I would like to implement an Iterator in Java that behaves somewhat like the following generator function in Python:
def iterator(array):
for x in array:
if x!= None:
for y in x:
if y!= None:
for z in y:
if z!= None:
yield z
x on the java side can be multi-dimensional array or some form of nested collection. I am not sure how this would work. Ideas?
Had the same need so wrote a little class for it. Here are some examples:
Generator<Integer> simpleGenerator = new Generator<Integer>() {
public void run() throws InterruptedException {
yield(1);
// Some logic here...
yield(2);
}
};
for (Integer element : simpleGenerator)
System.out.println(element);
// Prints "1", then "2".
Infinite generators are also possible:
Generator<Integer> infiniteGenerator = new Generator<Integer>() {
public void run() throws InterruptedException {
while (true)
yield(1);
}
};
The Generator class internally works with a Thread to produce the items. By overriding finalize(), it ensures that no Threads stay around if the corresponding Generator is no longer used.
The performance is obviously not great but not too shabby either. On my machine with a dual core i5 CPU # 2.67 GHz, 1000 items can be produced in < 0.03s.
The code is on GitHub. There, you'll also find instructions on how to include it as a Maven/Gradle dependency.
Indeed Java has no yield, but you can now use Java 8 streams. IMO it's really a complicated iterator since it's backed by an array, not a function. Given it's a loop in a loop in a loop can be expressed as a Stream using filter (to skip the nulls) and flatMap to stream the inner collection. It's also about the size of the Python code. I've converted it to an iterator to use at your leisure and printed to demonstrate, but if all you were doing was printing, you could end the stream sequence with forEach(System.out::println) instead of iterator().
public class ArrayIterate
{
public static void main(String args[])
{
Integer[][][] a = new Integer[][][] { { { 1, 2, null, 3 },
null,
{ 4 }
},
null,
{ { 5 } } };
Iterator<Object> iterator = Arrays.stream(a)
.filter(ax -> ax != null)
.flatMap(ax -> Arrays.stream(ax)
.filter(ay -> ay != null)
.flatMap(ay -> Arrays.stream(ay)
.filter(az -> az != null)))
.iterator();
while (iterator.hasNext())
{
System.out.println(iterator.next());
}
}
}
I'm writing about implementation of generators as part of my blog on Java 8 Functional Programming and Lambda Expressions at http://thecannycoder.wordpress.com/ which might give you some more ideas for converting Python generator functions into Java equivalents.
I wish Java had generator/yield, but since it doesn't using Iterators is probably your best bet.
In this example I stuck with arrays, but in general I would advise using Iterable Collection instead, eg. List. In the example I show how it's pretty easy to get iterators for arrays though:
package example.stackoverflow;
import com.sun.xml.internal.xsom.impl.scd.Iterators;
import java.util.Arrays;
import java.util.Iterator;
public class ArrayGenerator<T> implements Iterable<T> {
private final T[][][] input;
public ArrayGenerator(T[][][] input) {
this.input = input;
}
#Override
public Iterator<T> iterator() {
return new Iter();
}
private class Iter implements Iterator<T> {
private Iterator<T[][]> x;
private Iterator<T[]> y;
private Iterator<T> z;
{
x = Arrays.asList(input).iterator();
y = Iterators.empty();
z = Iterators.empty();
}
#Override
public boolean hasNext() {
return z.hasNext() || y.hasNext() || x.hasNext();
}
#Override
public T next() {
while(! z.hasNext()) {
while(! y.hasNext()) {
y = Arrays.asList(x.next()).iterator();
}
z = Arrays.asList(y.next()).iterator();
}
return z.next();
}
#Override
public void remove() {
throw new UnsupportedOperationException("remove not supported");
}
}
public static void main(String[] args) {
for(Integer i :
new ArrayGenerator<Integer>(
new Integer[][][]{
{
{1, 2, 3},
{4, 5}
},
{
{},
{6}
},
{
},
{
{7, 8, 9, 10, 11}
}
}
)) {
System.out.print(i + ", ");
}
}
}
There is no yield in Java, so you have to do all these things for yourself, ending up with ridiculous code as this one:
for(Integer z : new Iterable<Integer>() {
#Override
public Iterator<Integer> iterator() {
return new Iterator<Integer>() {
final Integer[][][] d3 =
{ { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } },
{ { 10, 11, 12 }, { 13, 14, 15 }, { 16, 17, 18 } },
{ { 19, 20, 21 }, { 22, 23, 24 }, { 25, 26, 27 } } };
int x = 0;
int y = 0;
int z = 0;
#Override
public boolean hasNext() {
return !(x==3 && y == 3 && z == 3);
}
#Override
public Integer next() {
Integer result = d3[z][y][x];
if (++x == 3) {
x = 0;
if (++y == 3) {
y = 0;
++z;
}
}
return result;
}
#Override
public void remove() {
throw new UnsupportedOperationException();
}
};
}
}) {
System.out.println(z);
}
But if your sample would have more than one single yield it would end up even worse.
The translation from Python-style generators to Java-style iterators can be automated. If you're willing to accept code generation in your build process, you might be interested in this prototype tool that does the translation for you:
https://github.com/Calvin-L/gen2it
Assuming the Python data structure you describe in your question can be described using the following Java type:
List<List<List<T>>>;
and you want to use it in an operation like this:
for (T z : iterator(array)) {
// do something with z
}
If so, then one can implement your Python iterator() pretty trivially using Java 8 streams:
public <T> Iterable<T> iterator(List<List<List<T>>> array) {
return array.stream()
.filter(Objects::nonNull) // -> emits stream of non-null `x`s
.flatMap(x -> x.stream()).filter(Objects::nonNull) // -> emits […] `y`s
.flatMap(y -> y.stream()).filter(Objects::nonNull) // -> emits […] `z`s
.collect(Collectors.toList()); // get list of non-null `z`s to iterate on
}
Of course, you can not collect the results and output a stream for further streamed processing (people tell me that it is a good idea):
public <T> Stream<T> streamContent(List<List<List<T>>> array) {
return array.stream()
.filter(Objects::nonNull) // -> emits stream of non-null `x`s
.flatMap(x -> x.stream()).filter(Objects::nonNull) // -> emits […] `y`s
.flatMap(y -> y.stream()).filter(Objects::nonNull); // -> emits […] `z`s
}
// ...
streamContent(array).forEach(z -> {
// do something with z
});
Very late to the game but I wanted to offer my solution as a reference.
https://github.com/tsi-software/JavaGenerator
A Java class that allows you to write "Generator" code as similarly as possible to Python and C#.
No, Java does not have "generators" or "yield" per-se, but the same functionality is available by using the Observer Pattern. This is enhanced when using a modern implementation like RxJava. Your code would subscribe to the Obserable and whenever it tries to read the next value from the Observable it would cause it "generate" it's next value. The Observable can maintain it's own state just like a generator for Python or JavaScript. When there are no new values to be read, the "next()" method will block waiting on new data to be available. A good example of this can be found HERE.
You can use the iterator of a stream to accomplish this.
// Save the iterator of a stream that generates fib sequence
Iterator<Integer> myGenerator = Stream
.iterate(new Integer[]{ 1, 1 }, x -> new Integer[] { x[1], x[0] + x[1] })
.map(x -> x[0]).iterator();
// Print the first 5 elements
for (int i = 0; i < 5; i++) {
System.out.println(myGenerator.next());
}
System.out.println("done with first iteration");
// Print the next 5 elements
for (int i = 0; i < 5; i++) {
System.out.println(myGenerator.next());
}
Output:
1
1
2
3
5
done with first iteration
8
13
21
34
55
Using Seq from a new library, which has implemented generator in Java, you can write your own generator functions just like in Python
public Seq<Integer> generate(List<List<List<Integer>>> array) {
return c -> {
for (List<List<Integer>> x : array) {
if (x != null) {
for (List<Integer> y : x) {
if (y != null) {
for (Integer z : y) {
if (z != null) {
c.accept(z);
}
}
}
}
}
}
};
}
Then you can manipulate/collect the returned seq just like a normal Java stream.
Related
Closed. This question needs details or clarity. It is not currently accepting answers.
Want to improve this question? Add details and clarify the problem by editing this post.
Closed 2 years ago.
Improve this question
I'm trying to figure out the best way of finding/automating all the possible permutations for a certain scenario.
I have a program which takes in a set of numbers [X, Y , Z], Each number has a predefined uncertainty. Therefore, I want to run my program against [X, Y , Z], [X+e, Y, Z] [x-e, Y, Z], [X, Y+e, Z] etc. Right now I have built an object which contains all the 27 possibilities and I'm iterating through it in order to provide my program with a new set of input. (I'll run my program 27 times with different set of inputs)
as time goes, I'd need to update my program to take in a bigger set of numbers. So I'm wondering whether there is a better way of calculating all the possible permutations my base set may have.
I'd rather know the way of implementing this instead of using any existing libraries (if there is any). I see this as a learning program. Thanks!
Instead of writing down the the 3x3x3 sets of 3 numbers by hand, you can use nested loops. If you have 3 loops, one inside the other, each running 3 times, you get 27 outputs:
double[] numbers = new double[3];
double[] e = {-1e-6, 0, 1e-6};
for (double eX : e) {
for (double eY : e) {
for (double eZ : e) {
double[] newNumbers = {numbers[0] + eX, numbers[1] + eY, numbers[2] + eZ};
// Run your program using "newNumbers". Just as an example:
System.out.println(Arrays.toString(newNumbers));
}
}
}
As for
as time goes, I'd need to update my program to take in a bigger set of numbers
If the size of the set is going to be small and fixed, you can just add more nested loops. If not, you are going to need more advanced techniques .
Here is a permutation method I found some time ago. It prints them within the method. It only does single dimension permutations but you may be able to adapt it to your needs.
public static void generate(int n, int[] a) {
if (n == 1) {
System.out.println(Arrays.toString(a));
} else {
for (int i = 0; i < n - 1; i++) {
generate(n - 1, a);
if ((n & 1) == 0) {
swap(i, n - 1, a);
} else {
swap(0, n - 1, a);
}
}
generate(n - 1, a);
}
}
public static void swap(int a, int b, int[] array) {
int temp = array[a];
array[a] = array[b];
array[b] = temp;
}
I believe the best way to do this is to implement a Spliterator and wrap it in a Stream:
public interface Combinations<T> extends Stream<List<T>> {
public static <T> Stream<List<T>> of(Collection<T> collection) {
SpliteratorSupplier<T> supplier =
new SpliteratorSupplier<T>(collection);
return supplier.stream();
}
...
}
Which solves the general use-case:
Combinations.of(List.of(X, Y, Z)).forEach(t -> process(t));
Implementing the Spliterator is straightforward but tedious and I have written about it here. The key components are a DispatchSpliterator:
private Iterator<Supplier<Spliterator<T>>> spliterators = null;
private Spliterator<T> spliterator = Spliterators.emptySpliterator();
...
protected abstract Iterator<Supplier<Spliterator<T>>> spliterators();
...
#Override
public Spliterator<T> trySplit() {
if (spliterators == null) {
spliterators = Spliterators.iterator(spliterators());
}
return spliterators.hasNext() ? spliterators.next().get() : null;
}
#Override
public boolean tryAdvance(Consumer<? super T> consumer) {
boolean accepted = false;
while (! accepted) {
if (spliterator == null) {
spliterator = trySplit();
}
if (spliterator != null) {
accepted = spliterator.tryAdvance(consumer);
if (! accepted) {
spliterator = null;
}
} else {
break;
}
}
return accepted;
}
A Spliterator for each prefix:
private class ForPrefix extends DispatchSpliterator<List<T>> {
private final int size;
private final List<T> prefix;
private final List<T> remaining;
public ForPrefix(int size, List<T> prefix, List<T> remaining) {
super(binomial(remaining.size(), size),
SpliteratorSupplier.this.characteristics());
this.size = size;
this.prefix = requireNonNull(prefix);
this.remaining = requireNonNull(remaining);
}
#Override
protected Iterator<Supplier<Spliterator<List<T>>>> spliterators() {
List<Supplier<Spliterator<List<T>>>> list = new LinkedList<>();
if (prefix.size() < size) {
for (int i = 0, n = remaining.size(); i < n; i += 1) {
List<T> prefix = new LinkedList<>(this.prefix);
List<T> remaining = new LinkedList<>(this.remaining);
prefix.add(remaining.remove(i));
list.add(() -> new ForPrefix(size, prefix, remaining));
}
} else if (prefix.size() == size) {
list.add(() -> new ForCombination(prefix));
} else {
throw new IllegalStateException();
}
return list.iterator();
}
}
and one for each combination:
private class ForCombination extends DispatchSpliterator<List<T>> {
private final List<T> combination;
public ForCombination(List<T> combination) {
super(1, SpliteratorSupplier.this.characteristics());
this.combination = requireNonNull(combination);
}
#Override
protected Iterator<Supplier<Spliterator<List<T>>>> spliterators() {
Supplier<Spliterator<List<T>>> supplier =
() -> Collections.singleton(combination).spliterator();
return Collections.singleton(supplier).iterator();
}
}
I want to count the number of identical objects one after another with the Java 8 stream. How do I do that? If I have a list of
3, 3, 5, 5, 5, 6, 3, 3
I want the result to be
[3-2] [5-3] [6-1] [3-2]
My naive try without Java 8 streams:
private static List<ValueCount> counteSameValueInRow(List<Integer> Values) {
List<ValueCount> result = new ArrayList<ValueCount>();
ValueCount valueCount = null;
for (int value: Values) {
if (valueCount == null) {
valueCount = new ValueCount(value);
} else if (valueCount.value == value){
valueCount.numberof++;
} else {
result.add(valueCount);
valueCount = new ValueCount(value);
}
}
result.add(valueCount);
return result;
}
What you are doing is comparable to a collect on a stream. You are taking each number and summarize it into a list of "groups". Collectors.groupingBy() comes to mind, but that would group the numbers accross the whole list, i.e. just count the occurrences of each number. Using the Stream.collect(Supplier, BiConsumer, BiConsumer) method to implement a custom collect, you can do something like this:
List<Integer> values = Arrays.asList(3, 3, 5, 5, 5, 6, 3, 3);
values.stream().collect(LinkedList<List<Integer>>::new, (list, value) -> {
if (list.isEmpty() || !list.getLast().get(0).equals(value))
{
list.add(new ArrayList<>());
}
list.getLast().add(value);
}, (list1, list2) -> {
if (list1.getLast().get(0).equals(list2.getFirst().get(0)))
{
list1.getLast().addAll(list2.getFirst());
list2.removeFirst();
}
list1.addAll(list2);
}).forEach(group -> System.out.println("[" + group.get(0) + "-" + group.size() + "]"));
Note that I used ArrayLists to collect duplicates. You can use your ValueCount class for this purpose which might make it more readable.
The stream in this example does not improve your code in terms of readability, but enables the use of parallel processing. Look at the third parameter of the collect method. That one combines two intermediate results in case the stream was processed in parallel.
To try it in parallel, replace stream() with parallelStream() and put a sysout in the third parameter's lambda to see when two intermediate results are merged. Note that parallel processing will only benefit you if your list is very large.
I have made a refactoring to get better readability after Malte Hartwig's proposal. Here is the result
public static void main(String[] args) {
List<Integer> values = Arrays.asList(3, 3, 5, 5, 5, 6, 3, 3);
BiPredicate<Integer, Integer> predicate = (value1, value2) -> value1.equals(value2);
Supplier<BiConsumer<LinkedList<ValueCount>, Integer>> accumulator =
() -> (list, value) -> {
if (list.isEmpty() || !predicate.test(list.getLast().getFirstValue(), value)) {
list.add(new ValueCount());
}
list.getLast().add(value);
};
Supplier<BiConsumer<LinkedList<ValueCount>, LinkedList<ValueCount>>> combiner = () -> (list1, list2) -> {
if (list1.getLast().getFirstValue().equals(list2.getFirst().getFirstValue())) {
list1.getLast().addAll(list2.getFirst());
list2.removeFirst();
}
list1.addAll(list2);
};
values.stream().collect(LinkedList::new, accumulator.get(), combiner.get())
.forEach(group -> System.out.println(group));
}
private static class ValueCount {
private List<Integer> lista = new ArrayList<>();
public String toString() { return "[" + lista.get(0) + "-" + lista.size() + "]";}
public void add(Integer value) { lista.add(value);}
public Integer getFirstValue() { return lista.get(0);}
public void addAll(ValueCount first) { lista.addAll(first.getAll());}
private Collection<? extends Integer> getAll() { return lista;}
}
Is there a Java 8 stream operation that limits a (potentially infinite) Stream until the first element fails to match a predicate?
In Java 9 we can use takeWhile as in the example below to print all the numbers less than 10.
IntStream
.iterate(1, n -> n + 1)
.takeWhile(n -> n < 10)
.forEach(System.out::println);
As there is no such operation in Java 8, what's the best way of implementing it in a general way?
Operations takeWhile and dropWhile have been added to JDK 9. Your example code
IntStream
.iterate(1, n -> n + 1)
.takeWhile(n -> n < 10)
.forEach(System.out::println);
will behave exactly as you expect it to when compiled and run under JDK 9.
JDK 9 has been released. It is available for download here: JDK 9 Releases.
Such an operation ought to be possible with a Java 8 Stream, but it can't necessarily be done efficiently -- for example, you can't necessarily parallelize such an operation, as you have to look at elements in order.
The API doesn't provide an easy way to do it, but what's probably the simplest way is to take Stream.iterator(), wrap the Iterator to have a "take-while" implementation, and then go back to a Spliterator and then a Stream. Or -- maybe -- wrap the Spliterator, though it can't really be split anymore in this implementation.
Here's an untested implementation of takeWhile on a Spliterator:
static <T> Spliterator<T> takeWhile(
Spliterator<T> splitr, Predicate<? super T> predicate) {
return new Spliterators.AbstractSpliterator<T>(splitr.estimateSize(), 0) {
boolean stillGoing = true;
#Override public boolean tryAdvance(Consumer<? super T> consumer) {
if (stillGoing) {
boolean hadNext = splitr.tryAdvance(elem -> {
if (predicate.test(elem)) {
consumer.accept(elem);
} else {
stillGoing = false;
}
});
return hadNext && stillGoing;
}
return false;
}
};
}
static <T> Stream<T> takeWhile(Stream<T> stream, Predicate<? super T> predicate) {
return StreamSupport.stream(takeWhile(stream.spliterator(), predicate), false);
}
allMatch() is a short-circuiting function, so you can use it to stop processing. The main disadvantage is that you have to do your test twice: once to see if you should process it, and again to see whether to keep going.
IntStream
.iterate(1, n -> n + 1)
.peek(n->{if (n<10) System.out.println(n);})
.allMatch(n->n < 10);
As a follow-up to #StuartMarks answer. My StreamEx library has the takeWhile operation which is compatible with current JDK-9 implementation. When running under JDK-9 it will just delegate to the JDK implementation (via MethodHandle.invokeExact which is really fast). When running under JDK-8, the "polyfill" implementation will be used. So using my library the problem can be solved like this:
IntStreamEx.iterate(1, n -> n + 1)
.takeWhile(n -> n < 10)
.forEach(System.out::println);
takeWhile is one of the functions provided by the protonpack library.
Stream<Integer> infiniteInts = Stream.iterate(0, i -> i + 1);
Stream<Integer> finiteInts = StreamUtils.takeWhile(infiniteInts, i -> i < 10);
assertThat(finiteInts.collect(Collectors.toList()),
hasSize(10));
Update: Java 9 Stream now comes with a takeWhile method.
No needs for hacks or other solutions. Just use that!
I am sure this can be greatly improved upon:
(someone could make it thread-safe maybe)
Stream<Integer> stream = Stream.iterate(0, n -> n + 1);
TakeWhile.stream(stream, n -> n < 10000)
.forEach(n -> System.out.print((n == 0 ? "" + n : "," + n)));
A hack for sure... Not elegant - but it works ~:D
class TakeWhile<T> implements Iterator<T> {
private final Iterator<T> iterator;
private final Predicate<T> predicate;
private volatile T next;
private volatile boolean keepGoing = true;
public TakeWhile(Stream<T> s, Predicate<T> p) {
this.iterator = s.iterator();
this.predicate = p;
}
#Override
public boolean hasNext() {
if (!keepGoing) {
return false;
}
if (next != null) {
return true;
}
if (iterator.hasNext()) {
next = iterator.next();
keepGoing = predicate.test(next);
if (!keepGoing) {
next = null;
}
}
return next != null;
}
#Override
public T next() {
if (next == null) {
if (!hasNext()) {
throw new NoSuchElementException("Sorry. Nothing for you.");
}
}
T temp = next;
next = null;
return temp;
}
public static <T> Stream<T> stream(Stream<T> s, Predicate<T> p) {
TakeWhile tw = new TakeWhile(s, p);
Spliterator split = Spliterators.spliterator(tw, Integer.MAX_VALUE, Spliterator.ORDERED);
return StreamSupport.stream(split, false);
}
}
You can use java8 + rxjava.
import java.util.stream.IntStream;
import rx.Observable;
// Example 1)
IntStream intStream = IntStream.iterate(1, n -> n + 1);
Observable.from(() -> intStream.iterator())
.takeWhile(n ->
{
System.out.println(n);
return n < 10;
}
).subscribe() ;
// Example 2
IntStream intStream = IntStream.iterate(1, n -> n + 1);
Observable.from(() -> intStream.iterator())
.takeWhile(n -> n < 10)
.forEach( n -> System.out.println(n));
Actually there are 2 ways to do it in Java 8 without any extra libraries or using Java 9.
If you want to print numbers from 2 to 20 on the console you can do this:
IntStream.iterate(2, (i) -> i + 2).peek(System.out::println).allMatch(i -> i < 20);
or
IntStream.iterate(2, (i) -> i + 2).peek(System.out::println).anyMatch(i -> i >= 20);
The output is in both cases:
2
4
6
8
10
12
14
16
18
20
No one mentioned anyMatch yet. This is the reason for this post.
This is the source copied from JDK 9 java.util.stream.Stream.takeWhile(Predicate). A little difference in order to work with JDK 8.
static <T> Stream<T> takeWhile(Stream<T> stream, Predicate<? super T> p) {
class Taking extends Spliterators.AbstractSpliterator<T> implements Consumer<T> {
private static final int CANCEL_CHECK_COUNT = 63;
private final Spliterator<T> s;
private int count;
private T t;
private final AtomicBoolean cancel = new AtomicBoolean();
private boolean takeOrDrop = true;
Taking(Spliterator<T> s) {
super(s.estimateSize(), s.characteristics() & ~(Spliterator.SIZED | Spliterator.SUBSIZED));
this.s = s;
}
#Override
public boolean tryAdvance(Consumer<? super T> action) {
boolean test = true;
if (takeOrDrop && // If can take
(count != 0 || !cancel.get()) && // and if not cancelled
s.tryAdvance(this) && // and if advanced one element
(test = p.test(t))) { // and test on element passes
action.accept(t); // then accept element
return true;
} else {
// Taking is finished
takeOrDrop = false;
// Cancel all further traversal and splitting operations
// only if test of element failed (short-circuited)
if (!test)
cancel.set(true);
return false;
}
}
#Override
public Comparator<? super T> getComparator() {
return s.getComparator();
}
#Override
public void accept(T t) {
count = (count + 1) & CANCEL_CHECK_COUNT;
this.t = t;
}
#Override
public Spliterator<T> trySplit() {
return null;
}
}
return StreamSupport.stream(new Taking(stream.spliterator()), stream.isParallel()).onClose(stream::close);
}
Here is a version done on ints - as asked in the question.
Usage:
StreamUtil.takeWhile(IntStream.iterate(1, n -> n + 1), n -> n < 10);
Here's code for StreamUtil:
import java.util.PrimitiveIterator;
import java.util.Spliterators;
import java.util.function.IntConsumer;
import java.util.function.IntPredicate;
import java.util.stream.IntStream;
import java.util.stream.StreamSupport;
public class StreamUtil
{
public static IntStream takeWhile(IntStream stream, IntPredicate predicate)
{
return StreamSupport.intStream(new PredicateIntSpliterator(stream, predicate), false);
}
private static class PredicateIntSpliterator extends Spliterators.AbstractIntSpliterator
{
private final PrimitiveIterator.OfInt iterator;
private final IntPredicate predicate;
public PredicateIntSpliterator(IntStream stream, IntPredicate predicate)
{
super(Long.MAX_VALUE, IMMUTABLE);
this.iterator = stream.iterator();
this.predicate = predicate;
}
#Override
public boolean tryAdvance(IntConsumer action)
{
if (iterator.hasNext()) {
int value = iterator.nextInt();
if (predicate.test(value)) {
action.accept(value);
return true;
}
}
return false;
}
}
}
Go to get library abacus-common. It provides the exact API you want and more:
IntStream.iterate(1, n -> n + 1).takeWhile(n -> n < 10).forEach(System.out::println);
Declaration: I'm the developer of AbacusUtil.
If you know the exact amount of repititions that will be performed, you can do
IntStream
.iterate(1, n -> n + 1)
.limit(10)
.forEach(System.out::println);
IntStream.iterate(1, n -> n + 1)
.peek(System.out::println) //it will be executed 9 times
.filter(n->n>=9)
.findAny();
instead of peak you can use mapToObj to return final object or message
IntStream.iterate(1, n -> n + 1)
.mapToObj(n->{ //it will be executed 9 times
if(n<9)
return "";
return "Loop repeats " + n + " times";});
.filter(message->!message.isEmpty())
.findAny()
.ifPresent(System.out::println);
You can't abort a stream except by a short-circuiting terminal operation, which would leave some stream values unprocessed regardless of their value. But if you just want to avoid operations on a stream you can add a transform and filter to the stream:
import java.util.Objects;
class ThingProcessor
{
static Thing returnNullOnCondition(Thing thing)
{ return( (*** is condition met ***)? null : thing); }
void processThings(Collection<Thing> thingsCollection)
{
thingsCollection.stream()
*** regular stream processing ***
.map(ThingProcessor::returnNullOnCondition)
.filter(Objects::nonNull)
*** continue stream processing ***
}
} // class ThingProcessor
That transforms the stream of things to nulls when the things meet some condition, then filters out nulls. If you're willing to indulge in side effects, you could set the condition value to true once some thing is encountered, so all subsequent things are filtered out regardless of their value. But even if not you can save a lot of (if not quite all) processing by filtering values out of the stream that you don't want to process.
Even I was having a similar requirement -- invoke the web-service, if it fails, retry it 3 times. If it fails even after these many trials, send an email notification. After googling a lot, anyMatch() came as a saviour. My sample code as follows. In the following example, if webServiceCall method returns true in the first iteration itself, stream does not iterate further as we have called anyMatch(). I believe, this is what you are looking for.
import java.util.stream.IntStream;
import io.netty.util.internal.ThreadLocalRandom;
class TrialStreamMatch {
public static void main(String[] args) {
if(!IntStream.range(1,3).anyMatch(integ -> webServiceCall(integ))){
//Code for sending email notifications
}
}
public static boolean webServiceCall(int i){
//For time being, I have written a code for generating boolean randomly
//This whole piece needs to be replaced by actual web-service client code
boolean bool = ThreadLocalRandom.current().nextBoolean();
System.out.println("Iteration index :: "+i+" bool :: "+bool);
//Return success status -- true or false
return bool;
}
If you have different problem, different solution may be needed but for your current problem, I would simply go with:
IntStream
.iterate(1, n -> n + 1)
.limit(10)
.forEach(System.out::println);
Might be a bit off topic but this is what we have for List<T> rather than Stream<T>.
First you need to have a take util method. This methods takes first n elements:
static <T> List<T> take(List<T> l, int n) {
if (n <= 0) {
return newArrayList();
} else {
int takeTo = Math.min(Math.max(n, 0), l.size());
return l.subList(0, takeTo);
}
}
it just works like scala.List.take
assertEquals(newArrayList(1, 2, 3), take(newArrayList(1, 2, 3, 4, 5), 3));
assertEquals(newArrayList(1, 2, 3), take(newArrayList(1, 2, 3), 5));
assertEquals(newArrayList(), take(newArrayList(1, 2, 3), -1));
assertEquals(newArrayList(), take(newArrayList(1, 2, 3), 0));
now it will be fairly simple to write a takeWhile method based on take
static <T> List<T> takeWhile(List<T> l, Predicate<T> p) {
return l.stream().
filter(p.negate()).findFirst(). // find first element when p is false
map(l::indexOf). // find the index of that element
map(i -> take(l, i)). // take up to the index
orElse(l); // return full list if p is true for all elements
}
it works like this:
assertEquals(newArrayList(1, 2, 3), takeWhile(newArrayList(1, 2, 3, 4, 3, 2, 1), i -> i < 4));
this implementation iterate the list partially for a few times but it won't add add O(n^2) operations. Hope that's acceptable.
I have another quick solution by implementing this (which is rly unclean in fact, but you get the idea):
public static void main(String[] args) {
System.out.println(StreamUtil.iterate(1, o -> o + 1).terminateOn(15)
.map(o -> o.toString()).collect(Collectors.joining(", ")));
}
static interface TerminatedStream<T> {
Stream<T> terminateOn(T e);
}
static class StreamUtil {
static <T> TerminatedStream<T> iterate(T seed, UnaryOperator<T> op) {
return new TerminatedStream<T>() {
public Stream<T> terminateOn(T e) {
Builder<T> builder = Stream.<T> builder().add(seed);
T current = seed;
while (!current.equals(e)) {
current = op.apply(current);
builder.add(current);
}
return builder.build();
}
};
}
}
Here is my attempt using just Java Stream library.
IntStream.iterate(0, i -> i + 1)
.filter(n -> {
if (n < 10) {
System.out.println(n);
return false;
} else {
return true;
}
})
.findAny();
Is there a Java 8 stream operation that limits a (potentially infinite) Stream until the first element fails to match a predicate?
In Java 9 we can use takeWhile as in the example below to print all the numbers less than 10.
IntStream
.iterate(1, n -> n + 1)
.takeWhile(n -> n < 10)
.forEach(System.out::println);
As there is no such operation in Java 8, what's the best way of implementing it in a general way?
Operations takeWhile and dropWhile have been added to JDK 9. Your example code
IntStream
.iterate(1, n -> n + 1)
.takeWhile(n -> n < 10)
.forEach(System.out::println);
will behave exactly as you expect it to when compiled and run under JDK 9.
JDK 9 has been released. It is available for download here: JDK 9 Releases.
Such an operation ought to be possible with a Java 8 Stream, but it can't necessarily be done efficiently -- for example, you can't necessarily parallelize such an operation, as you have to look at elements in order.
The API doesn't provide an easy way to do it, but what's probably the simplest way is to take Stream.iterator(), wrap the Iterator to have a "take-while" implementation, and then go back to a Spliterator and then a Stream. Or -- maybe -- wrap the Spliterator, though it can't really be split anymore in this implementation.
Here's an untested implementation of takeWhile on a Spliterator:
static <T> Spliterator<T> takeWhile(
Spliterator<T> splitr, Predicate<? super T> predicate) {
return new Spliterators.AbstractSpliterator<T>(splitr.estimateSize(), 0) {
boolean stillGoing = true;
#Override public boolean tryAdvance(Consumer<? super T> consumer) {
if (stillGoing) {
boolean hadNext = splitr.tryAdvance(elem -> {
if (predicate.test(elem)) {
consumer.accept(elem);
} else {
stillGoing = false;
}
});
return hadNext && stillGoing;
}
return false;
}
};
}
static <T> Stream<T> takeWhile(Stream<T> stream, Predicate<? super T> predicate) {
return StreamSupport.stream(takeWhile(stream.spliterator(), predicate), false);
}
allMatch() is a short-circuiting function, so you can use it to stop processing. The main disadvantage is that you have to do your test twice: once to see if you should process it, and again to see whether to keep going.
IntStream
.iterate(1, n -> n + 1)
.peek(n->{if (n<10) System.out.println(n);})
.allMatch(n->n < 10);
As a follow-up to #StuartMarks answer. My StreamEx library has the takeWhile operation which is compatible with current JDK-9 implementation. When running under JDK-9 it will just delegate to the JDK implementation (via MethodHandle.invokeExact which is really fast). When running under JDK-8, the "polyfill" implementation will be used. So using my library the problem can be solved like this:
IntStreamEx.iterate(1, n -> n + 1)
.takeWhile(n -> n < 10)
.forEach(System.out::println);
takeWhile is one of the functions provided by the protonpack library.
Stream<Integer> infiniteInts = Stream.iterate(0, i -> i + 1);
Stream<Integer> finiteInts = StreamUtils.takeWhile(infiniteInts, i -> i < 10);
assertThat(finiteInts.collect(Collectors.toList()),
hasSize(10));
Update: Java 9 Stream now comes with a takeWhile method.
No needs for hacks or other solutions. Just use that!
I am sure this can be greatly improved upon:
(someone could make it thread-safe maybe)
Stream<Integer> stream = Stream.iterate(0, n -> n + 1);
TakeWhile.stream(stream, n -> n < 10000)
.forEach(n -> System.out.print((n == 0 ? "" + n : "," + n)));
A hack for sure... Not elegant - but it works ~:D
class TakeWhile<T> implements Iterator<T> {
private final Iterator<T> iterator;
private final Predicate<T> predicate;
private volatile T next;
private volatile boolean keepGoing = true;
public TakeWhile(Stream<T> s, Predicate<T> p) {
this.iterator = s.iterator();
this.predicate = p;
}
#Override
public boolean hasNext() {
if (!keepGoing) {
return false;
}
if (next != null) {
return true;
}
if (iterator.hasNext()) {
next = iterator.next();
keepGoing = predicate.test(next);
if (!keepGoing) {
next = null;
}
}
return next != null;
}
#Override
public T next() {
if (next == null) {
if (!hasNext()) {
throw new NoSuchElementException("Sorry. Nothing for you.");
}
}
T temp = next;
next = null;
return temp;
}
public static <T> Stream<T> stream(Stream<T> s, Predicate<T> p) {
TakeWhile tw = new TakeWhile(s, p);
Spliterator split = Spliterators.spliterator(tw, Integer.MAX_VALUE, Spliterator.ORDERED);
return StreamSupport.stream(split, false);
}
}
You can use java8 + rxjava.
import java.util.stream.IntStream;
import rx.Observable;
// Example 1)
IntStream intStream = IntStream.iterate(1, n -> n + 1);
Observable.from(() -> intStream.iterator())
.takeWhile(n ->
{
System.out.println(n);
return n < 10;
}
).subscribe() ;
// Example 2
IntStream intStream = IntStream.iterate(1, n -> n + 1);
Observable.from(() -> intStream.iterator())
.takeWhile(n -> n < 10)
.forEach( n -> System.out.println(n));
Actually there are 2 ways to do it in Java 8 without any extra libraries or using Java 9.
If you want to print numbers from 2 to 20 on the console you can do this:
IntStream.iterate(2, (i) -> i + 2).peek(System.out::println).allMatch(i -> i < 20);
or
IntStream.iterate(2, (i) -> i + 2).peek(System.out::println).anyMatch(i -> i >= 20);
The output is in both cases:
2
4
6
8
10
12
14
16
18
20
No one mentioned anyMatch yet. This is the reason for this post.
This is the source copied from JDK 9 java.util.stream.Stream.takeWhile(Predicate). A little difference in order to work with JDK 8.
static <T> Stream<T> takeWhile(Stream<T> stream, Predicate<? super T> p) {
class Taking extends Spliterators.AbstractSpliterator<T> implements Consumer<T> {
private static final int CANCEL_CHECK_COUNT = 63;
private final Spliterator<T> s;
private int count;
private T t;
private final AtomicBoolean cancel = new AtomicBoolean();
private boolean takeOrDrop = true;
Taking(Spliterator<T> s) {
super(s.estimateSize(), s.characteristics() & ~(Spliterator.SIZED | Spliterator.SUBSIZED));
this.s = s;
}
#Override
public boolean tryAdvance(Consumer<? super T> action) {
boolean test = true;
if (takeOrDrop && // If can take
(count != 0 || !cancel.get()) && // and if not cancelled
s.tryAdvance(this) && // and if advanced one element
(test = p.test(t))) { // and test on element passes
action.accept(t); // then accept element
return true;
} else {
// Taking is finished
takeOrDrop = false;
// Cancel all further traversal and splitting operations
// only if test of element failed (short-circuited)
if (!test)
cancel.set(true);
return false;
}
}
#Override
public Comparator<? super T> getComparator() {
return s.getComparator();
}
#Override
public void accept(T t) {
count = (count + 1) & CANCEL_CHECK_COUNT;
this.t = t;
}
#Override
public Spliterator<T> trySplit() {
return null;
}
}
return StreamSupport.stream(new Taking(stream.spliterator()), stream.isParallel()).onClose(stream::close);
}
Here is a version done on ints - as asked in the question.
Usage:
StreamUtil.takeWhile(IntStream.iterate(1, n -> n + 1), n -> n < 10);
Here's code for StreamUtil:
import java.util.PrimitiveIterator;
import java.util.Spliterators;
import java.util.function.IntConsumer;
import java.util.function.IntPredicate;
import java.util.stream.IntStream;
import java.util.stream.StreamSupport;
public class StreamUtil
{
public static IntStream takeWhile(IntStream stream, IntPredicate predicate)
{
return StreamSupport.intStream(new PredicateIntSpliterator(stream, predicate), false);
}
private static class PredicateIntSpliterator extends Spliterators.AbstractIntSpliterator
{
private final PrimitiveIterator.OfInt iterator;
private final IntPredicate predicate;
public PredicateIntSpliterator(IntStream stream, IntPredicate predicate)
{
super(Long.MAX_VALUE, IMMUTABLE);
this.iterator = stream.iterator();
this.predicate = predicate;
}
#Override
public boolean tryAdvance(IntConsumer action)
{
if (iterator.hasNext()) {
int value = iterator.nextInt();
if (predicate.test(value)) {
action.accept(value);
return true;
}
}
return false;
}
}
}
Go to get library abacus-common. It provides the exact API you want and more:
IntStream.iterate(1, n -> n + 1).takeWhile(n -> n < 10).forEach(System.out::println);
Declaration: I'm the developer of AbacusUtil.
If you know the exact amount of repititions that will be performed, you can do
IntStream
.iterate(1, n -> n + 1)
.limit(10)
.forEach(System.out::println);
IntStream.iterate(1, n -> n + 1)
.peek(System.out::println) //it will be executed 9 times
.filter(n->n>=9)
.findAny();
instead of peak you can use mapToObj to return final object or message
IntStream.iterate(1, n -> n + 1)
.mapToObj(n->{ //it will be executed 9 times
if(n<9)
return "";
return "Loop repeats " + n + " times";});
.filter(message->!message.isEmpty())
.findAny()
.ifPresent(System.out::println);
You can't abort a stream except by a short-circuiting terminal operation, which would leave some stream values unprocessed regardless of their value. But if you just want to avoid operations on a stream you can add a transform and filter to the stream:
import java.util.Objects;
class ThingProcessor
{
static Thing returnNullOnCondition(Thing thing)
{ return( (*** is condition met ***)? null : thing); }
void processThings(Collection<Thing> thingsCollection)
{
thingsCollection.stream()
*** regular stream processing ***
.map(ThingProcessor::returnNullOnCondition)
.filter(Objects::nonNull)
*** continue stream processing ***
}
} // class ThingProcessor
That transforms the stream of things to nulls when the things meet some condition, then filters out nulls. If you're willing to indulge in side effects, you could set the condition value to true once some thing is encountered, so all subsequent things are filtered out regardless of their value. But even if not you can save a lot of (if not quite all) processing by filtering values out of the stream that you don't want to process.
Even I was having a similar requirement -- invoke the web-service, if it fails, retry it 3 times. If it fails even after these many trials, send an email notification. After googling a lot, anyMatch() came as a saviour. My sample code as follows. In the following example, if webServiceCall method returns true in the first iteration itself, stream does not iterate further as we have called anyMatch(). I believe, this is what you are looking for.
import java.util.stream.IntStream;
import io.netty.util.internal.ThreadLocalRandom;
class TrialStreamMatch {
public static void main(String[] args) {
if(!IntStream.range(1,3).anyMatch(integ -> webServiceCall(integ))){
//Code for sending email notifications
}
}
public static boolean webServiceCall(int i){
//For time being, I have written a code for generating boolean randomly
//This whole piece needs to be replaced by actual web-service client code
boolean bool = ThreadLocalRandom.current().nextBoolean();
System.out.println("Iteration index :: "+i+" bool :: "+bool);
//Return success status -- true or false
return bool;
}
If you have different problem, different solution may be needed but for your current problem, I would simply go with:
IntStream
.iterate(1, n -> n + 1)
.limit(10)
.forEach(System.out::println);
Might be a bit off topic but this is what we have for List<T> rather than Stream<T>.
First you need to have a take util method. This methods takes first n elements:
static <T> List<T> take(List<T> l, int n) {
if (n <= 0) {
return newArrayList();
} else {
int takeTo = Math.min(Math.max(n, 0), l.size());
return l.subList(0, takeTo);
}
}
it just works like scala.List.take
assertEquals(newArrayList(1, 2, 3), take(newArrayList(1, 2, 3, 4, 5), 3));
assertEquals(newArrayList(1, 2, 3), take(newArrayList(1, 2, 3), 5));
assertEquals(newArrayList(), take(newArrayList(1, 2, 3), -1));
assertEquals(newArrayList(), take(newArrayList(1, 2, 3), 0));
now it will be fairly simple to write a takeWhile method based on take
static <T> List<T> takeWhile(List<T> l, Predicate<T> p) {
return l.stream().
filter(p.negate()).findFirst(). // find first element when p is false
map(l::indexOf). // find the index of that element
map(i -> take(l, i)). // take up to the index
orElse(l); // return full list if p is true for all elements
}
it works like this:
assertEquals(newArrayList(1, 2, 3), takeWhile(newArrayList(1, 2, 3, 4, 3, 2, 1), i -> i < 4));
this implementation iterate the list partially for a few times but it won't add add O(n^2) operations. Hope that's acceptable.
I have another quick solution by implementing this (which is rly unclean in fact, but you get the idea):
public static void main(String[] args) {
System.out.println(StreamUtil.iterate(1, o -> o + 1).terminateOn(15)
.map(o -> o.toString()).collect(Collectors.joining(", ")));
}
static interface TerminatedStream<T> {
Stream<T> terminateOn(T e);
}
static class StreamUtil {
static <T> TerminatedStream<T> iterate(T seed, UnaryOperator<T> op) {
return new TerminatedStream<T>() {
public Stream<T> terminateOn(T e) {
Builder<T> builder = Stream.<T> builder().add(seed);
T current = seed;
while (!current.equals(e)) {
current = op.apply(current);
builder.add(current);
}
return builder.build();
}
};
}
}
Here is my attempt using just Java Stream library.
IntStream.iterate(0, i -> i + 1)
.filter(n -> {
if (n < 10) {
System.out.println(n);
return false;
} else {
return true;
}
})
.findAny();
How do I pick a random element from a set?
I'm particularly interested in picking a random element from a
HashSet or a LinkedHashSet, in Java.
Solutions for other languages are also welcome.
int size = myHashSet.size();
int item = new Random().nextInt(size); // In real life, the Random object should be rather more shared than this
int i = 0;
for(Object obj : myhashSet)
{
if (i == item)
return obj;
i++;
}
A somewhat related Did You Know:
There are useful methods in java.util.Collections for shuffling whole collections: Collections.shuffle(List<?>) and Collections.shuffle(List<?> list, Random rnd).
In Java 8:
static <E> E getRandomSetElement(Set<E> set) {
return set.stream().skip(new Random().nextInt(set.size())).findFirst().orElse(null);
}
Fast solution for Java using an ArrayList and a HashMap: [element -> index].
Motivation: I needed a set of items with RandomAccess properties, especially to pick a random item from the set (see pollRandom method). Random navigation in a binary tree is not accurate: trees are not perfectly balanced, which would not lead to a uniform distribution.
public class RandomSet<E> extends AbstractSet<E> {
List<E> dta = new ArrayList<E>();
Map<E, Integer> idx = new HashMap<E, Integer>();
public RandomSet() {
}
public RandomSet(Collection<E> items) {
for (E item : items) {
idx.put(item, dta.size());
dta.add(item);
}
}
#Override
public boolean add(E item) {
if (idx.containsKey(item)) {
return false;
}
idx.put(item, dta.size());
dta.add(item);
return true;
}
/**
* Override element at position <code>id</code> with last element.
* #param id
*/
public E removeAt(int id) {
if (id >= dta.size()) {
return null;
}
E res = dta.get(id);
idx.remove(res);
E last = dta.remove(dta.size() - 1);
// skip filling the hole if last is removed
if (id < dta.size()) {
idx.put(last, id);
dta.set(id, last);
}
return res;
}
#Override
public boolean remove(Object item) {
#SuppressWarnings(value = "element-type-mismatch")
Integer id = idx.get(item);
if (id == null) {
return false;
}
removeAt(id);
return true;
}
public E get(int i) {
return dta.get(i);
}
public E pollRandom(Random rnd) {
if (dta.isEmpty()) {
return null;
}
int id = rnd.nextInt(dta.size());
return removeAt(id);
}
#Override
public int size() {
return dta.size();
}
#Override
public Iterator<E> iterator() {
return dta.iterator();
}
}
This is faster than the for-each loop in the accepted answer:
int index = rand.nextInt(set.size());
Iterator<Object> iter = set.iterator();
for (int i = 0; i < index; i++) {
iter.next();
}
return iter.next();
The for-each construct calls Iterator.hasNext() on every loop, but since index < set.size(), that check is unnecessary overhead. I saw a 10-20% boost in speed, but YMMV. (Also, this compiles without having to add an extra return statement.)
Note that this code (and most other answers) can be applied to any Collection, not just Set. In generic method form:
public static <E> E choice(Collection<? extends E> coll, Random rand) {
if (coll.size() == 0) {
return null; // or throw IAE, if you prefer
}
int index = rand.nextInt(coll.size());
if (coll instanceof List) { // optimization
return ((List<? extends E>) coll).get(index);
} else {
Iterator<? extends E> iter = coll.iterator();
for (int i = 0; i < index; i++) {
iter.next();
}
return iter.next();
}
}
If you want to do it in Java, you should consider copying the elements into some kind of random-access collection (such as an ArrayList). Because, unless your set is small, accessing the selected element will be expensive (O(n) instead of O(1)). [ed: list copy is also O(n)]
Alternatively, you could look for another Set implementation that more closely matches your requirements. The ListOrderedSet from Commons Collections looks promising.
In Java:
Set<Integer> set = new LinkedHashSet<Integer>(3);
set.add(1);
set.add(2);
set.add(3);
Random rand = new Random(System.currentTimeMillis());
int[] setArray = (int[]) set.toArray();
for (int i = 0; i < 10; ++i) {
System.out.println(setArray[rand.nextInt(set.size())]);
}
List asList = new ArrayList(mySet);
Collections.shuffle(asList);
return asList.get(0);
This is identical to accepted answer (Khoth), but with the unnecessary size and i variables removed.
int random = new Random().nextInt(myhashSet.size());
for(Object obj : myhashSet) {
if (random-- == 0) {
return obj;
}
}
Though doing away with the two aforementioned variables, the above solution still remains random because we are relying upon random (starting at a randomly selected index) to decrement itself toward 0 over each iteration.
Clojure solution:
(defn pick-random [set] (let [sq (seq set)] (nth sq (rand-int (count sq)))))
Java 8+ Stream:
static <E> Optional<E> getRandomElement(Collection<E> collection) {
return collection
.stream()
.skip(ThreadLocalRandom.current()
.nextInt(collection.size()))
.findAny();
}
Based on the answer of Joshua Bone but with slight changes:
Ignores the Streams element order for a slight performance increase in parallel operations
Uses the current thread's ThreadLocalRandom
Accepts any Collection type as input
Returns the provided Optional instead of null
Perl 5
#hash_keys = (keys %hash);
$rand = int(rand(#hash_keys));
print $hash{$hash_keys[$rand]};
Here is one way to do it.
C++. This should be reasonably quick, as it doesn't require iterating over the whole set, or sorting it. This should work out of the box with most modern compilers, assuming they support tr1. If not, you may need to use Boost.
The Boost docs are helpful here to explain this, even if you don't use Boost.
The trick is to make use of the fact that the data has been divided into buckets, and to quickly identify a randomly chosen bucket (with the appropriate probability).
//#include <boost/unordered_set.hpp>
//using namespace boost;
#include <tr1/unordered_set>
using namespace std::tr1;
#include <iostream>
#include <stdlib.h>
#include <assert.h>
using namespace std;
int main() {
unordered_set<int> u;
u.max_load_factor(40);
for (int i=0; i<40; i++) {
u.insert(i);
cout << ' ' << i;
}
cout << endl;
cout << "Number of buckets: " << u.bucket_count() << endl;
for(size_t b=0; b<u.bucket_count(); b++)
cout << "Bucket " << b << " has " << u.bucket_size(b) << " elements. " << endl;
for(size_t i=0; i<20; i++) {
size_t x = rand() % u.size();
cout << "we'll quickly get the " << x << "th item in the unordered set. ";
size_t b;
for(b=0; b<u.bucket_count(); b++) {
if(x < u.bucket_size(b)) {
break;
} else
x -= u.bucket_size(b);
}
cout << "it'll be in the " << b << "th bucket at offset " << x << ". ";
unordered_set<int>::const_local_iterator l = u.begin(b);
while(x>0) {
l++;
assert(l!=u.end(b));
x--;
}
cout << "random item is " << *l << ". ";
cout << endl;
}
}
Solution above speak in terms of latency but doesn't guarantee equal probability of each index being selected.
If that needs to be considered, try reservoir sampling. http://en.wikipedia.org/wiki/Reservoir_sampling. Collections.shuffle() (as suggested by few) uses one such algorithm.
Since you said "Solutions for other languages are also welcome", here's the version for Python:
>>> import random
>>> random.choice([1,2,3,4,5,6])
3
>>> random.choice([1,2,3,4,5,6])
4
Can't you just get the size/length of the set/array, generate a random number between 0 and the size/length, then call the element whose index matches that number? HashSet has a .size() method, I'm pretty sure.
In psuedocode -
function randFromSet(target){
var targetLength:uint = target.length()
var randomIndex:uint = random(0,targetLength);
return target[randomIndex];
}
PHP, assuming "set" is an array:
$foo = array("alpha", "bravo", "charlie");
$index = array_rand($foo);
$val = $foo[$index];
The Mersenne Twister functions are better but there's no MT equivalent of array_rand in PHP.
Icon has a set type and a random-element operator, unary "?", so the expression
? set( [1, 2, 3, 4, 5] )
will produce a random number between 1 and 5.
The random seed is initialized to 0 when a program is run, so to produce different results on each run use randomize()
In C#
Random random = new Random((int)DateTime.Now.Ticks);
OrderedDictionary od = new OrderedDictionary();
od.Add("abc", 1);
od.Add("def", 2);
od.Add("ghi", 3);
od.Add("jkl", 4);
int randomIndex = random.Next(od.Count);
Console.WriteLine(od[randomIndex]);
// Can access via index or key value:
Console.WriteLine(od[1]);
Console.WriteLine(od["def"]);
Javascript solution ;)
function choose (set) {
return set[Math.floor(Math.random() * set.length)];
}
var set = [1, 2, 3, 4], rand = choose (set);
Or alternatively:
Array.prototype.choose = function () {
return this[Math.floor(Math.random() * this.length)];
};
[1, 2, 3, 4].choose();
In lisp
(defun pick-random (set)
(nth (random (length set)) set))
How about just
public static <A> A getRandomElement(Collection<A> c, Random r) {
return new ArrayList<A>(c).get(r.nextInt(c.size()));
}
For fun I wrote a RandomHashSet based on rejection sampling. It's a bit hacky, since HashMap doesn't let us access it's table directly, but it should work just fine.
It doesn't use any extra memory, and lookup time is O(1) amortized. (Because java HashTable is dense).
class RandomHashSet<V> extends AbstractSet<V> {
private Map<Object,V> map = new HashMap<>();
public boolean add(V v) {
return map.put(new WrapKey<V>(v),v) == null;
}
#Override
public Iterator<V> iterator() {
return new Iterator<V>() {
RandKey key = new RandKey();
#Override public boolean hasNext() {
return true;
}
#Override public V next() {
while (true) {
key.next();
V v = map.get(key);
if (v != null)
return v;
}
}
#Override public void remove() {
throw new NotImplementedException();
}
};
}
#Override
public int size() {
return map.size();
}
static class WrapKey<V> {
private V v;
WrapKey(V v) {
this.v = v;
}
#Override public int hashCode() {
return v.hashCode();
}
#Override public boolean equals(Object o) {
if (o instanceof RandKey)
return true;
return v.equals(o);
}
}
static class RandKey {
private Random rand = new Random();
int key = rand.nextInt();
public void next() {
key = rand.nextInt();
}
#Override public int hashCode() {
return key;
}
#Override public boolean equals(Object o) {
return true;
}
}
}
The easiest with Java 8 is:
outbound.stream().skip(n % outbound.size()).findFirst().get()
where n is a random integer. Of course it is of less performance than that with the for(elem: Col)
With Guava we can do a little better than Khoth's answer:
public static E random(Set<E> set) {
int index = random.nextInt(set.size();
if (set instanceof ImmutableSet) {
// ImmutableSet.asList() is O(1), as is .get() on the returned list
return set.asList().get(index);
}
return Iterables.get(set, index);
}
In Mathematica:
a = {1, 2, 3, 4, 5}
a[[ ⌈ Length[a] Random[] ⌉ ]]
Or, in recent versions, simply:
RandomChoice[a]
Random[] generates a pseudorandom float between 0 and 1. This is multiplied by the length of the list and then the ceiling function is used to round up to the next integer. This index is then extracted from a.
Since hash table functionality is frequently done with rules in Mathematica, and rules are stored in lists, one might use:
a = {"Badger" -> 5, "Bird" -> 1, "Fox" -> 3, "Frog" -> 2, "Wolf" -> 4};
PHP, using MT:
$items_array = array("alpha", "bravo", "charlie");
$last_pos = count($items_array) - 1;
$random_pos = mt_rand(0, $last_pos);
$random_item = $items_array[$random_pos];
you can also transfer the set to array use array
it will probably work on small scale i see the for loop in the most voted answer is O(n) anyway
Object[] arr = set.toArray();
int v = (int) arr[rnd.nextInt(arr.length)];
If you really just want to pick "any" object from the Set, without any guarantees on the randomness, the easiest is taking the first returned by the iterator.
Set<Integer> s = ...
Iterator<Integer> it = s.iterator();
if(it.hasNext()){
Integer i = it.next();
// i is a "random" object from set
}
A generic solution using Khoth's answer as a starting point.
/**
* #param set a Set in which to look for a random element
* #param <T> generic type of the Set elements
* #return a random element in the Set or null if the set is empty
*/
public <T> T randomElement(Set<T> set) {
int size = set.size();
int item = random.nextInt(size);
int i = 0;
for (T obj : set) {
if (i == item) {
return obj;
}
i++;
}
return null;
}