and throws an exception.
public class TimeoutBlock {
private final long timeoutMilliSeconds;
private long timeoutInteval=100;
public TimeoutBlock(long timeoutMilliSeconds){
this.timeoutMilliSeconds=timeoutMilliSeconds;
}
public void addBlock(Runnable runnable) throws Throwable{
long collectIntervals=0;
Thread timeoutWorker=new Thread(runnable);
timeoutWorker.start();
do{
if(collectIntervals>=this.timeoutMilliSeconds){
timeoutWorker.stop();
throw new Exception("<<<<<<<<<<****>>>>>>>>>>> Timeout Block Execution Time Exceeded In "+timeoutMilliSeconds+" Milli Seconds. Thread Block Terminated.");
}
collectIntervals+=timeoutInteval;
Thread.sleep(timeoutInteval);
}while(timeoutWorker.isAlive());
System.out.println("<<<<<<<<<<####>>>>>>>>>>> Timeout Block Executed Within "+collectIntervals+" Milli Seconds.");
}
/**
* #return the timeoutInteval
*/
public long getTimeoutInteval() {
return timeoutInteval;
}
/**
* #param timeoutInteval the timeoutInteval to set
*/
public void setTimeoutInteval(long timeoutInteval) {
this.timeoutInteval = timeoutInteval;
}
}
example :
try {
TimeoutBlock timeoutBlock = new TimeoutBlock(10 * 60 * 1000);//set timeout in milliseconds
Runnable block=new Runnable() {
#Override
public void run() {
//TO DO write block of code
}
};
timeoutBlock.addBlock(block);// execute the runnable block
} catch (Throwable e) {
//catch the exception here . Which is block didn't execute within the time limit
}
In special case of a blocking queue:
Generic java.util.concurrent.SynchronousQueue has a poll method with timeout parameter.
Assume blockingMethod just sleep for some millis:
public void blockingMethod(Object input) {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
My solution is to use wait() and synchronized like this:
public void blockingMethod(final Object input, long millis) {
final Object lock = new Object();
new Thread(new Runnable() {
#Override
public void run() {
blockingMethod(input);
synchronized (lock) {
lock.notify();
}
}
}).start();
synchronized (lock) {
try {
// Wait for specific millis and release the lock.
// If blockingMethod is done during waiting time, it will wake
// me up and give me the lock, and I will finish directly.
// Otherwise, when the waiting time is over and the
// blockingMethod is still
// running, I will reacquire the lock and finish.
lock.wait(millis);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
So u can replace
something.blockingMethod(input)
to
something.blockingMethod(input, 2000)
Hope it helps.