Will http resume after network down? - java

I am testing Http connection and I found that the behavior is weird. I want to test whether the http connect will continue after network is enabled/disabled. The only way for me to test this is to disable the network adapter.
For example, before I press the button to startup a http connection, I disable the network adapter first, after the code perform http.connect(), I re-enable the network adapter back (within the allowed timeout), but at last, the timeout still thrown, I thought the connect will be still valid before timeout ?
How do you all handle this issue since nowadays mobile app (android, IOS) will need to overcome a lot of network down when 3G is not available for a short-while.

Yes and no.
Actually this depends on so many different components that an answer is very hard.
One working example: Consider a network connection is established, then it goes down and is restarted. Still there are packets on the way and reach the target after restart. Now it is possible that the error correction systems in TCP simply catches up and connection goes on. Remove Ethernet cable from a computer and reconnect it some seconds later and you will see this works. BUT: Usually mobile devices get a new IP for reconnects which makes that impossible.
In between your device and the network are many components including routers, transparent proxies, firewalls and so on. All of these have different timeouts, some sent messages which can stop or drop connections, some don't. Some even block such messages. So while it is possible it is not reliable.
Your example: When you do a connect() when the network is down, I would expect an immediate refusal usually. But maybe DNS causes a delay here, so you get a timeout instead. I doubt there are cases where a connect() during a downtime will continue by itself when line is online again.

Related

How can I create a "soft" broken TCP connection, as if networking hardware had silently disconnected the stream?

I've got a Java program that opens a TCP stream and connects to a listening port on a remote server. I send a request to the server and I receive a response. I then let the stream sit idle for 60 minutes. At that point if I write a new request it will not arrive at the server. In short order TCP/IP will let me know that the connection has gone away.
My client code is running on a Windows laptop which is connected to a corporate environment via a VPN router. The server is whirring away up in Canada, far away from me here in central Massachusetts USA. I'm likely being routed through multiple pieces of networking equipment. I have no idea which one is causing the stream to break. (I keep thinking of Ghostbusters and "Don't cross the streams!")
What is the best term to use when a piece of equipment specifically "forgets" about a TCP connection which has been idle, causing it to break? Is that half-open, half-closed, or just plain gone?
I want to be able to simulate this timeout scenario entirely within my home lab so that I can perform easier testing -- for example where I don't have to wait for 60 minutes! What's a good technique, and what is the appropriate equipment I should use to simulate this "disconnect"? I've got extra switches here at home, as well as one old (and fiesty!) WRT router that could use some lovin'.
I do not want to enable keepalive to mask the problem. Keepalive won't prevent all possible stream disconnection scenarios, AFAIK. I want to do the best that I can at letting the problem occur and handling it quickly and cleanly when it does.
Thank you very much,
Bill S

Apache Mina, How to detect when you're sending messages using an invalid socket to the client side?

I have a server setup using MINA version 2.
I don't have much experience with sockets and tcp.
The problem is if I make a connection to my server, and then unplug my internet and close the connection, (Server doesn't get notification of the connection being closed) the server will forever think that my connection is still active and valid.
The server will continue to send messages to my connection, and doesn't throw any exceptions even though there is nothing on my computer binded to the local port.
How can I test that the connection still exists?
I've tried running MINA logging in debug mode, and logging the
IoSession.isConnected() IoSession.isActive IoSession.isClosing
They always return true, true, false. Also, in debug mode, there was no useful information stating that the connection was lost. It just logged the regular "sent message" stuff, as if there was nothing wrong.
From using Flash actionscript, I have had experiences where flash will throw errors that it's operating on an invalid socket. That leads me to believe that it's saying the socket on the server is no longer valid for the connection. So in other words if flash can detect invalid sockets, a Java server should be able to detect it too correct?
If there is truly no way to detect dead connections, I can always setup a connection keep alive routine where the client is constantly sending an "I'm here" message to the server, and the server closes sessions that havent had an incoming message for a period of seconds.
EDIT: After learning that "sockets" are private and never shared over the network I managed to find better results for my issue and I found this SO thread.
Java socket API: How to tell if a connection has been closed?
Unfortunately
IOException 'Connection reset by peer' Doesn't occur when I write to
the IoSession in MINA.
Edit:
Is there any way at all in Java to detect when an ACK to a TCP packet was not received after sending a packet? An ACK Timeout?
Edit:
Yet apparantly, my computer should send a RST to the server? According to this answer. https://stackoverflow.com/a/1434592/4425643
But that seems like a bad way of port scanning. Is this how port scanning works? Port scanners send data to a port and the victim's service responds with a RST? Sorry I think I need a new question for all this. But it's odd that MINA doesn't throw connection reset by peer when it sends data. So then my computer doesn't send a RST.
The concept of socket or connection in Internet protocols is an illusion. It's a convenient abstraction that is provided to you by the operating system and the TCP stack, but in reality, it's all fake.
Under the hood, everything on the Internet takes the form of individual packets.
From the perspective of a computer sending packets to another computer, there is no built-in way to know whether that computer is actually receiving the packets, unless that computer (or some other computer in between, like a router) tells you that the packets were, or were not, received.
From the perspective of a computer expecting to receive packets from another computer, there is no way to know in advance whether any packets are coming, will ever come, or in what order -- until they actually arrive. And once they arrive, just the fact that you received one packet does not mean you'll receive any more in the future.
That's why I say connections or sockets are an illusion. The way that the operating system determines whether a connection is "alive" or not, is simply by waiting an arbitrary amount of time. After that amount of time -- called a timeout -- if one side of the TCP connection doesn't hear back from the other side, it will just assume that the other end has been disconnected, and arbitrarily set the connection status to "closed", "dead" or "terminated" ("timed out").
So:
Your server has no clue that you've pulled the plug on your Internet connection. It has no way of knowing that.
Your server's TCP stack has been configured a certain way to wait an arbitrary amount of time before "giving up" on the other end if no response is received. If this timeout is set to a very large period of time, it may appear to you that your server is hanging on to connections that are no longer valid. If this bothers you, you should look into ways to decrease the timeout interval.
Analogy: If you are on a phone call with someone, and there's a very real risk of them being hurt or killed, and you are talking to them and getting them to answer, and then the phone suddenly goes dead..... Well, how long do you wait? At what point do you assume the other person has been hurt or killed? If you wait a couple milliseconds, in most cases that's too short of a "timeout", because the other person could just be listening and thinking of how to respond. If you wait for 50 years, the person might be long dead by then. So you have to set a reasonable timeout value that makes sense.
What you want is a KeepAlive, heartbeat, or ping.
As per #allquicatic's answer, there's no completely reliable built-in method to do this in TCP. You'll have to implement a method to explicitly ask the client "Are you still there?" and await an answer for a specified amount of time.
https://en.wikipedia.org/wiki/Keepalive
A keepalive (KA) is a message sent by one device to another to check that the link between the two is operating, or to prevent this link from being broken.
https://en.wikipedia.org/wiki/Heartbeat_(computing)
In computer science, a heartbeat is a periodic signal generated by hardware or software to indicate normal operation or to synchronize other parts of a system.[1] Usually a heartbeat is sent between machines at a regular interval in the order of seconds. If a heartbeat isn't received for a time—usually a few heartbeat intervals—the machine that should have sent the heartbeat is assumed to have failed.[2]
The easiest way to implement one is to periodically send an arbitrary piece of data - e.g. a null command. A properly programmed TCP stack will timeout if an ACK is not received within its specified timeout period, and then you'll get a IOException 'Connection reset by peer'
You may have to manually tune the TCP parameters, or implement your own functionality if you want more fine-grained control than the default timeout.
The TCP framework is not exposed to Java. And Java does not provide a means to edit TCP configuration that exists on the OS level.
This means we cannot use TCP keep alive in Java efficiently because we can't change its default configuration values. Furthermore we can't set the timeout for not receiving an ACK for a message sent. (Learn about TCP to discover that every message sent will wait for an ACK (acknowledgement) from the peer that the message has been successfully delivered.)
Java can only throw exceptions for cases such as a timeout for not completing the TCP handshake in a custom amount of time, a 'Connection Reset by Peer' exception when a RST is received from the peer, and an exception for an ACK timeout after whatever period of time that may be.
To dependably track connection status, you must implement your own Ping/Pong, Keep Alive, or Heartbeat system as #Dog suggested in his answer. (The server must poll the client to see if it's still there, or the client has to continuosly let the server know it's still there.)
For example, configure your client to send a small packet every 10 seconds.
In MINA, you can set a session reader idle timeout, which will send an event when a session reader has been idle for a period of time. You can terminate that connection on delivery of this event. Setting the reader timeout to be a bit longer than the small packet interval will account for random high latency between the client and server. For example, a reader idle timeout of 15 seconds would be lenient in this case.
If your server will rarely experience session idling, and you think you can save bandwidth by polling the client when the session has gone idle, look into using the Apache MINA Keep Alive Filter.
https://mina.apache.org/mina-project/apidocs/org/apache/mina/filter/keepalive/KeepAliveFilter.html

Android Wi-Fi Direct: re-connect to a device without re-Discovery

I know how Wi-Fi Direct works and what is the Discovery phase, because i read the entire Wi-Fi Direct specification v1.1.
When i want to connect to a device in Android, i must start the discovery phase. When onPeersAvailable in triggered, i can connect to one of these peers.
Now i want to disconnect and re-connect quickly to the same peer, without to re-execute the discovery.
This scenario is possible? For example saving channel information and using java reflection to set the channel and start quickly the connection?
I know, it's a strage question :)
its valid question, and it appears that when starting the connection, the connected device must be on current discovered peers list, and it is is not, then the connection requests will fail. Thus you can do the connection only after proper discovery.

Detecting TCP dropout over an unreliable network

I am doing some experimentation over an unreliable radio network (home brewed) using very rudimentary java socket programming to transfer messages back and forth between the end nodes.
The setup is as follows:
Node A --- Relay Node --- Node B
One problem I am constantly running into is that somehow the connection drops out and neither Node A or B knows that the link is dead, and yet continues to transmit data. The TCP connection does not time out either. I have added in a heartbeat message that causes a timeout after a while, but I still would like to know what is the underlying cause of why TCP does not time out.
Here are the options I am enabling when setting up a socket:
channel.socket().setKeepAlive(false);
channel.socket().setTrafficClass(0x08); // for max throughput
This behavior is strange since it is totally different than when I have a wired network. On a wired network, I can simulate a disconnected connection by pulling out the ethernet cord, however, once I plug the cord back in, the connection becomes restablished and messages begin to be passed through once more.
On the radio network, the connection is never reestablished and once it silently dies, the messages never resume.
Is there some other unknown java implentation or setting for a socket that I can use, also, why am I seeing this behavior in the first place?
And yes, before anyone says anything, I know TCP is not the preffered choice over an unreliable network, but in this case I wanted to ensure no packet loss.
The TCP protocol was designed to be quiet. The RFC requires keepalive heartbeat no more frequent than 2 hours. Unless you have control over the system on both ends to change the default 2 hour heartbeat (sometimes, it requires kernel rebuild), you have to add heartbeat in your own app.
If you send heartbeat, it still needs to wait till Retransmit Timeout, which varies depending on the RTT. On a high-latency network, the timeout can be very high but it should be within minutes.
You get notification on local network because the system can detect link-down status and drop all connections on that network.
BTW, you want set Keepalive to TRUE, instead of false. With Keepalive, you at least get the slow heartbeat.
In the OSI 7-layer model, the first two layers are physical and data link. Your physical hardware running the data link protocol on wired ethernet can detect when the cable is pulled. Your wireless hardware, and corresponding protocol, probably not so much. The TCP stack can't do anything to timeout if the layer1/2 stuff isn't signaling that it is disconnected.
Define 'never'?
I expect you will be notified by a send failing eventually. You're probably just expecting to be notified sooner than you will be. The TCP stack will be retransmitting segments that it doesn't get ACKs for and the timeout before retransmission for each attempt is doubled each time it retransmits. Depending on how the stack is working out when to retransmit it's probably going to be longer than you're expecting before the stack will decide that the connection is broken and only then will it let you know.
See here: http://www.ietf.org/rfc/rfc2988.txt, here: http://msdn.microsoft.com/en-us/library/ms819737.aspx, etc.
You're used to having a wired network where the drivers can notify higher level layers that the connection has been physically broken. If you were to configure a wired network to route via a router which you then deliberately set up to not route correctly then you'd probably see similar behaviour....

polling a HTTP server from J2ME client

I have a J2ME app running on my mobile phone(client),
I would like to open an HTTP connection with the server and keep polling for updated information on the server.
Every poll performed will use up GPRS bytes and would turn out expensive in the long run, as GPRS billing is based on packets sent and received.
Is there a byte efficient way of polling using the HTTP protocol?.
I have also heard of long polling, But I am not sure how it works and how efficient it would be.
Actually the preffered way would be for the Server to tell the phone app that new data is ready to be used that way polling won't be needed to be done, however I don't know of these techniques especially in J2ME.
If you want solve this problem using HTTP only, long polling would be the best way. It's fairly easy. First you need to setup an URL on server side for notification (e.g. http://example.com/notify), and define a notification protocol. The protocol can be as simply as some text lines and each line is an event. For example,
MSG user1
PHOTO user2 album1
EMAIL user1
HEARTBEAT 300
The polling thread on the phone works like this,
Make a HTTP connection to notification URL. In J2ME, you can use GCF HttpConnection.
The server will block if no events to push.
If the server responds, get each line and spawn a new thread to notify the application and loopback to #1.
If the connection closes for any reason, sleep for a while and go back to step 1.
You have to pay attention to following implementation details,
Tune HTTP timeouts on both client and server. The longer the timeout, the more efficient. Timed out connection will cause a reconnect.
Enable HTTP keepalive on both the phone and the server. TCP's 3-way handshake is expensive in GPRS term so try to avoid it.
Detect stale connections. In mobile environments, it's very easy to get stale HTTP connections (connection is gone but polling thread is still waiting). You can use heartbeats to recover. Say heartbeat rate is 5 minutes. Server should send a notification in every 5 minutes. If no data to push, just send HEARTBEAT. On the phone, the polling thread should try to close and reopen the polling connection if nothing received for 5 minutes.
Handling connectivity errors carefully. Long polling doesn't work well when there are connectivity issues. If not handled properly, it can be the deal-breaker. For example, you can waste lots of packets on Step 4 if the sleep is not long enough. If possible, check GPRS availability on the phone and put the polling thread on hold when GPRS is not available to save battery.
Server cost can be very high if not implemented properly. For example, if you use Java servlet, every running application will have at least one corresponding polling connection and its thread. Depending on the number of users, this can kill a Tomcat quickly :) You need to use resource efficient technologies, like Apache Mina.
I was told there are other more efficient ways to push notifications to the phone, like using SMS and some IP-level tricks. But you either have to do some low level non-portable programming or run into risks of patent violations. Long polling is probably the best you can get with a HTTP only solution.
I don't know exactly what you mean by "polling", do you mean something like IMAP IDLE?
A connection stays open and there is no overhead for building up the connection itself again and again. As stated, another possible solution is the HEAD Header of a HTTP Request (forgot it, thanks!).
Look into this tutorial for the basic of HTTP Connections in J2ME.
Pushing data to an application/device without Push Support (like a Blackberry) is not possible.
The HEAD HTTP request is the method that HTTP provides if you want to check if a page has changed or not, it is used by browsers and proxy servers to check whether a page has been updated or not without consuming much bandwidth.
In HTTP terms, the HEAD request is the same as GET without the body, I assume this would be only a couple hundred bytes at most which looks acceptable if your polls are not very frequent.
The best way to do this is to use socket connection. Many application like GMail use them.

Categories