Java annotations for code style with semantics like #Deprecated - java

Does anybody have some kind of "code style" annotations in the project, ex: #OverEngineered for over-complexed code or #Duplicated... etc.
Ideally I'd subclass #Deprecated for that (#OverEngineered extends #Deprecated) to get the IDE highlight it, but java annotations are not inherited.
So I wonder if there is some workaround to get the IDE to highlight such code-style custom annotations as deprecated? Or is this the wrong way or wrong task in general?

You could write a family of these annotations, and then use them alongside #Deprecated. The latter gets you the warnings, the former supply the details to human readers. You could write a Checkstyle rule to require that every deprecated thing has an explanatory annotation, and/or that every explanation accompanies a deprecation.
Rather than writing several annotations, though, i'd write one, which takes an explanatory label as a parameter. I'd call it #BecauseItIs. So:
#Deprecated #BecauseItIs("overengineered")
public void calculateSumOfTwoIntegersUsingSurfaceIntegrals(int a, int b) {

The workaround would be implemented with a plugin you develop for Eclipse. I would say, however, nothing is more semantically as a good written comment in the code.
After all it depends on the purpose. But I think a good comment is better than a plugin which anyone has to install.

It's not clear to me if you have another goal besides calling attention to the spot in the IDE. You mention #Deprecated which also shows up in the Javadoc, IDE documentation popups, and compiler output.
For simply the IDE highlighting without the other possibilities, you could leverage the FIXME / TODO sorts of comment tags that most IDEs support (at least those I've used). Just add your own tags for OVERENGINEERED: this is too ... etc.
Eclipse allows you to also specify if you want case matched, so it could be OverEngineered:

Related

Java: Making own annotation that highlights methods and adds custom messaging

I have some importand methods in code that are used in a wrong way, people don't get the whole context of the process and invokes wrong methods, for example setters. If I had something like #Deprecated it could highlight / strike/ underline methods and show som info when somebody uses it. For example someone set some variables that are even not persisted as he thought that it would persist. Another person changed one method and spoiled dozen of usecases becaouse he didnt know about them..
I use Java7 and IntelliJ Idea 14
Instead of using an annotation, program defensively, check if the parameters you get make sense. Write tests to verify what happens when invalid input is provided.
I think Automated Tests, Good Method Names and such will do more good than some fancy IDE plugin to stop other developers from invoking wrong methods.

Gradle javadoc hide specified method [duplicate]

I'm using javadocs generated by the javadoc Ant task to document a web service, and I want to exclude some constructors from the output. How do I do that?
There is no way to do this for public methods. The standard practice (even in quite a few JDK classes) is to indicate that the method or constructor is not meant for public use.
There is a plan to add an #exclude tag in the future:
#exclude - for API to be excluded from
generation by Javadoc. Programmer
would mark a class, interface,
constructor, method or field with
#exclude. Presence of tag would cause
API to be excluded from the generated
documentation. Text following tag
could explain reason for exclusion,
but would be ignored by Javadoc.
(Formerly proposed as #hide, but the
term "hide" is more appropriate for
run-time dynamic show/hide
capability.) For more discussion, see:
Feature Request #4058216 in Developer
Connection.
Isn't excluding something public from your documentation just a variation on "security through obscurity" (or rather, "documentation through obscurity")? If the constructor is part of your code's API, it's available for them to use. If they find out about it and use it, is that their fault (since you made it public in the first place)?
If you can change the constructor's visibility or remove it altogether, I would go for that. If you cannot remove it from the API, make it known in the Javadoc for the constructor that it's not intended for use via web service. That way you've established a contract with users of your API, informing them not to use it.
It's better to document that it should not be used instead of not documenting it at all (if it's public). Not documenting it adds risk that it gets inadvertently used, and then the client code using it breaks when you change the implementation.
See the relevant Javadoc FAQ entry.
There is currently no Javadoc option
to hide, exclude or suppress public
members from the javadoc-generated
documentation.
It would appear this is not possible in the vanilla Javadoc, but some workarounds are offered.
Currently the simplest solution is to start the javadoc comment with #deprecated, and then pass -nodeprecated to the javadoc command. Of course, this may not be acceptable if you have actual deprecated items which you nevertheless want to include in the documentation.
Change the method access level of the method, then use the use the javadoc task's access-level filtering attributes, private, package, etc. Only do this if it makes sense in your code, though, e.g., method that had inappropriately loose access levels.
For constructors, for example, you could reduce the access level to package, then create a factory class in the same package that provides construction access outside the package. The factory class can be easily filtered from the javadocs. Kind of hacky, but it works.
Give Chris Nokleberg's ExcludeDoclet a try:
http://www.sixlegs.com/blog/java/exclude-javadoc-tag.html
I've just been experimenting with it and it seems to do the trick.
The closes I got is to use Doclava, which has the #hide tag you can specify in method documentation.

Is there any point in writing javadocs for a javafx application?

Simple question here. Is there any point in applying javadocs to methods in a javafx application.
For starters - the majority of my method headers are formatted as private (with #FXML annotation).
I am using some public methods - but what is the point in javadocs if the end user uses a GUI to interact with the application and my application isn't an API? Obviously, all my methods are concisely commented - but I don't see what benefit javadocs will have for users or future developers of the code.
Am I wrong? If so, I'd really appreciate your views on this.
Many thanks.
Please take a look at https://softwareengineering.stackexchange.com/questions/85910/is-it-wrong-not-to-create-javadoc-for-my-code
In theory, meaningful documentation is never bad, and therefore every method you can document in a meaningful way should be documented.
In practice, it comes down to who the "audience" for the documentation is, to team-agreement, and to personal choice.
Things to consider are:
Your audience can be a maintenance developer, which, nevermind other persons, may be yourself, after 3 years without working or visiting the project, and after you have forgotten the details of how it all works.
In case of Javadoc and similar documentation tools and standards, even for private methods (usually not outputted to external doc files by default), many IDEs support Javadocs (or similar) and implement extra-features based on them. NetBeans, for example, can display tooltips containing the types, names, and if you documented them, purposes of classes, methods, and input and output parameters and vars. Eliminating the need to open files and/or look at source-code inline-comments if and when you forget something.
For framework code, I always Javadoc all public and protected members. For application code, I generally don't bother with Javadoc comments, but I do use inline comments to explain what a method is doing.
For private methods (whether framework or app code), I don't use Javadoc at all, since they aren't included in the Javadoc output by default. I do use inline comments for private members, though.

#Generated Annotation, how do we use it?

I recently read an article talking about the Java annotations, and on this latter comes the #Generated one. They say that it is used for automatically generate code.
Could someone explain me that in further with a little example ?
All what i found on the net was some pro question or something beyond what i was looking for.
As per the JavaDoc:
The Generated annoation is used to mark source code that has been generated. It can also be used to differentiate user written code from generated code in a single file.
#Generated is used by meta-programs such as Auto/Value which generate source code so you don't have to manually write it. If you're writing a .java file by hand (which is normally what one does), don't use #Generated.
Fox example are good and bad policies on the border between generated and written code. Way of thinking is (i belive) different in compiled (static) languages, nad interpreted / dynamic.
Worst is to modify generated code (will be lost at next generation, or next generation is then prohibited)
Usually is accepted to derive (manual) class from generated, or generate class what extends core "manual" class.
If someone know good policies in this area, please comment.
Some code linters use the annotation to skip generated code. For example, it doesn't make sense to calculate cyclomatic complexity on generated code.

Arguments Against Annotations

My team is moving to Spring 3.0 and there are some people who want to start moving everything into Annotations. I just get a really bad feeling in my gut (code smell?) when I see a class that has methods like this: (just an example - not all real annotations)
#Transaction
#Method("GET")
#PathElement("time")
#PathElement("date")
#Autowired
#Secure("ROLE_ADMIN")
public void manage(#Qualifier('time')int time) {
...
}
Am I just behind the times, or does this all seem like a horrible idea to anyone else? Rather then using OO concepts like inheritance and polymorphism everything is now by convention or through annotations. I just don't like it. Having to recompile all the code to change things that IMO are configuration seems wrong. But it seems to be the way everything (especially Spring) is going. Should I just "get over it" or should I push back and try to keep our code as annotation free as possible?
Actually I think that the bad feeling in your gut against has more to do with Annotations like this mixing configuration with code.
Personally I feel the same way as you do, I would prefer to leave configuration (such as transaction definitions, path elements, URLs that a controller should be mapped to, etc.) outside of the code base itself and in external Spring XML context files.
I think though that the correct approach here comes down to opinion and which method you prefer - I would predict that half the community would agree with the annotations approach and the other half would agree with the external configuration approach.
Maybe you have a problem with redundant annotations that are all over the code. With meta-annotations redundant annotations can be replaced and your annotations are at least DRY.
From the Spring Blog:
#Service
#Scope("request")
#Transactional(rollbackFor=Exception.class)
#Retention(RetentionPolicy.RUNTIME)
public #interface MyService {
}
#MyService
public class RewardsService {
…
}
Because Java evolves so slowly people are putting more features that are missing in the language into annotations. This is a good thing Java can be extended in some form and this is a bad thing as most of the annotations are some workaround and add complexity.
I was also initially skeptical about annotations, but seeing them in use, they can be a great thing. They can also be over used.
The main thing to remember about annotations is that they are static. They cannot change at runtime. Any other configuration method (xml, self-description in code, whatever) does not suffer from this. I have seen people here on SO have issues with Spring in terms of having a test environment on injecting test configurations, and having to drop down to XML to get it done.
XML isn't polymorphic, inherited or anything else either, so it is not a step backwards in that sense.
The advantage of annotations is that it can give you more static checking on your configuration and can avoid a lot of verbosity and coordination difficulties in the XML configurations (basically keeping things DRY).
Just like XML was, Annotations can be over used. The main point is to balance the needs and advantages of each. Annotations, to the degree that they give you less verbose and DRYer code, are a tool to be leveraged.
EDIT: Regarding the comment about an annotation replacing an interface or abstract class, I think that can be reasonable at the framework boundary. In a framework intended to be used by hundreds, if not thousands of projects, having an interface or base class can really crimp things (especially a base class, although if you can do it with annotations, there is no reason you couldn't do it with a regular interface.
Consider JUnit4. Before, you had to extends a base class that had a setup and tear down method. For my point, it doesn't really matter if those had been on an interface or in a base class. Now I have a completely separate project with its own inheritance hierarchy, and they all have to honor this method. First of all, they can't have their own conflicting method names (not a big deal in a testing framework, but you get my point). Second of all you have have the chain of calling super all the way down, because all methods must be coupled.
Now with JUnit4, you can have different #Before methods in different classes in the hierarchy and they can be independent of each other. There is no equally DRY way to accomplish this without annotations.
From the point of view of the developers of JUnit, it is a disaster. Much better to have a defined type that you can call setUp and teardown on. But a framework doesn't exist for the convenience of the framework developer, it exists for the convenience of the framework user.
All of this applies if your code doesn't need to care about the type (that is, in your example, nothing would every really use a Controller type anyway). Then you could even say that implementing the framework's interface is more leaky than putting on an annotation.
If, however, you are going to be writing code to read that annotation in your own project, run far away.
It's 2018 and this point is still relevant.
My biggest problem with annotations is that you don't have an idea what the annotations are doing. You're cutting some caller code off and hiding it somewhere disconnected from the callee.
Annotations were introduced to make the language more declarative and less programmatic. But if you're moving the majority of the functionality to annotations, you are effectively switching your code to a different language (and not a very good one at that). There's very little compile-time checking. This article makes the same point: https://blog.softwaremill.com/the-case-against-annotations-4b2fb170ed67
The whole heuristic of "move everything to configuration so that people don't have to learn how to code" has gotten out of control. Engineering managers aren't thinking.
Exceptions:
JUnit
JAX-RS
I personally feel that annotations have taken over too much and have blown up from their original and super useful purpose (e.g., minor things like indicating overridden method) into this crazy metaprogramming tool. I don't feel the JAva mechanism is robust enough to handle these clusters of annotations preceding each method.
For instance, I'm fighting with JUnit annotations these days because they restrict me in ways that I don't like
That being said, in my experience the XML based configuration isn't pretty either. So to quote South Park, you're choosing between a giant douche and a t*rd sandwich.
I think that the main decision you have to make is whether you are more comfortable with having a delocalization of the spring configuration (i.e., maintain two files instead of one), and whether you use tools or IDE plugins that benefit from the annotations. Another important question is whether the developers who will use or maintain your code truly understand annotations.
Like many things, there are pros and cons. In my opinion, some annotations are fine, though sometimes it feels like there is a tendency to overuse annotations when a plain old function calling approach might be superior, and taken as a whole, this can unintentionally increase cognitive load because they increase the number of ways to "do stuff."
Let me explain. For example, I'm glad you mentioned the #Transactional annotation. Most Spring developers probably are going to know about and use #Transactional. But how many of those developers know how #Transactional actually works? And would they know off the top of their head how to create and manage a transaction without using the #Transactional annotation? Using #Transactional makes it easier for me to use transactions in a majority of cases, but in particular cases when I need more fine-grained control over a transaction, it hides those details from me. So in a way it is a double edged sword.
Another example is #Profile in Spring config classes. In the general case, it makes it easier to specify which profiles you want a Spring component loaded in. However, it if you need more powerful logic than just specifying a list of profiles for which you want the component loaded, you would have to get the Environment object yourself and write a function to do this. Again, most Spring developers would probably be familiar with #Profile, but the side effect of that is they become less familiar with the details of how it works, like the Environment.acceptsProfiles(String... profiles) function, for instance.
Finally, when annotations don't work, it can be harder to understand why and you can't just put a breakpoint on the annotation. (For instance, if you forgot the #EnableTransactionManagement on your config, what would happen?) You have to find the annotation processor and debug that. With a function calling approach, you can of course just put a breakpoint in the function.
Annotations have to be used sparingly. They are good for some but not for all. At least the xml configuration approach keeps the config in one file (or multiple) instead of spread all over the place. That would introduce (as I like to call it) crappy code organization. You will never see the full picture of the configuration if it is spread across hundreds of files.
Annotations often introduce dependencies where such dependencies do not belong.
I have a class which happens by coincidence to have properties which resemble the attributes from a table in an RDBMS schema. The class was created with this mapping in mind. There is clearly a relationship between the class and the table but I am happy to keep the class free from any metadata declaring that relationship. Is it right that this class makes a reference to a table and its columns in a completely different system? I certainly don't object to external metadata that associates the two and leaves each free of an understanding of the other. What did I gain? It is not as if metadata in the source code provides type safety or mapping conformance. Any verification tool that could analyze JPA annotations could equally well analyze hibernate mapping files. Annotations did not help.
At one contract, I had created a maven module with a package of implementations of interfaces from an existing package. It is unfortunate that this new package was one of many directories within a monolithic build; I saw it as something separate from the other code. Nonetheless, the team was using classpath scanning so I had to use annotations in order to get my component wired into the system. Here I did not desire centralized configuration; I simply wanted external configuration. XML configuration was not perfect because it conflated dependency wiring with component instantiation. Given that Rod Johnson didn't believe in component based development, this was fair. Nonetheless, I felt once again that annotations did not help me.
Let's contrast this with something that doesn't bother me: TestNG and JUnit tests. I use annotations here because I write this test knowing that I am using either TestNG or JUnit. If I replace one for the other, I understand that I will have to perform a costly transition that will stray close to a rewrite of the tests.
For whatever reason, I accept that TestNG, JUnit, QUnit, unittest, and NUnit owns my test classes. Under no circumstances does either JPA or Hibernate own those domain classes which happen to get mapped to tables. Under no circumstances does Spring own my services. I control my logical and physical packaging in order to isolate units which depend upon either. I want to ensure that a move away from one doesn't leave me crippled because of all the dependencies it left behind. Saying goodbye is always easier than leaving. At some point, leaving is necessary.
Check these answers to similar questions
What are the Pros/Cons of Annotations (non-compiler) compared to xml config files
Xml configuration versus Annotation based configuration
Basically it boils down to: Use both. Both of them have there usecases. Don't use annotations for things which should remain configurable without recompiling everything (especially things which maybe your user should be able to configure without needing you to recompile all)
I think it depends to some extent on when you started programming. Personally, I think they are horrid. Primarily because they have some quasi-'meaning' which you will not understand unless you happen to be aware of the annotation in question. As such they form a new programming language all by themselves and move you further away from POJOs. Compared to (say) plain old OO code. Second reason - they can prevent the compiler doing your work for you. If I have a large code base and want to refactor something or rename something I'd ideally like the compiler to throw up everything that needs to be changed, or as much as possible. An annotation should just be that. An annotation. Not central to the behaviour of your code. They were designed originally to be optionally omitted upon compilation which tells you all you need to know.
And yes, I am aware that XML config suffers in the same way. That doesn't make it worse, just equally bad. At least I can pretend to ignore that though - it doesn't stare me in the face in every single method or parameter declaration.
Given the choice I'd actually prefer the horrible old J2EE remote/home interfaces etc (so criticised by the Spring folks originally) as at least that gives me an idea of whats happening without having to research #CoolAidFrameworkThingy and its foibles.
One of the problems with the framework folks is that they need to tie you to their framework in order to make the whole enterprise financially viable. This is at odds with designing a framework well (i.e. for it to be as independant and removeable from your code as possible).
Unfortunately, though, annotations are trendy. So you will have a hard time preventing your team using them unless you are into code reviews/standards and the like (also, out of fashion!)
I read that Stroustup left annotations out of C++ as he feared they would be mis-used. Sometimes things go in the wrong direction for decades, but you can hope things will come full circle in time..
I think annotations are good if they are used with measure. Annotations like #WebService do a lot of work at deployment and run time, but they don't interfere in the class. #Cachexxx or #Transactional clearly interfere by creating proxies and a lot of artifacts, but I think they are under control.
Thing begin to mess when using Hibernate or JPA with annotations and CDI. Annotations grow a lot.
IMO #Service and #Repository are interferences of Spring in your application code. They make your application Spring dependant and only for Spring use.
The case of Spring Data Graph is another story. #NodeEntity, for instance, add methods to the class at build time to save the domain object. Unless you have Eclipse and Spring plugin you will errors because those methods don't exist in source code.
Configuration near the object has its benefits, but also a single configuration point. Annotations are good with measure, but they aren't good for everything, and definitively bad when there are as much annotation lines as source code lines.
I think the path Spring is going is wrong; mainly because in some cases there is no other way to do such funny things. It's is as if Spring wants to do xtreme coding, and at the same time they lock developers into Spring framework. Probably Java language needs another way to do some things.
Annotations are plain bad in my experience:
Inability to enforce type safety in annotations
Serialization issues
Cross compiling (to for instance javascript) can be an issue.
Libraries/frameworks requiring annotations exclude non-annotated classes from external libraries.
not overridable or interchangeable
your projects eventually becomes strongly dependant on the system that requires the annotations
If Java would have something like "method literals" you could annotate a class in a corresponding annotation class.
Something like as following:
Take for instance javax.persistence, and the following annotated class:
#Entity
class Person
{
#Column
private String firstname;
public String getFirstname() { return firstname; }
public void setFirstname(String value) { firstname = value; }
#Column
private String surname;
public String getSurname() { return surname; }
public void setSurname(String value) { surname = value; }
}
Instead of the annotations, I'd suggest a mapping class like:
class PersonEntity extends Entity<Person> {
#Override
public Class<Person> getEntityClass() { return Person.class;}
#Override
public Collection<PersistentProperty> getPersistentProperties() {
LinkedList<PersistentProperty> result = new LinkedList<>();
result.add(new PersistentProperty<Person>(Person#getFirstname, Person#setFirstname);
result.add(new PersistentProperty<Person>(Person#getSurname, Person#setSurname);
return result;
}
}
The fictional "#" sign in this pseudo java code represents a method literal, which, when invoked on an instance of the given class, invokes the corresponding delegate (signed with "::" since java 8) of that instance.
The "PersistentProperty" class should be able to enforce the method literals to be referring to the given generic argument, in this case the class Person.
This way, you have more benefits than annotations can deliver (like subclassing your 'annotate'-class) and you have none of the aforementioned cons.
You can have more domain-specific approaches too.
The only pre annotations have over this, is that with annotations you can quickly see whether you have forgotten to include a property/method. But this too can be handled more concise and more correct with better metadata support in Java (think for instance of something like required/optional like in Protocolbuffers)

Categories