Design pattern involving interaction between multiple datasources - java

I have always used the DAO pattern for CRUD operations, each DAO in charge of accessing to a unique datasource at a time, and use generics to support multiple entities.
Now I require the same with the following changes
1.- Datasources will be added/removed dynamically at runtime
2.- A unit of work involve for instance: reading from datasource A, writing on B and deleting from A if B succeded. A and B will be interchangeable, which makes me think of some sort of origin/destination mechanism.
3.- Reads will only be done against 1 datasource only
The entities will be the same in all datasource, for which I could add a factory that creates a new DAO whenever a datasource is added, answering the first question. But I'm not sure how to address the rest.
Is the DAO pattern still suitable? If it is, what needs to be added? Or is there a different approach to this as a whole?

If Spring is part of your application stack, You can use AbstractRoutingDataSource which will give the flexibility to add dynamic datasource mapping. If not go through the source code of it and you can build your own logic something similar to this.
On a quick google, I come across this http://blog.springsource.org/2007/01/23/dynamic-datasource-routing/.
It is explaining this dynamic routing in action.

This sounds like a business transaction. You need a business component covering the transaction, which involves multiple DAOs.

Related

Dao interface for multiple databases?

There is a pattern of making a DAO interface before DAO implementation. I googled the advantages of this pattern and one striking point was to support multiple databases.
Now, what i could understand is that multiple databases here means different database engines rather than multiple datasources. Obviously multiple datasources should not have affect on how DAO implementations are made out of DAO interface.
My question is what can be the situations where we may need to support multiple database engines catering the same data? Also if such need arises, how will the REST endpoints be managed to support different databases?
Will they be like for e.g. /db1/courses/, /db2/courses ? Do correct me if i have made any wrong assumption or statement in this question.
I just wanted to add my answer to this about beginning Spring development. This is one of the things that initially will not make sense at first. You will end up asking yourself:
There will be only 1 database, so this doesn't make sense why do it?
Why would I define an interface when there will only ever be 1 implementation?
But really neither of these are really why you do this. But it is the convention and pattern and this style is just what people are use to and you will like it better overtime. There are some other reasons too:
Spring Data - this is an alternative to using an entity manager, whereby you only define interfaces and Spring will actually create beans which implement your repository functionality for you.
Design - ensuring you define an interface will help keep your repository a repository.
Easier Mocking - although arguably you can still do this in Spring without needing to define an interface it is still a bit cleaner when you want to replace the implementation with another.
But really it is just the Spring way, people will find it easier to understand your code if you do this.
I came across this situation where I had to check two DBs and get the data. The other DB was a back up one.
So this was the flow.
RestController --> Service --> DBService
--> DB1Repository --> Connect to DB1
--> DB2Repository --> Connect to DB2
We can design as we want, all it matters at the end is that we follow SOLID principles.
Basically the high level components should not depend on the low level components, but both should depend on the abstractions.
Ill pop in here to describe a real world example.
We recently wanted to change out a large production database (Oracle) to a different one (SQL Server).
For different areas of the database, we had different DAO interfaces and implementations. For example, CustomerDAO, AccountsDAO, etc.
For each interace (like CustomerDAO) we had an implementation (CustomerDAOImplOracle).
It was relatively straight forward for us to write SQL Server versions of the DAO's (the SQL syntax and jdbc libraries were of course different) and swap them over with minimal changes to our business logic (the services which use the DAO's).
So, CustomerDAOImplOracle was reimplemented at CustomerDAOImplSQLServer. And so on...
What we learn:
Interfaces provide good abstractiuon and allow for multiple implementations
The DAO layer allows us to "switch out" the database (or its client libraries) if necessary
Hiding implementation details of the database from the business logic reduces coupling and complexity

Best practices to separate concerns when accessing database

I've been trying to improve the separation of concerns when it comes to applications that access a database (via Hibernate).
On one of the applications I've been using the following approach:
Create services with business logic that have no connection/awareness of the database. They only communicate with GeneralDAO (and with other services);
A GeneralDAO responsible for CRUD/find operations, and with methods that involve more complex database queries.
The problems I see with this approach are:
GeneralDAO slowly becomes a God Object, when your application grows and require lots of specific database queries.
Sometimes the more specific Services become only proxies to the GeneralDAO, since the method is simple and only requires a database query. See example 1.
Example 1: Service is just a proxy
BookService manages things related to books in the Library application. Let's consider 2 methods:
archiveBook(Book)
findByIsbn(String isbn)
In archiveBook(Book) there might be considerable business logic involved - we might imagine this involves calls to:
distributionService.unbox(Book);
archivalBook.archive(Book);
librarianService.informNewBook(Book);
But findByIsbn(String isbn) is a lot more simple: it just needs to execute an SQL call to the database. So in this case I see two options:
Redirect the call to an object that can speak to the database to execute the query. For example generalDAO.findByIsbn(String isbn), that uses a db communication layer (in Hibernate it would use a sessionFactory or EntityManager) to execute the query.
Make that database layer available to the BookService, so that it executes the query itself
Questions/opinions (first number identifies the option above):
1.1. Isn't it strange to have 2 methods with the exact same signature, even if this is done to keep the BookService independent of the database layer (and ORM)?
1.2. How do you suggest avoiding The God anti-pattern? Would you suggest breaking the GeneralDAO into several DAOs depending on what the methods do? In this case, won't we risk needing to inject lots of DAOs into some Services, leading to a Service having too many objects injected into it?
2.1 What do you think of this alternative? Doesn't it break the "separation of concerns" by having the BookService be aware of objects at two different levels of abstraction (the DAO and the sessionFactory/EntityManager)?
3.1. Would you suggest any other approach/pattern/best practise?
Thanks!
1.2. How do you suggest avoiding The God anti-pattern? Would you suggest breaking the GeneralDAO into several DAOs depending on what
the methods do? In this case, won't we risk needing to inject lots of
DAOs into some Services, leading to a Service having too many objects
injected into it?
Generally, a DAO class should handle a specific entity.
If one of your entities require many kinds of queries, you could divide it again into two or more DAOs by grouping them by common concern (for example : reading, writing, selecting on agregates, etc...) as you said.
If you have too many queries and too many DAO, maybe, you should check if you don't write almost the same queries in several methods. It it the case, use specification or Criteria API to allow the client to custom queries by parameters. If the queries are really different, you have various processings. So, using multiple DAOs seems a suitable solution. It avoids increasing the complexity and the rise of god objects.
1.1. Isn't it strange to have 2 methods with the exact same signature, even if this is done to keep the BookService independent of the
database layer (and ORM)?
When you divide you app in logic layers, as you noticed, in some operations, some layers perform only delegation calls to the below layer. So in these cases, it is rather common to have method names which are the same. I would go further : it is a good practice to have the same name if it is just delegation call. Why do we create a variation in the conveyed behavior if they both address the same need?
2.1 What do you think of this alternative? Doesn't it break the "separation of concerns" by having the BookService be aware of objects
at two different levels of abstraction (the DAO and the
sessionFactory/EntityManager)?
BookService depends on DAOs but should not depend on sessionFactory/EntityManager which makes part of the DAO implementation.
BookService calls DAO which uses a sessionFactory/EntityManager.
If necessary, BookService may specify transactional details on itself or on its methods with #Transactional annotation.
3.1. Would you suggest any other approach/pattern/best practice?
As you use Spring, try to rely on the Sping JPA repository (less boiler plate to handle for common cases and extensible class)
Using specification or criteria patterns when you have several variants of some queries.

Hibernate (best)most common structure

I have a POJO class with hibernate annotations for each table in database. Also have one HibernateUtility for my database, which creates SessionFactory.
Should I create a manager per DB table or manager per DB?
Under manager I mean a class, which does all the transactions, CRUD.
Which gives me the best performance?
It's usually helpful to have a DAO per table. You don't need to write a lot of code, as you can use a generic dao.
Performance wise: remember that you're using hibernate, which down't have performance as one of its pillars, but hibernate usually brings down development time. If you need performance try using myBatis or just plain jdbc.
Performance has nothing to do with the number of classes you have.
A manager per DB table is too many: business use-cases typically involve more than one table.
A manager for the whole database is too few: having all the business logic of an application in one class is not maintainable.
An application typically has groups of use-cases: user management, notifications management, etc. I would use these as a way to split the logic into classes.
Also, note that business logic (which is what I assumed would be in your manager classes) should be separated from data access logic (DAOs, repositories). The CRUD is typically the responsibility of the DAO, whild the business logic and transaction demarcation is done in the service (manager) layer.
I prefer to have a DAO class for each table in the DB. I actually have an abstract DAO object which does all the usual CRUD operations and then I'll override or add additional query methods as they are needed. I wouldn't be able to re-use my CRUD logic if it was all in one DAO.
Actually, I'm surprised there is not a standard abstract CRUD implementation out there that everybody uses - it's trivial to write (maybe there is a well maintained one?). My generic DAO also has convenience methods for obtaining the EntityManagerFactory - useful in a Java SE environment where these sorts of things are not injected.

Is it better to instantiate a new JdbcTemplate in every query or to inject a single one everywhere?

I have a Java library where I access the DB via JDBC using Spring's JDBC support. This library contains approximately a DAO class for each table I need to access, which are over a hundred. Currently I instantiate a new JdbcTemplate, or one of its variants, each time I need to perform a new query. Is this considered good practice or should I reuse a single JdbcTemplate as much as I can? I've actually seen examples of both approaches in either books or online documentation.
The context is a J2EE application, but ideally the code should be usable in different contexts, e.g. in offline tests or command line support tools.
Inject one, why bother instantiating? (It's unclear if you mean "instantiate through the Spring context" or "instantiate using new".)
Most samples I've seen do this in the config, I'm not even sure I've seen them instantiated manually outside of demo/test code. I see little benefit to doing it manualy, and zero if done outside of Spring.
Although there isn't a lot of overhead involved in creating a new JdbcTemplate, there isn't much of a point. The JdbcDaoSupport class, an abstract class useful for handling JdbcTemplate based DAOs consistently allows each DAO to either inject a DataSource (and undernear the covers instantiates a JdbcTemplate based on that DataSource) or inject a JdbcTemplate. Since you can do either you would only do the latter if you were looking to customize your JdbcTemplate by setting one or more of the following properties:
fetchSize
ignoreWarnings
maxRows
nativeJdbcExtractor
queryTimeout
skipResultsProcessing
exceptionTranslator
You would likely have one JdbcTemplate for each combination of these properties. All of these do have defaults, so its only necessary to set them if you are going to override them. Depending on the diversity of your DAOs, you may have one or many. Or in the case of extending JdbcDaoSupport, you may have none, having each DAO just wrap the datasource in a default JdbcTemplate undernearth the covers.
Instances of the JdbcTemplate class are thread safe once configured, so you can configure a single instance of a JdbcTemplate and then safely inject this shared reference into multiple DAOs (or repositories). For more information: JdbcTemplate-idioms

About Data Objects and DAO Design when using Hibernate

I'm hesitating between two designs of a database project using Hibernate.
Design #1.
(1) Create a general data provider interface, including a set of DAO interfaces and general data container classes. It hides the underneath implementation. A data provider implementation could access data in database, or an XML file, or a service, or something else. The user of a data provider does not to know about it.
(2) Create a database library with Hibernate. This library implements the data provider interface in (1).
The bad thing about Design #1 is that in order to hide the implementation details, I need to create two sets of data container classes. One in the general data provider interface - let's call them DPI-Objects, the other set is used in the database library, exclusively for entity/attribute mapping in Hibernate - let's call them H-Objects. In the DAO implementation, I need to read data from database to create H-Objects (via Hibernate) and then convert H-Objects into DPI-Objects.
Design #2.
Do not create a general data provider interface. Expose H-Objects directly to components that use the database lib. So the user of the database library needs to be aware of Hibernate.
I like design #1 more, but I don't want to create two sets of data container classes. Is that the right way to hide H-Objects and other Hibernate implementation details from the user who uses the database-based data provider?
Are there any drawbacks of Design #2? I will not implement other data provider in the new future, so should I just forget about the data provider interface and use Design #2?
What do you think about this? Thanks for your time!
Hibernate Domain objects are simple POJO so you won't have to create separate DPI-objects, H-Object themselves can be used directly. In DAO you can control whether they come from hibernate or anything else.
I highly recommend reading Chapter 4 "Hitting the database" of Spring in Action, 3rd edition, even if you aren't using Spring in your application. Although my second recommendation would be to use Spring :-)
The DAO pattern is a great way to keep database and ORM logic isolated in the DAO implementation, and you only need one set of entity objects. You can make that happen without Spring, it just takes more work managing your sessions and transactions.
If I understand your post, this is sort of a middle-ground between Design 1 and Design 2. The H-Objects (the entities that Hibernates loads and persists) don't need any Hibernate specific code in them at all. That makes them perfectly acceptable to be used as your DPI-Objects.
I've had arguments with folks in the past who complain that the use of JPA or Hibernate Annotations exposes Hibernate specifics through the DAO interface. I personally take a more pragmatic view, since annotations are just metadata, and don't directly affect the operation of your entity classes.
If you do feel that the annotations expose too much, then you can go old school and use Hibernate Mappings instead. Then your H-Objects are 100% Hibernate free :-)
I recommend design #2. Simply construct domain objects, and let hibernate look after them. Don't write separate classes that are persisted.
Hibernate tries to hide most of the persistence business from you. You may need to add a few small annotations to your entities to help it along. But certainly don't make separate classes.
You may need some very small DAO classes. For example, if you have a Person entity, it would be fairly common practice to have a PersonDAO object that saves a person. Having said that, the code inside the DAO will be very simple, so for a really small project, it may not be worth it. For a large project, it's probably worth keeping your persistence code separate from your business logic, in case you want to use a different persistence technology later.

Categories