Inherited enum redefinition - java

It is more complex than it sounds, but I think I am obliged to try something like it. I want to make an abstract parent class with a prototyping of an enum (I want to declare the enum with only one value probably that will be the default unitialized one and also declaring a couple of methods that I will be using from the subclass), then I want to class that will extend the abstract parent to actually intialize the very same enum (I know that this practically hides the parent enum) so that the kid class will define a set of items inside the enum, but keep the methods probably.
I do not know much about this level of abstraction so I will now describe the nature of my problem, in case there is a more practical solution:
I have a bunch of files that contain classes that implement a lot of commands based on enums. (e.g. class1 implements Observer has an update method that uses an enum-based switch to decide what command was picked, same applies for the other classes) I now want to abstract this whole thing in a way that I have an enum variable with the exact same name in all classes (e.g. CommandSet) so that I can have a generic method inside the parent that will be able to print a help list to my system using the inside methods of the enum. Now I know I can rewrite the exact same method in every class, but I want to abstract it so that others can keep on extending the library I am making!
Hopefully I am not too confusing or too confused and somone can help me! :)
Edit: Here is an idea of the code (Probably not right):
public abstract class Commands{
enum CommandSet{
// empty command, placeholder
null_command ("command name", "command description");
// the Strings used for name and description
private final String name;
private final String description;
// constructor
CommandSet(String name, String description){
this.name=name;
this.description=description;
}
// get parameters
public String getName(){
return name;
}
public String getDescription(){
return description;
}
}
public void showHelp(){
for (CommandSet i : CommandSet.values()) {
printf(i.getName(),":",i.getDescription());
}
}
}
public class StandardCommads extends Commands implements Observer{
// I want to change the enum here, just changing the values so that null_command ("command name", "command description") will get removed and I will add a dozen other values, but keep the methods that the parent had
// update inherited from Observer
#Override
public void update(Observable observable, Object object) {
// I want the commands inside the switch cases defined inside this class's enum
switch(CommandSet.valueOf(String.valueOf(object)){
case command1: doStuff1();break;
case command2: doStuff2();break;
...
case commandN: doStuffN();break;
}
// other methods
void doStuff1(){
...
}
...
void doStuffN(){
...
}
}
public class NonStandardCommads extends Commands implements Observer{
// Another set of commands here for the enum keeping the same methods it had in the parent
// update inherited from Observer
#Override
public void update(Observable observable, Object object) {
// Other set of commands inside this class used in the switch statement
switch(CommandSet.valueOf(String.valueOf(object)){
case Zcommand1: doStuffz1();break;
case Zcommand2: doStuffz2();break;
...
case ZcommandN: doStuffzN();break;
}
// other methods
void doStuffz1(){
...
}
...
void doStuffzN(){
...
}
}

Impossible: Java enums can neither extend another class nor be extended themselves.
They can however implement interfaces. Perhaps you can use that to your advantage.
There is something else about enums that may help you: enums are not immutable. You could change field values of the enums, however that would change them for the whole JVM.
Another approach maybe to pass your subclass instances into a method of the enum and have the enum use your subclass as a call back to get different functionality out of an enum for a different user of the enum.

Nope, you can't do that.
Java Enums run out of gas very quickly & definitely, when you want to add/extend more definitions or instantiate the enum instances, at a later time. (eg load them from database, configure them in an instance method, not just statically.)
Behaviour/ or logic in Java enums is kinda limited too -- you can define & set properties, but only what's statically initializable, and logic seems basic (you end up mainly just comparing references or ordinals, with the other defined enum constants).
What you can do:
You can implement an ancestor Command or AbstractCommand class, with a integer Code, and then subclass it to define concrete values/ additional codes/ load or configure instances, etc.
For further benefit, you get efficient switch & despatch (by Code) plus the ability to define further details/properties, instantiate commands as-needed, etc.
Essentially, this is how you used to define an Enum before Java supported them. Though you may be using them as value objects, rather than strictly static.
My expertise:
I've done extensive compiler & type-system work, tried enums for file-types and associated data/behaviour.. explored the outer limits, and reached the definite boundaries.
I also like being able to instantiate & return a new UnknownFileType("") as an answer, too. Enums can't do that.
Example:
(We'll despatch by String, not int -- since your code appears to be using Java 7. This makes command resolution easier, than requiring both a syntactical "name" and an internal integer "code".)
public static class Command {
protected String code;
protected String desc;
public String getCode() {return code;}
public String getDesc() {return desc;}
public Command (String code, String desc) {
this.code = code;
this.desc = desc;
}
public String toString() {return code;}
}
public class StandardCommands {
public static Command READ = new Command("READ", "read a record");
public static Command CREATE = new Command("WRITE", "create a record");
public static Command EDIT = new Command("WRITE", "modify a record");
}
public class FurtherCommands extends StandardCommands {
public static Command LIST = new Command("LIST", "list all records");
}
public class QueryCommands extends FurtherCommands {
public static class QueryCmd extends Command {
protected String search;
public String getSearch() {return search;}
// constructor..
}
public static QueryCmd QUERY_EXAMPLE = new QueryCmd("QUERY", "example", "query for specified string");
public static QueryCmd createQuery (String search) {
return new QueryCmd( "QUERY", search, "query for specified string");
}
}

Related

Is it possible to have an enum where each item is associated with a class?

I'm creating a game with hundreds of abilities, so trying to leverage abstracts and generics as much as possible.
Each ability extends an abstract Ability class with universal methods like getCooldown(player), which gets a specific ability's cooldown for a player. Inheritance saves me from having to duplicate that code in every ability class.
public abstract class Ability {
public static String getCooldown() {
int cooldown;
//logic to get cooldown in milliseconds
return cooldown;
}
}
But the logic and metadata for each ability are unique and coded like such:
public class Parry extends Ability {
public static String getDescription() {
...
}
public static void castAbility() {
...
}
}
Here's my enum. I'm using an enum because abilities and their metadata are constants that are ideally available at compile time. I also don't want to store the metadata separate from the classes which have the rest of the ability logic.
public enum AbilityEnum {
BORN_READY(BornReady.class),
JUGGLER(Juggler.class),
...
PARRY(Parry.class);
public final Class<? extends Ability> cls;
AbilityEnum(Class<? extends Ability> cls) {
this.cls = cls;
}
}
In other parts of the codebase, I want to use the Enum to generically get basic info on an ability, cast a spell, etc. I want to avoid hard-coding for any specific ability because there are 200+ of them. For example, when a player opens their skill menu, I need to grab the descriptions for every ability. I'd rather not type [ability_name].getDescription() 200+ times.
for (AbilityEnum ability : AbilityEnum.values()) {
String tooltip = ability.cls.getDescription();
...
// load descriptions into menu system so players
// can hover abilities for a tooltip description
}
If I try to run this I get the error:
Cannot resolve method 'getDescription' in 'Class'
This confuses me because I bounded the generic, so why does it think it has a Class instead of an Ability? I think I'm either misusing generics or have the wrong syntax for calling methods this way. Perhaps I should be using a list or something else instead of an enum?

Chaining Enumerations for hierarchical naming structures?

Since I have a terrible memory, I like to put all the detnd I ails of data objects into enumerations, so I can use code completion in the IDE adon't have to keep referring back to get the name of a table or the name of a field. Usually I use some type of class containing only Enums for the purpose.
Lets say I have table of "Domains" (database source) "Tables" and "Fields" that look something like this:
public class DataObjectNames {
public enum Domains {
Domain1,
Domain2;
}
public enum Domain1Tables {
Customers,
Orders;
}
public enum Domain2Tables {
OrderItems,
Shipments;
}
public enum CustomerFields {
id,
email;
}
public enum OrderFields {
id,
customerId;
}
//fields for OrderItems and Shipments . . .
}
But suppose I wanted to be able to do something like:
Domain1.tables().Customers.fields(). //code completion supplies choices?
What I would like ot happen after I type the period is for autocomplete to provide a choice between .id and .email, much the same as it would if "fields" returned an object with two methods, or if I just typed
CustomerFields.
in the IDE.
In order for that to happen, it seems to me I somehow need to return not a specific instance of an enumeration, but the enumeration itself. I've tried various approaches like this:
public enum Domains {
Domain1 {
#Override
public Enum<?> tables() {
return Domain1Tables.foo();
} //Is there a method that will return the enum itself?
},
Domain2 {
#Override
public Enum<?> tables() {
return Domain2Tables.foo();
};
public abstract Enum<?> tables();
}
But of course I haven't been able to find a funciton foo() that returns the enum class itself.
Any thoughts?
You can't do this with enums because Java's class model doesn't work the way you would need in order for this style to work.
I haven't been able to find a function foo() that returns the enum class itself.
Returning the enum class itself is easy, you just do Domain1Tables.class, but that won't give you the completion you want because what it gives you is a Class<Domain1Tables> object, and that object doesn't have fields named Customers and Orders.
You want to be able to treat the "Domain1Tables" class as if it's an object and refer to the enum constants (which are effectively static final fields) as if they were members of that object, but Java simply doesn't do that.
If you give up on using enums for it, then you can simply have:
public class DataObjectNames {
public class Domains {
class Domain1 {
class Tables {
class Customers {
public static final String id = "id";
public static final String email = "email";
}
}
}
}
}
but in that case DataObjectNames.Domains.Domain1 wouldn't be a valid expression anymore (because it reference to a class scope, but not to an object.
There's probably a solution to what you're trying to do, but without more context I can provide anything more details than what's above.

Java - Alternatives to forcing subclass to have a static method

I often find I want to do something like this:
class Foo{
public static abstract String getParam();
}
To force a subclasses of Foo to return a parameter.
I know you can't do it and I know why you can't do it but the common alternative of:
class Foo{
public abstract String getParam();
}
Is unsatisfactory because it requires you to have an instance which is not helpful if you just want to know the value of the parameter and instantiating the class is expensive.
I'd be very interested to know of how people get around this without getting into using the "Constant Interface" anti pattern.
EDIT: I'll add some more detail about my specific problem, but this is just the current time when I've wanted to do something like this there are several others from the past.
My subclasses are all data processors and the superclass defines the common code between them which allows them to get the data, parse it and put it where it needs to go.
The processors each require certain parameters which are held in an SQL database. Each processor should be able to provide a list of parameters that it requires and the default values so the configuration database can be validated or initialised to defaults by checking the required parameters for each processor type.
Having it performed in the constructor of the processor is not acceptable because it only needs to be done once per class not once per object instance and should be done at system startup when an instance of each type of class may not yet be needed.
The best you can do here in a static context is something like one of the following:
a. Have a method you specifically look for, but is not part of any contract (and therefore you can't enforce anyone to implement) and look for that at runtime:
public static String getParam() { ... };
try {
Method m = clazz.getDeclaredMethod("getParam");
String param = (String) m.invoke(null);
}
catch (NoSuchMethodException e) {
// handle this error
}
b. Use an annotation, which suffers from the same issue in that you can't force people to put it on their classes.
#Target({TYPE})
#Retention(RUNTIME)
public #interface Param {
String value() default "";
}
#Param("foo")
public class MyClass { ... }
public static String getParam(Class<?> clazz) {
if (clazz.isAnnotationPresent(Param.class)) {
return clazz.getAnnotation(Param.class).value();
}
else {
// what to do if there is no annotation
}
}
I agree - I feel that this is a limitation of Java. Sure, they have made their case about the advantages of not allowing inherited static methods, so I get it, but the fact is I have run into cases where this would be useful. Consider this case:
I have a parent Condition class, and for each of its sub-classes, I want a getName() method that states the class' name. The name of the sub-class will not be the Java's class name, but will be some lower-case text string used for JSON purposes on a web front end. The getName() method will not change per instance, so it is safe to make it static. However, some of the sub-classes of the Condition class will not be allowed to have no-argument constructors - some of them I will need to require that some parameters are defined at instantiation.
I use the Reflections library to get all classes in a package at runtime. Now, I want a list of all the names of each Condition class that is in this package, so I can return it to a web front end for JavaScript parsing. I would go through the effort of just instantiating each class, but as I said, they do not all have no-argument constructors. I have designed the constructors of the sub-classes to throw an IllegalArgumentException if some of the parameters are not correctly defined, so I cannot merely pass in null arguments. This is why I want the getName() method to be static, but required for all sub-classes.
My current workaround is to do the following: In the Condition class (which is abstract), I have defined a method:
public String getName () {
throw new IllegalArugmentException ("Child class did not declare an overridden getName() method using a static getConditionName() method. This must be done in order for the class to be registerred with Condition.getAllConditions()");
}
So in each sub-class, I simply define:
#Override
public String getName () {
return getConditionName ();
}
And then I define a static getConditionName() method for each. This is not quite "forcing" each sub-class to do so, but I do it in a way where if getName() is ever inadvertently called, the programmer is instructed how to fix the problem.
It seems to me you want to solve the wrong problem with the wrong tool. If all subclasses define (can't really say inherit) your static method, you will still be unable to call it painlessly (To call the static method on a class not known at compile time would be via reflection or byte code manipulation).
And if the idea is to have a set of behaviors, why not just use instances that all implement the same interface? An instance with no specific state is cheap in terms of memory and construction time, and if there is no state you can always share one instance (flyweight pattern) for all callers.
If you just need to couple metadata with classes, you can build/use any metadata facility you like, the most basic (by hand) implementation is to use a Map where the class object is the key. If that suits your problem depends on your problem, which you don't really describe in detail.
EDIT: (Structural) Metadata would associate data with classes (thats only one flavor, but probably the more common one). Annotations can be used as very simple metadata facility (annotate the class with a parameter). There are countless other ways (and goals to achieve) to do it, on the complex side are frameworks that provide basically every bit of information designed into an UML model for access at runtime.
But what you describe (processors and parameters in database) is what I christened "set of behaviors". And the argument "parameters need to be loaded once per class" is moot, it completely ignores the idioms that can be used to solve this without needing anything 'static'. Namely, the flyweight pattern (for having only once instance) and lazy initialization (for doing work only once). Combine with factory as needed.
I'm having the same problem over and over again and it's hard for me to understand why Java 8 preferred to implement lambda instead of that.
Anyway, if your subclasses only implement retrieving a few parameters and doing rather simple tasks, you can use enumerations as they are very powerful in Java: you can basically consider it a fixed set of instances of an interface. They can have members, methods, etc. They just can't be instanciated (as they are "pre-instanciated").
public enum Processor {
PROC_IMAGE {
#Override
public String getParam() {
return "image";
}
},
PROC_TEXT {
#Override
public String getParam() {
return "text";
}
}
;
public abstract String getParam();
public boolean doProcessing() {
System.out.println(getParam());
}
}
The nice thing is that you can get all "instances" by calling Processor.values():
for (Processor p : Processorvalues()) {
System.out.println(String.format("Param %s: %s", p.name(), p.getParam()));
p.doProcessing();
}
If the processing is more complex, you can do it in other classes that are instanciated in the enum methods:
#Override
public String getParam() {
return new LookForParam("text").getParam();
}
You can then enrich the enumeration with any new processor you can think of.
The down side is that you can't use it if other people want to create new processors, as it means modifying the source file.
You can use the factory pattern to allow the system to create 'data' instances first, and create 'functional' instances later. The 'data' instances will contain the 'mandatory' getters that you wanted to have static. The 'functional' instances do complex parameter validation and/or expensive construction. Of course the parameter setter in the factory can also so preliminary validation.
public abstract class Processor { /*...*/ }
public interface ProcessorFactory {
String getName(); // The mandatory getter in this example
void setParameter(String parameter, String value);
/** #throws IllegalStateException when parameter validation fails */
Processor construct();
}
public class ProcessorA implements ProcessorFactory {
#Override
public String getName() { return "processor-a"; }
#Override
public void setParameter(String parameter, String value) {
Objects.requireNonNull(parameter, "parameter");
Objects.requireNonNull(value, "value");
switch (parameter) {
case "source": setSource(value); break;
/*...*/
default: throw new IllegalArgumentException("Unknown parameter: " + parameter);
}
}
private void setSource(String value) { /*...*/ }
#Override
public Processor construct() {
return new ProcessorAImpl();
}
// Doesn't have to be an inner class. It's up to you.
private class ProcessorAImpl extends Processor { /*...*/ }
}

Extending enums

I have a number of enums that each have the same fields and the same methods.
public enum AddressSubType {
DOM("dom"), INTL("intl"), POSTAL("postal");
private final String keyword;
private AddressSubType(String keyword) {
this.keyword = keyword;
}
public String getKeyword() {
return keyword;
}
#Override
public String toString() {
return keyword;
}
}
public enum EmailSubType {
INTERNET("internet"), X400("x.400");
private final String keyword;
private EmailSubType(String keyword) {
this.keyword = keyword;
}
public String getKeyword() {
return keyword;
}
#Override
public String toString() {
return keyword;
}
}
Is there a way for these enums to share the fields and methods (like a parent class)? I know that it's not possible to extend enums. Thanks.
You could create a Value class
public class Value {
private final String keyword;
private Value(String keyword) {
this.keyword = keyword;
}
public String getKeyword() {
return keyword;
}
#Override
public String toString() {
return keyword;
}
}
Then you can create Classes with public static final values like this :
public class AddressSubType extend Value {
public static final AddressSubType DOM = new AddressSubType("DOM");
public static final AddressSubType INTL = new AddressSubType("intl");
...
private AddressSubType(String keyword) {
super(keyword);
}
}
I would probably combine them into a single enum object where some are initialized with an "Postal" flag set to true and some have the "email" flag set to true since the two are really just different "types" of addresses.
You can then have it return iterators for either if you wish to access them separately or you can iterate over the whole thing.
You may also find some of the rest of your code becoming simplified, for instance just having a collection of "Address"es and checking at runtime to see if a given address is email or postal.
But it depends on how similar they really are.
You can declare an interface that they both can implement. This would allow you to pass either enum type as an argument to a method that only cares about specific methods on that inerface. However, this will only allow you to "share" the method signatures, not the fields or the method implementations.
If your enums are as trivial as in the given example, you don't have any significant amount of code repetition, so this probably isn't a problem. If you find that your methods have more complex, repetitive code, you should consider delegating that responsibility to a separate class.
If you really want to model an inheritance pattern (e.g. EmailAddress "is a" Address), then you'll need to get away from enums. You could just use some static fields to simulate the enum pattern, but have each of them be an instance of a specific class.
I will be the one to say it. This is an awful idea.
You should use enum types any time you need to represent a fixed set of constants. That includes natural enum types such as the planets in our solar system and data sets where you know all possible values at compile timeā€”for example, the choices on a menu, command line flags, and so on. source
The enum does not care about anything else except the hard coded values inside. Typically when one decides to group things in an Object Oriented way, they make sure that all of the objects are related. By virtue of being an enum these files are no more related than two classes that are subtypes of Object. If you are looking to have shared functionality between all enums in your domain you will want to look at some static functions, or a utility class as it is often referred to (this has its own series of issues at the end of the day). Essentially the class will have a series of functions that encapsulate all the shared logic, the signature will generally look like so:
function foo(Enum enumeration)
There's not much you can do in this case, and even in a more complex example, the best place to put common code might be in a utility class that all the enums could use, or in a separate class that would be included in the enums via composition (each enum would have an instance of that class, perhaps called Keyword).
If the code for the toString method were complex and you didn't want to restate it in each enum, or move it to a contained object, Java 8 has a mechanism that you could use. It is overkill in this example. You could define an interface that your enums would all use. The state (keyword) must still live in your enums, since interfaces cannot have state, but starting with Java 8 you can provide default implementations of methods:
public interface Common {
String getKeyword();
String toString() default {
return getKeyword();
}
String toDescriptiveString() default {
char firstLetter = getKeyword().charAt(0);
boolean vowel =
firstLetter == 'a' || firstLetter == 'e' ||
firstLetter == 'i' || firstLetter == 'o' ||
firstLetter == 'u' || firstLetter == 'x';
// the letter x is pronounced with an initial vowel sound (eks)
return (vowel?"an ":"a ") + getKeyword() + " address";
}
}
Your enums would implement this interface:
public enum AddressSubType implements Common {
DOM("dom"), INTL("intl"), POSTAL("postal");
private final String keyword;
private AddressSubType(String keyword) {
this.keyword = keyword;
}
#Override
public String getKeyword() {
return keyword;
}
#Override
public String toString() {
return Common.super.toString();
}
}
public enum EmailSubType implements Common {
INTERNET("internet"), X400("x.400");
private final String keyword;
private EmailSubType(String keyword) {
this.keyword = keyword;
}
#Override
public String getKeyword() {
return keyword;
}
#Override
public String toString() {
return Common.super.toString();
}
}
Notice the strange new syntax in the toString methods. The rule for default methods in interfaces is that method resolution always prefers class methods over interfaces. So even though we provide a default implementation of toString in Common, the one in the enum will take precedence, and the one in Object would if there wasn't one in the enum. So if you want to use a default method from an interface that supersedes one of the methods from Object (like toString, or hashCode, or equals), then you have to call it explicitly with this new interface.super.method() syntax.
We don't have to jump through any extra hoops for the toDescriptiveString method, though. That one is brand new in interface Common, and it isn't provided by our enums, so they get the default implementation provided by the interface. (If they wanted to override it with their own method, they could, just like any other inherited method.)
We can use the default methods like any other methods of an object, of course:
public class Test {
public static void main(String[] args) {
for (AddressSubType a : AddressSubType.values()) {
System.out.println(a.toDescriptiveString());
}
for (EmailSubType e : EmailSubType.values()) {
System.out.println(e.toDescriptiveString());
}
}
}
Which prints out:
a dom address
an intl address
a postal address
an internet address
an x.400 address
In this case, however, if it wasn't for the rather verbose toDescriptiveString method, the enum classes wouldn't be a bit shorter with interface Common than they would be without. Default methods in interfaces will really shine when it comes to adding new functionality to existing interfaces, something not possible without breaking all implementers of an interface in previous versions of Java.
All of this is based on the as-yet-incomplete Java SE 8 with Lambda. You can download a pre-release build, but be aware that it is a work in progress.

What would be the best way to implement a constant object?

First of all I should probably say that the term 'constant object' is probably not quite right and might already mean something completely different from what I am thinking of, but it is the best term I can think of to describe what I am talking about.
So basically I am designing an application and I have come across something that seems like there is probably an existing design pattern for but I don't know what it is or what to search for, so I am going to describe what it is I am trying to do and I am looking for suggestions as to the best way to implement it.
Lets say you have a class:
public class MyClass {
private String name;
private String description;
private int value;
public MyClass(String name, String description, int value) {
this.name = name;
this.description = description;
this.value = value;
}
// And I guess some getters and setters here.
}
Now lets say that you know in advance that there will only ever be say 3 instances of this class, and the data is also known in advance (or at least will be read from a file at runtime, and the exact filename is known in advance). Basically what I am getting at is that the data is not going to be changed during runtime (once it has been set).
At first I thought that I should declare some static constants somewhere, e.g.
public static final String INSTANCE_1_DATA_FILE = "path/to/instance1/file";
public static final String INSTANCE_2_DATA_FILE = "path/to/instance2/file";
public static final String INSTANCE_3_DATA_FILE = "path/to/instance3/file";
public static final MyClass INSTANCE_1 = new MyClass(getNameFromFile(INSTANCE_1_DATA_FILE), getDescriptionFromFile(INSTANCE_1_DATA_FILE), getValueFromFile(INSTANCE_1_DATA_FILE));
public static final MyClass INSTANCE_2 = new MyClass(getNameFromFile(INSTANCE_2_DATA_FILE), getDescriptionFromFile(INSTANCE_2_DATA_FILE), getValueFromFile(INSTANCE_2_DATA_FILE));
public static final MyClass INSTANCE_3 = new MyClass(getNameFromFile(INSTANCE_3_DATA_FILE), getDescriptionFromFile(INSTANCE_3_DATA_FILE), getValueFromFile(INSTANCE_3_DATA_FILE));
Obvisouly now, whenever I want to use one of the 3 instances I can just refer directly to the constants.
But I started thinking that there might be a cleaner way to handle this and the next thing I thought about was doing something like:
public MyClassInstance1 extends MyClass {
private static final String FILE_NAME = "path/to/instance1/file";
public String getName() {
if (name == null) {
name = getNameFromFile(FILE_NAME);
}
return name;
}
// etc.
}
Now whenever I want to use the instances of MyClass I can just use the one I want e.g.
private MyClass myInstance = new MyClassInstance2();
Or probably even better would be to make them singletons and just do:
private MyClass myInstance = MyClassInstance3.getInstance();
But I can't help but think that this is also not the right way to handle this situation. Am I overthinking the problem? Should I just have a switch statement somewhere e.g.
public class MyClass {
public enum Instance { ONE, TWO, THREE }
public static String getName(Instance instance) {
switch(instance) {
case ONE:
return getNameFromFile(INSTANCE_1_DATA_FILE);
break;
case TWO:
etc.
}
}
}
Can anyone tell me the best way to implement this? Note that I have written the sample code in Java because that is my strongest language, but I will probably be implementing the application in C++, so at the moment I am more looking for language independent design patterns (or just for someone to tell me to go with one of the simple solutions I have already mentioned).
If you want the values to be constant, then you will not need setters, otherwise code can simply change the values in your constants, making them not very constant. In C++, you can just declare the instances const, although I'd still get rid of the setters, since someone could always cast away the const.
The pattern looks ok, although the fact that you are creating a new instance each time one is requested, is not usual for constants.
In java, you can create enums that are "smart" e.g.
public enum MyClass {
ONE(INSTANCE_1_DATA_FILE),
TWO(INSTANCE_2_DATA_FILE),
//etc...
private MyClass(String dataFile)
{
this(getNameFromDataFile(dataFile), other values...)
}
private MyClass(String name, String data, etc...)
{
this.name = name;
// etc..
}
public String getName()
{
return name;
}
}
In C++, you would create your MyClass, with a private constructor that takes the filename and whatever else it needs to initialize, and create static const members in MyClass for each instance, with the values assigned a new instance of MyClass created using the private constructor.
EDIT: But now I see the scenario I don't think this is a good idea having static values. If the types of ActivityLevel are fundamental to your application, then you can enumerate the different type of activity level as constants, e.g. a java or string enum, but they are just placeholders. The actual ActivityDescription instances should come from a data access layer or provider of some kind.
e.g.
enum ActivityLevel { LOW, MED, HIGH }
class ActivityDescription
{
String name;
String otherDetails;
String description; // etc..
// perhaps also
// ActivityLevel activityLevel;
// constructor and getters
// this is an immutable value object
}
interface ActivityDescriptionProvider
{
ActivityDescription getDescription(ActivityLevel activityLevel);
}
You can implement the provider using statics if you want, or an enum of ActivityDescription instnaces, or better still a Map of ActivityLevel to ActivityDescription that you load from a file, fetch from spring config etc. The main point is that using an interface to fetch the actual description for a given ActivityLevel decouples your application code from the mechanics of how those descriptions are produced in the system. It also makes it possible to mock the implementation of the interface when testing the UI. You can stress the UI with a mock implementation in ways that is not possible with a fixed static data set.
Now lets say that you know in advance that there will only ever be say 3 instances of this class, and the data is also known in advance (or at least will be read from a file at runtime, and the exact filename is known in advance). Basically what I am getting at is that the data is not going to be changed during runtime (once it has been set).
I'd use an enum. And then rather in this flavor:
public enum MyEnum {
ONE("path/to/instance1/file"),
TWO("path/to/instance2/file"),
THREE("path/to/instance3/file");
private String name;
private MyEnum(String name) {
this.name = name;
}
public String getName() {
return name;
}
}
Which can be used as follows:
MyEnum one = MyEnum.ONE;
String name = one.getName();
(I'm too slow once again, you already accepted an answer, but here it is anyway...)
You want to (a) prevent changes to the data held in objects of MyClass, and (b) allow only a fixed set of MyClass objects to exist, implying that runtime code should not be able to create new instances of MyClass.
Your initial example has a public constructor, which violates (b)
I'd use a Factory approach so the Factory is the only thing that can create instances, and the class doesn't provide any setters so it's immutable.
Depending on how much flexibility you want for the future, you could put the factory and the class in the same package and limit scope that way, or you could make MyClass an inner class within the factory. You may also consider making MyClass an interface separate from its implementation.
A properties file could be used to configure the factory itself.
The properties file (e.g. "foo.properties") could look something like
one=/path/to/datafile1
two=/another/path/to/datafile2
three=/path/to/datafile3
I use "Foo" instead of "MyClass" in the (Java) examples below.
public class FooFactory
{
/** A place to hold the only existing instances of the class */
private final Map<String, Foo> instances = new HashMap<String, Foo>();
/** Creates a factory to manufacture Foo objects */
// I'm using 'configFile' as the name of a properties file,
// but this could use a Properties object, or a File object.
public FooFactory(String configfile)
{
Properties p = new Properties();
InputStream in = this.getClass().getResourceAsStream();
p.load(in); // ignoring the fact that IOExceptions can be thrown
// Create all the objects as specified in the factory properties
for (String key : p.keys())
{
String datafile = p.getProperty(key);
Foo obj = new Foo(datafile);
instances.put(key, obj);
}
}
public Foo getFoo(String which)
{
return instances.get(which);
}
/** The objects handed out by the factory - your "MyClass" */
public class Foo
{
private String name;
private String description;
private int value;
private Foo(String datafile)
{
// read the datafile to set name, description, and value
}
}
}
You're set to allow only your predefined instances, which can't be changed at runtime, but you can set it all up differently for another run at a later time.
Your first method seems to me like the best and the least prone to code rot. I'm not impressed by the idea of subclassing an object just to change the file name that contains the data that will be used to build it.
Of course, you could maybe improve on your original idea by wrapping these all in an outer class that provides some sort of enumeration access. A collection of MyClass's in other words. But I think you should discard this subclassing idea.
First, you really should be limiting where you use these instances in the code. Use them in as few places as possible. Given these are file names, I expect you want three class instances which accesses the files. How many classes are required depends on what your want to do with them? Look at the Singleton pattern for these classes.
Now you don't need the constants, but could have a helper class which will read the file containing the file names and supply them to the reader class. The code to find then name could also be a method called by the static initializer of the Singleton.
The common approach is to use a map:
private static final Map<String, YouClass> mapIt =
new HashMap<String, YouClass>(){{
put("one", new YourClass("/name", "desc", 1 )),
put("two", new YourClass("/name/two", "desc2", 2 )),
put("three", new YourClass("/name/three", "desc", 3 ))
}}
public static YourClass getInstance( String named ) {
return mapIt.get( named );
}
Next time you need it:
YouClass toUse = YourClass.getInstance("one");
Probably using strings as keys is not the best option but you get the idea.

Categories