Here's my code
public class Main {
private static class GetData implements Runnable{
private List list;
private SqlQuery query;
GetData(SqlQuery<String> param){
this.query=param;
}
public void run(){
list = query.execute();
}
}
public static void main(String[] args){
ApplicationContext context = new ClassPathXmlApplicationContext("database.xml");
SqlQuery<String> parameter = (SqlQuery<String>) context.getBean("BEAN_NAME");
System.out.println("hello");
new Thread(new Inner(parameter)).start();
for(each element in list of inner class){
System.out.println(element.id);
}
}
}
Well my question is after i get the query from xml file, it executes but it doesnt print anything? Why?
Also, how do i ensure that after all my threads have finished execution, only then my main program moves ahead in execution, given i make another thread and run it to create another list.
Change
new Thread(new Inner(parameter)).start();
to
Thread t = new Thread(new Inner(parameter));
t.start();
and put t.join(); after your for loop.
EDIT:
For 5 or any number of threads say n
Create an array of threads like this
Thread[] tArray = new Thread[n];
for (int j = 0; j < tArray .length; j++) {
//your code to start the thread goes here
}
Once you have started them all, loop through them again at the end of the main function to join each of them to main thread.
for (int j = 0; j < tarray .length; j++) {
tArray.join()
}
If you are using one Thread and want main program waits its execution completed. You do not need to use Thread mechanism. Instead, you can add a method in main program in substance to Thread.run().
Otherwise if you want to use multiple thread you can use Thread.join method so that all other threads wait at that line until all thread execution are completed.
I also advice you to investifate countdownlatch mechanism. It can give you ready mechanism not to involve in Join/wait operations manually.
Use the join method of the thread you want to wait. Thread.join() javadoc
how it works :
The thread (lets call him A) that join another thread (called B) will stop it execution until the joined thread (B) finish and returns.
EDIT :
In fact, unless your Thread is in Daemon mode, your program won't exit.
The JVM automatically joins all running non daemon thread before exiting
new Thread(runnable).start(); executes the provided runnable asynchronously and continues the execution to the next line, so the loop executes before anything has been added to the list.
So if you want to execute the loop after the thread has finished, you will have to wait for it. The easiest way is to run the Runnable: new Inner(parameter).run();.
Now that defeats the purpose of parallel execution.
Assuming you have more than one runnable, you could use an ExecutorService (instead of using the low-level Thread API, which is more complicated to use and error-prone) to run the various tasks in parallel and collect the results when they are all completed:
ExecutorService executor = Executors.newCachedThreadPool();
executor.submit(runnable1); //first task
executor.submit(runnable2); //second task
executor.shutdown(); //stop accepting new tasks
executor.awaiTermination(Integer.MAX_VALUE, TimeUnit.SECONDS); //wait until both tasks finish
//now you can use the results of your tasks.
Finally, note that if you use threads, you will be sharing the list in your runnable across threads (the worker thread and the main thread) and you will need to use a thread safe structure to make that possible - for example, by using a CopyOnWriteArrayList:
list = new CopyOnWriteArrayList(query.execute());
Related
OK, I created couples of threads to do some complex task. Now How may I check each threads whether it has completed successfully or not??
class BrokenTasks extends Thread {
public BrokenTasks(){
super();
}
public void run(){
//Some complex tasks related to Networking..
//Example would be fetching some data from the internet and it is not known when can it be finished
}
}
//In another class
BrokenTasks task1 = new BrokenTasks();
BrokenTasks task2 = new BrokenTasks();
BrokenTasks task3 = new BrokenTasks();
BrokenTasks task4 = new BrokenTasks();
task1.start();
.....
task4.start();
So how can I check if these all tasks completed successfully from
i) Main Program (Main Thread)
ii)From each consecutive threads.For example: checking if task1 had ended or not from within task2..
A good way to use threads is not to use them, directly. Instead make a thread pool. Then in your POJO task encapsulation have a field that is only set at the end of computation.
There might be 3-4 milliseconds delay when another thread can see the status - but finally the JVM makes it so. As long as other threads do not over write it. That you can protect by making sure each task has a unique instance of work to do and status, and other threads only poll that every 1-5 seconds or have a listener that the worker calls after completion.
A library I have used is my own
https://github.com/tgkprog/ddt/tree/master/DdtUtils/src/main/java/org/s2n/ddt/util/threads
To use : in server start or static block :
package org.s2n.ddt.util;
import org.apache.log4j.Logger;
import org.junit.Test;
import org.s2n.ddt.util.threads.PoolOptions;
import org.s2n.ddt.util.threads.DdtPools;
public class PoolTest {
private static final Logger logger = Logger.getLogger(PoolTest.class);
#Test
public void test() {
PoolOptions options = new PoolOptions();
options.setCoreThreads(2);
options.setMaxThreads(33);
DdtPools.initPool("a", options);
Do1 p = null;
for (int i = 0; i < 10; i++) {
p = new Do1();
DdtPools.offer("a", p);
}
LangUtils.sleep(3 + (int) (Math.random() * 3));
org.junit.Assert.assertNotNull(p);
org.junit.Assert.assertEquals(Do1.getLs(), 10);
}
}
class Do1 implements Runnable {
volatile static long l = 0;
public Do1() {
l++;
}
public void run() {
// LangUtils.sleep(1 + (int) (Math.random() * 3));
System.out.println("hi " + l);
}
public static long getLs() {
return l;
}
}
Things you should not do:
* Don't do things every 10-15 milliseconds
* Unless academic do not make your own thread
* don't make it more complex then it needs for 97% of cases
You can use Callable and ForkJoinPool for this task.
class BrokenTasks implements Callable {
public BrokenTasks(){
super();
}
public Object call() thrown Exception {
//Some complex tasks related to Networking..
//Example would be fetching some data from the internet and it is not known when can it be finished
}
}
//In another class
BrokenTasks task1 = new BrokenTasks();
BrokenTasks task2 = new BrokenTasks();
BrokenTasks task3 = new BrokenTasks();
BrokenTasks task4 = new BrokenTasks();
ForkJoinPool pool = new ForkJoinPool(4);
Future result1 = pool.submit(task1);
Future result2 = pool.submit(task2);
Future result3 = pool.submit(task3);
Future result4 = pool.submit(task4);
value4 = result4.get();//blocking call
value3 = result3.get();//blocking call
value2 = result2.get();//blocking call
value1 = result1.get();//blocking call
And don't forget to shutdown pool after that.
Classically you simply join on the threads you want to finish. Your thread does not proceed until join completes. For example:
// await all threads
task1.join();
task2.join();
task3.join();
task4.join();
// continue with main thread logic
(I probably would have put the tasks in a list for cleaner handling)
If a thread has not been completed its task then it is still alive. So for testing whether the thread has completed its task you can use isAlive() method.
There are two different questions here
One is if the thread still working.
The other one is if the task still not finished.
Thread is a very expensive method to solve problem, when we start a thread in java, the VM has to store context informations and solve synchronize problems(such as lock). So we usually use thread pool instead of directly thread. The benefit of thread pool is that we can use few thread to handle many different tasks. That means few threads keeps alive, while many tasks are finished.
Don’t find task status from a thread.
Thread is a worker, and tasks are jobs.
A thread may work on many different jobs one by one.
I don’t think we should ask a worker if he has finished a job. I’d rather ask the job if it is finished.
When I want to check if a job is finished, I use signals.
Use signals (synchronization aid)
There are many synchronization aid tools since JDK 1.5 works like a signal.
CountDownLatch
This object provides a counter(can be set only once and count down many times). This counter allows one or more threads to wait until a set of operations being performed in other threads completes.
CyclicBarrier
This is another useful signal that allows a set of threads to all wait for each other to reach a common barrier point.
more tools
More tools could be found in JDK java.util.concurrent package.
You can use Thread.isAlive method, see API: "A thread is alive if it has been started and has not yet died". That is in task2 run() you test task1.isAlive()
To see task1 from task2 you need to pass it as an argument to task2's construtor, or make tasks fields instead of local vars
You can use the following..
task1.join();
task2.join();
task3.join();
task4.join();
// and then check every thread by using isAlive() method
e.g : task1.isAlive();
if it return false means that thread had completed it's task
otherwise it will true
I'm not sure of your exact needs, but some Java application frameworks have handy abstractions for dealing with individual units of work or "jobs". The Eclipse Rich Client Platform comes to mind with its Jobs API. Although it may be overkill.
For plain old Java, look at Future, Callable and Executor.
I'm trying to start a thread in a for-loop. This task should only wait for a second (Thread.sleep()), so every time the loop starts over again, a new thread is started and it should cause the code after the thread to wait until it is executed.
public void count()
{
for(int i = 29; i>=0; i--)
{
Thread t1;
t1 = new Thread(new TimerClass());
t1.start();
String s = String.valueOf(i);
jLabel6.setText(s);
System.out.println(s);
}
}
public class TimerClass implements Runnable{
#Override
public void run()
{
try{
Thread.sleep(1000);
System.out.println("Timer");
} catch(InterruptedException e)
{
}
}
}
As you can see, I implemented in both methods System.out.println() to check if they are actually executed. I get this:
29
28
27
26
...//25 - 3
2
1
0
Timer
Timer
Timer
//in all 29 times Timer
So it should be 29, Timer, 28, Timer and so on, but it isn't.
Does anyone know what's wrong with the code?
Thanks a lot.
Your main loop that is starting the thread is likely dominating the CPU, so it finishes doing its entire loop and only then do the threads get a chance to go.
In fact, given that all of your threads sleep for an entire second and you're only looping 29 times, you're guaranteed that your loop will finish (and print all of the numbers) before your threads do. Add a sleep to your main loop if you want the threads to print - remember, the main loop doesn't stop when you start a thread.
You can join a thread to the main thread so first your thread will finished then main thread
public void count()
{
for(int i = 29; i>=0; i--)
{
Thread t1;
t1 = new Thread(new TimerClass());
t1.start();
t1.join();
String s = String.valueOf(i);
jLabel6.setText(s);
System.out.println(s);
}
}
Here is my code for spawning 2 threads or one thread depends on arrayList size but in my case this threads are doing much more complex tasks then just waiting 1 sec
for (int i = 0; i < array.size(); i += 2) {
Thread t1 = null;
Thread t2 = null;
if (i < array.size() - 1 && array.size() > 1) {
t1 = new Thread(array.get(i));
t2 = new Thread(array.get(i + 1));
t1.start();
t2.start();
}
else {
t2 = new Thread(array.get(i));
t2.start();
}
if (t1 != null)
t1.join();
if (t2 != null)
t2.join();
}
In my code I populate arrayList with Objects that Implements Runnable interface.
Even if you sleep the thread for 1ms, your results would be the same. If you can manage the thread to sleep for the time less than it takes to print the results, your result could be as expected. Here is my code where I have put the time of 1 ms but yet the results are the same.
public class MultiThreading implements Runnable
{
public void run()
{
try
{
Thread.sleep(1);
System.out.println("Timer");
}
catch(Exception e)
{
}
}
public static void main(String [] args)
{
for(int i = 29; i>=0; i--)
{
Thread t1;
t1 = new Thread(new MultiThreading());
t1.start();
String s = String.valueOf(i);
System.out.println(s);
}
}
}
If you comment out the Thread.sleep(1) method, then your results are as you expected.
Delay is much enough to let the for loop in count() to finish before is can print 'timer' from thread.
What is happening is that the thread you started starts executing and immediately goes to sleep. In the meantime, your loop just keeps running. As the whole point of threads is that they run asynchronously, I don't really understand why you think your main loop should be waiting for it to finish sleeping. The thread has started running and is now running independently of the main loop.
If you want to wait for the thread you just started to finish (in which case, you might as well use a method), then use one of the synchronisation primitives, i.e. Thread.wait().
What you actually want to do is block your main thread while another thread is running. Please don't use Thread#sleep statements, as these are unreliable in order to "make your application work". What you want to use instead is Thread#join. See dharr his code for an example.
Also, it's better to use Executors and ExecutorServices when creating threads or running async tasks.
Threads are interesting. Think of a virtual thread as a physical thread. There are many threads on the clothes you're wearing, all working at the same time to hold your shirt together. In virtual terms what Thread.start() does is start a thread on a different strand WHILE the following code continues to execute, (i.e. Two Threads work simultaneously like 2 runners run next to each other). Consider putting a break point right after Thread.start(). You'll understand.
For your desired effect, just put a Thread.sleep() in the main loop. This will cause an output of
29
Timer
28
Timer
// etc.
Hope this helped.
Jarod.
Another analogy to the threads in a shirt:
Think of threads as coworkers to your main programm (which is a thread itself). If you start a thread, you hand some work to this coworker. This coworker goes back to his office to work on this task. You also continue to do your task.
This is why the numbers will appear before the first thread/coworker will output anythig. You finished your task (handing out work to other coworkers) before he finished his.
If you want to give out some work and then wait for it to be finished, use t1.join() as suggested by others. But if you do this, it is senseless to create new Threads, because you don't (seem) to want to process something in parallel (with many coworkers) but in a specific order - you can just du it yourself.
Suppose that I have an arraylist called myList of threads all of which are created with an instance of the class myRunnable implementing the Runnable interface, that is, all the threads share the same code to execute in the run() method of myRunnable. Now suppose that I have another single thread called singleThread that is created with an instance of the class otherRunnable implementing the Runnable interface.
The synchornization challenge I have to resolve for these threads is the following: I need all of the threads in myList to execute their code until certain point. Once reached this point, they shoud sleep. Once all and only all of the threads in myList are sleeping, then singleThread should be awakened (singleThread was already asleep). Then singleThread execute its own stuff, and when it is done, it should sleep and all the threads in myList should be awakened. Imagine that the codes are wrapped in while(true)'s, so this process must happen again and again.
Here is an example of the situation I've just described including an attempt of solving the synchronization problem:
class myRunnable extends Runnable
{
public static final Object lock = new Object();
static int count = 0;
#override
run()
{
while(true)
{
//do stuff
barrier();
//do stuff
}
}
void barrier()
{
try {
synchronized(lock) {
count++;
if (count == Program.myList.size()) {
count = 0;
synchronized(otherRunnable.lock) {
otherRunnable.lock.notify();
}
}
lock.wait();
}
} catch (InterruptedException ex) {}
}
}
class otherRunnable extend Runnable
{
public static final Object lock = new Object();
#override
run()
{
while(true)
{
try {
synchronized(lock) {
lock.wait();
} catch (InterruptedException ex) {}
// do stuff
try {
synchronized(myRunnable.lock) {
myRunnable.notifyAll();
}
}
}
}
class Program
{
public static ArrayList<Thread> myList;
public static void main (string[] args)
{
myList = new ArrayList<Thread>();
for(int i = 0; i < 10; i++)
{
myList.add(new Thread(new myRunnable()));
myList.get(i).start();
}
new Thread(new OtherRunnable()).start();
}
}
Basically my idea is to use a counter to make sure that threads in myList just wait except the last thread incrementing the counter, which resets the counter to 0, wakes up singleThread by notifying to its lock, and then this last thread goes to sleep as well by waiting to myRunnable.lock. In a more abstract level, my approach is to use some sort of barrier for threads in myList to stop their execution in a critical point, then the last thread hitting the barrier wakes up singleThread and goes to sleep as well, then singleThread makes its stuff and when finished, it wakes up all the threads in the barrier so they can continue again.
My problem is that there is a flaw in my logic (probably there are more). When the last thread hitting the barrier notifies otherRunnable.lock, there is a chance that an immediate context switch could occur, giving the cpu to singleThread, before the last thread could execute its wait on myRunnable.lock (and going to sleep). Then singleThread would execute all its stuff, would execute notifyAll on myRunnable.lock, and all the threads in myList would be awakened except the last thread hitting the barrier because it has not yet executed its wait command. Then, all those threads would do their stuff again and would hit the barrier again, but the count would never be equal to myList.size() because the last thread mentioned earlier would be eventually scheduled again and would execute wait. singleThread in turn would also execute wait in its first line, and as a result we have a deadlock, with everybody sleeping.
So my question is: what would be a good way to synchronize these threads in order to achieve the desired behaviour described before but at the same time in a way safe of deadlocks??
Based on your comment, sounds like a CyclicBarrier would fit your need exactly. From the docs (emphasis mine):
A synchronization aid that allows a set of threads to all wait for each other to reach a common barrier point. CyclicBarriers are useful in programs involving a fixed sized party of threads that must occasionally wait for each other. The barrier is called cyclic because it can be re-used after the waiting threads are released.
Unfortunately, I haven't used them myself, so I can't give you specific pointers on them. I think the basic idea is you construct your barrier using the two-argument constructor with the barrierAction. Have your n threads await() on this barrier after this task is done, after which barrierAction is executed, after which the n threads will continue.
From the javadoc for CyclicBarrier#await():
If the current thread is the last thread to arrive, and a non-null barrier action was supplied in the constructor, then the current thread runs the action before allowing the other threads to continue. If an exception occurs during the barrier action then that exception will be propagated in the current thread and the barrier is placed in the broken state.
I'm trying to write a class that can only run X(Let's say 3)threads at one time. I have 8 threads that need to execute but I only want to allow 3 to run at once, then wait. Once one of the currently running threads stops, then it will start another. I'm not quite sure how to do this. My code looks like this:
public class Main {
public void start() {
for(int i=0; i<=ALLTHREADS; i++) {
MyThreadClass thread = new MyThreadClass(someParam, someParam);
thread.run();
// Continue until we have 3 running threads, wait until a new spot opens up. This is what I'm having problems with
}
}
}
public class MyThreadClass implements Runnable {
public MyThreadClass(int param1, int param2) {
// Some logic unimportant to this post
}
public void run() {
// Generic code here, the point of this is to download a large file
}
}
As you can see above most of it is stubbed out pseudo-code. I can post it if anyone would like but it's unimportant to the main question.
you should use thread pooling mechanism here to run multiple threads.
to make it easy we can go for thread pool executor in java which is very easy
create a fixed pool of 3 threads using executors method.
write a for loop for 8 iteration and call execute on each thread and it will run only 3 threads at a time.
ExecutorService executor = Executors.newFixedThreadPool(3);
for (int i = 0; i < 8; i++) {
Task task = new Task(someParam, someParam);
executor.execute(task);
}
executor.shutdown();
Unless this is homework, you can use Executors.newFixedThreadPool(3) which returns an ExecutorService with a max of 3 threads to perform Runnable tasks.
We have a scheduled task that runs every 10 seconds and a thread pool with 3 threads that actually update a static common map. Every 10 seconds the scheduled action prints this map.
The problem is that I want the scheduler to stop printing after the 3 threads finish with the map. But here is the key. I don't want to stop scheduler instantly, I want to print first ( the final version of the map) and then finishes.
public class myClass implements ThreadListener {
public static ArrayList<Pair<String, Integer>> wordOccurenceSet = new ArrayList<Pair<String, Integer>>();
int numberOfThreads = 0;
ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);
public void getAnswer(Collection<CharacterReader> characterReaders, Outputter outputter) {
ExecutorService executor = Executors.newFixedThreadPool(characterReaders.size());
OutputterWriteBatch scheduledThread = new OutputterWriteBatch(outputter,wordOccurenceSet);
scheduler.scheduleAtFixedRate(scheduledThread, 10, 10, TimeUnit.SECONDS);
for (CharacterReader characterReader : characterReaders) {
NotifyingRunnable runnable = new CharacterReaderTask(characterReader, wordOccurenceSet);
runnable.addListener(this);
executor.execute(runnable);
}
}
#Override
public void notifyRunnableComplete(Runnable runnable) {
numberOfThreads += 1;
if(numberOfThreads == 3 ){
//All threads finished... What can I do to terminate after one more run?
}
}
}
The Listener actually just get notified when a thread finishes.
First of all, make your numberOfThreads synchronized. You don't want it to become corrupted when two Reader threads finish concurrently. It's a primitive int so it may not be corruptable (i am not that proficient with JVM), but the general rules of thread safety should be followed anyway.
// 1. let finish OutputterWriteBatch if currently running
scheduler.shutdown();
// 2. will block and wait if OutputterWriteBatch was currently running
scheduler.awaitTermination(someReasonableTimeout);
// 3. one more shot.
scheduler.schedule(scheduledThread,0);
// You could also run it directly if your outputting logic in run()
// is published via separate method, but i don't know the API so i suppose
// only Runnable is published
But this shouldn't be called directly from notifyRunnableComplete, of course. The listener method is called from your Reader threads, so it would block the last one of 3 threads from finishing timely. Rather make a notification object which some other thread will wait() on (preferably the one which executed getAnswer()), notify() it when numberOfThreads reaches 3 and put the above code after the wait().
Oh, and when wait() unblocks, you should double check that numberOfThreads is really 3, if not, cycle back to wait(). Google "spurious wakeup" to explanation why this is needed.