Parameter of method in interface (without generics)? - java

I'm completely stuck with my amateur project. I've got MySingleton that implements MyInterface and calls MyMethod(). MyMethod() should take any of MySubcls as a parameter. The problem is how to declare MyMethod() without generics? Should use many declarations with differernt parameters or no way without generics?
Main.java => need to print values of all subclasses from single method
public class Main{
public static void main(String[] args){
MySubcls01 subCls01 = new MySubcls01();
MySubcls02 subCls02 = new MySubcls02();
MySingleton.INSTANCE.MyMethod(subCls01);
MySingleton.INSTANCE.MyMethod(subCls02);
}
}
enum MySingleton implements MyInterface
{
INSTANCE;
#Override
public void MyMethod();// TODO - need to pass subCls01 or subCls02
{
System.out.println(subCls01.value);
System.out.println(subCls02.value);
}
}
interface MyInterface
{
void MyMethod(); // TODO - what parameter for any subclass???
// void MyMethod(MySubcls01 subCls01);
// void MyMethod(MySubcls02 subCls02); => brute-force approach
// <T> void MyMethod(T type); => shouldn't use generics
}
class MySupercls
{
// some stuff
}
class MySubcls01 extends MySupercls
{
String subValue = "i'm from subclass01";
}
class MySubcls02 extends MySupercls
{
String subValue = "i'm from subclass02";
}

I think you need to use superclass type as parameter and use instanceof to determine real type.
Example:
#Override
public void MyMethod(MySupercls inst)// TODO - need to pass subCls01 or subCls02
{
if (inst instanceof MySubcls01)
{
//cast it subclass01
System.out.println(subCls01.value);
}else{
//cast it subclass02
System.out.println(subCls02.value);
}
}
Note: Your code has public void MyMethod(); while implementing method. You should remove semi-colon.

If I understand your question correctly, you should be expecting a type common to both MySubcls01 and MySubcls02, in this case MySupercls.
So, you should have MyMethod(MySupercls obj); as your method signature.

use superclass as a parameter, now you can pass all the subclass instances to myMethod()
public void MyMethod(MySuperClass yourInstance);// TODO - need to pass subCls01 or subCls02

Related

Inline Java method defined for a class is not available when calling the object [duplicate]

Is there any Java syntax to access new methods defined within anonymous inner classes from outer class? I know there can be various workarounds, but I wonder if a special syntax exist?
For example
class Outer {
ActionListener listener = new ActionListener() {
#Override
void actionPerformed(ActionEvent e) {
// do something
}
// method is public so can be accessible
public void MyGloriousMethod() {
// viva!
}
};
public void Caller() {
listener.MyGloriousMethod(); // does not work!
}
}
MY OWN SOLUTION
I just moved all methods and members up to outer class.
Once the anonymous class instance has been implicitly cast into the named type it can't be cast back because there is no name for the anonymous type. You can access the additional members of the anonymous inner class through this within the class, in the expression immediate after the expression and the type can be inferred and returned through a method call.
Object obj = new Object() {
void fn() {
System.err.println("fn");
}
#Override public String toString() {
fn();
return "";
}
};
obj.toString();
new Object() {
void fn() {
System.err.println("fn");
}
}.fn();
identity(new Object() {
void fn() {
System.err.println("fn");
}
}).fn();
...
private static <T> T identity(T value) {
return value;
}
A student in my class asked our professor if this could be done the other day. Here is what I wrote as a cool proof of concept that it CAN be done, although not worth it, it is actually possible and here is how:
public static void main(String[] args){
//anonymous inner class with method defined inside which
//does not override anything
Object o = new Object()
{
public int test = 5;
public void sayHello()
{
System.out.println("Hello World");
}
};
//o.sayHello();//Does not work
try
{
Method m = o.getClass().getMethod("sayHello");
Field f = o.getClass().getField("test");
System.out.println(f.getInt(o));
m.invoke(o);
} catch (Exception e)
{
e.printStackTrace();
}
}
By making use of Java's Method class we can invoke a method by passing in the string value and parameters of the method. Same thing can be done with fields.
Just thought it would be cool to share this!
Your caller knows listener as an ActionListener and therefore it doesn't know anything about that new method. I think the only way to do this (other than doing reflection gymnastics, which really would defeat the purpose of using an anonymous class, i.e. shortcut/simplicity) is to simply subclass ActionListener and not use an anonymous class.
Funny enough, this is now allowed with var construct (Java 10 or newer). Example:
var calculator = new Object() {
BigDecimal intermediateSum = BigDecimal.ZERO;
void calculate(Item item) {
intermediateSum = Numbers.add(intermediateSum, item.value);
item.sum= intermediateSum;
}
};
items.forEach(calculator::calculate);
Here with method reference, but works with dot method call as well, of course. It works with fields as well. Enjoy new Java. :-)
I found more tricks with var and anonymous classes here: https://blog.codefx.org/java/tricks-var-anonymous-classes/
No, it's imposible. You would need to cast the ActionListener to its real subclass name, but since it's anonymous, it doesn't have a name.
The right way to do it is using reflection:
import java.lang.reflect.InvocationTargetException;
public class MethodByReflectionTest {
public static void main(String[] args) throws IllegalAccessException, IllegalArgumentException, InvocationTargetException, NoSuchMethodException, SecurityException {
Object obj = new Object(){
public void print(){
System.out.println("Print executed.");
}
};
obj.getClass().getMethod("print", null).invoke(obj, null);
}
}
You can check here: How do I invoke a Java method when given the method name as a string?
Yes you can access the method see the example below if any doubt please comment
package com;
interface A
{
public void display();
}
public class Outer {
public static void main(String []args)
{
A a=new A() {
#Override
public void display() {
System.out.println("Hello");
}
};
a.display();
}
}

How do I access a superclass method in java if it has already been overridden by a subclass? [duplicate]

I read this question and thought that would easily be solved (not that it isn't solvable without) if one could write:
#Override
public String toString() {
return super.super.toString();
}
I'm not sure if it is useful in many cases, but I wonder why it isn't and if something like this exists in other languages.
What do you guys think?
EDIT:
To clarify: yes I know, that's impossible in Java and I don't really miss it. This is nothing I expected to work and was surprised getting a compiler error. I just had the idea and like to discuss it.
It violates encapsulation. You shouldn't be able to bypass the parent class's behaviour. It makes sense to sometimes be able to bypass your own class's behaviour (particularly from within the same method) but not your parent's. For example, suppose we have a base "collection of items", a subclass representing "a collection of red items" and a subclass of that representing "a collection of big red items". It makes sense to have:
public class Items
{
public void add(Item item) { ... }
}
public class RedItems extends Items
{
#Override
public void add(Item item)
{
if (!item.isRed())
{
throw new NotRedItemException();
}
super.add(item);
}
}
public class BigRedItems extends RedItems
{
#Override
public void add(Item item)
{
if (!item.isBig())
{
throw new NotBigItemException();
}
super.add(item);
}
}
That's fine - RedItems can always be confident that the items it contains are all red. Now suppose we were able to call super.super.add():
public class NaughtyItems extends RedItems
{
#Override
public void add(Item item)
{
// I don't care if it's red or not. Take that, RedItems!
super.super.add(item);
}
}
Now we could add whatever we like, and the invariant in RedItems is broken.
Does that make sense?
I think Jon Skeet has the correct answer. I'd just like to add that you can access shadowed variables from superclasses of superclasses by casting this:
interface I { int x = 0; }
class T1 implements I { int x = 1; }
class T2 extends T1 { int x = 2; }
class T3 extends T2 {
int x = 3;
void test() {
System.out.println("x=\t\t" + x);
System.out.println("super.x=\t\t" + super.x);
System.out.println("((T2)this).x=\t" + ((T2)this).x);
System.out.println("((T1)this).x=\t" + ((T1)this).x);
System.out.println("((I)this).x=\t" + ((I)this).x);
}
}
class Test {
public static void main(String[] args) {
new T3().test();
}
}
which produces the output:
x= 3
super.x= 2
((T2)this).x= 2
((T1)this).x= 1
((I)this).x= 0
(example from the JLS)
However, this doesn't work for method calls because method calls are determined based on the runtime type of the object.
I think the following code allow to use super.super...super.method() in most case.
(even if it's uggly to do that)
In short
create temporary instance of ancestor type
copy values of fields from original object to temporary one
invoke target method on temporary object
copy modified values back to original object
Usage :
public class A {
public void doThat() { ... }
}
public class B extends A {
public void doThat() { /* don't call super.doThat() */ }
}
public class C extends B {
public void doThat() {
Magic.exec(A.class, this, "doThat");
}
}
public class Magic {
public static <Type, ChieldType extends Type> void exec(Class<Type> oneSuperType, ChieldType instance,
String methodOfParentToExec) {
try {
Type type = oneSuperType.newInstance();
shareVars(oneSuperType, instance, type);
oneSuperType.getMethod(methodOfParentToExec).invoke(type);
shareVars(oneSuperType, type, instance);
} catch (Exception e) {
throw new RuntimeException(e);
}
}
private static <Type, SourceType extends Type, TargetType extends Type> void shareVars(Class<Type> clazz,
SourceType source, TargetType target) throws IllegalArgumentException, IllegalAccessException {
Class<?> loop = clazz;
do {
for (Field f : loop.getDeclaredFields()) {
if (!f.isAccessible()) {
f.setAccessible(true);
}
f.set(target, f.get(source));
}
loop = loop.getSuperclass();
} while (loop != Object.class);
}
}
I don't have enough reputation to comment so I will add this to the other answers.
Jon Skeet answers excellently, with a beautiful example. Matt B has a point: not all superclasses have supers. Your code would break if you called a super of a super that had no super.
Object oriented programming (which Java is) is all about objects, not functions. If you want task oriented programming, choose C++ or something else. If your object doesn't fit in it's super class, then you need to add it to the "grandparent class", create a new class, or find another super it does fit into.
Personally, I have found this limitation to be one of Java's greatest strengths. Code is somewhat rigid compared to other languages I've used, but I always know what to expect. This helps with the "simple and familiar" goal of Java. In my mind, calling super.super is not simple or familiar. Perhaps the developers felt the same?
There's some good reasons to do this. You might have a subclass which has a method which is implemented incorrectly, but the parent method is implemented correctly. Because it belongs to a third party library, you might be unable/unwilling to change the source. In this case, you want to create a subclass but override one method to call the super.super method.
As shown by some other posters, it is possible to do this through reflection, but it should be possible to do something like
(SuperSuperClass this).theMethod();
I'm dealing with this problem right now - the quick fix is to copy and paste the superclass method into the subsubclass method :)
In addition to the very good points that others have made, I think there's another reason: what if the superclass does not have a superclass?
Since every class naturally extends (at least) Object, super.whatever() will always refer to a method in the superclass. But what if your class only extends Object - what would super.super refer to then? How should that behavior be handled - a compiler error, a NullPointer, etc?
I think the primary reason why this is not allowed is that it violates encapsulation, but this might be a small reason too.
I think if you overwrite a method and want to all the super-class version of it (like, say for equals), then you virtually always want to call the direct superclass version first, which one will call its superclass version in turn if it wants.
I think it only makes rarely sense (if at all. i can't think of a case where it does) to call some arbitrary superclass' version of a method. I don't know if that is possible at all in Java. It can be done in C++:
this->ReallyTheBase::foo();
At a guess, because it's not used that often. The only reason I could see using it is if your direct parent has overridden some functionality and you're trying to restore it back to the original.
Which seems to me to be against OO principles, since the class's direct parent should be more closely related to your class than the grandparent is.
Calling of super.super.method() make sense when you can't change code of base class. This often happens when you are extending an existing library.
Ask yourself first, why are you extending that class? If answer is "because I can't change it" then you can create exact package and class in your application, and rewrite naughty method or create delegate:
package com.company.application;
public class OneYouWantExtend extends OneThatContainsDesiredMethod {
// one way is to rewrite method() to call super.method() only or
// to doStuff() and then call super.method()
public void method() {
if (isDoStuff()) {
// do stuff
}
super.method();
}
protected abstract boolean isDoStuff();
// second way is to define methodDelegate() that will call hidden super.method()
public void methodDelegate() {
super.method();
}
...
}
public class OneThatContainsDesiredMethod {
public void method() {...}
...
}
For instance, you can create org.springframework.test.context.junit4.SpringJUnit4ClassRunner class in your application so this class should be loaded before the real one from jar. Then rewrite methods or constructors.
Attention: This is absolute hack, and it is highly NOT recommended to use but it's WORKING! Using of this approach is dangerous because of possible issues with class loaders. Also this may cause issues each time you will update library that contains overwritten class.
#Jon Skeet Nice explanation.
IMO if some one wants to call super.super method then one must be want to ignore the behavior of immediate parent, but want to access the grand parent behavior.
This can be achieved through instance Of. As below code
public class A {
protected void printClass() {
System.out.println("In A Class");
}
}
public class B extends A {
#Override
protected void printClass() {
if (!(this instanceof C)) {
System.out.println("In B Class");
}
super.printClass();
}
}
public class C extends B {
#Override
protected void printClass() {
System.out.println("In C Class");
super.printClass();
}
}
Here is driver class,
public class Driver {
public static void main(String[] args) {
C c = new C();
c.printClass();
}
}
Output of this will be
In C Class
In A Class
Class B printClass behavior will be ignored in this case.
I am not sure about is this a ideal or good practice to achieve super.super, but still it is working.
Look at this Github project, especially the objectHandle variable. This project shows how to actually and accurately call the grandparent method on a grandchild.
Just in case the link gets broken, here is the code:
import lombok.val;
import org.junit.Assert;
import org.junit.Test;
import java.lang.invoke.*;
/*
Your scientists were so preoccupied with whether or not they could, they didn’t stop to think if they should.
Please don't actually do this... :P
*/
public class ImplLookupTest {
private MethodHandles.Lookup getImplLookup() throws NoSuchFieldException, IllegalAccessException {
val field = MethodHandles.Lookup.class.getDeclaredField("IMPL_LOOKUP");
field.setAccessible(true);
return (MethodHandles.Lookup) field.get(null);
}
#Test
public void test() throws Throwable {
val lookup = getImplLookup();
val baseHandle = lookup.findSpecial(Base.class, "toString",
MethodType.methodType(String.class),
Sub.class);
val objectHandle = lookup.findSpecial(Object.class, "toString",
MethodType.methodType(String.class),
// Must use Base.class here for this reference to call Object's toString
Base.class);
val sub = new Sub();
Assert.assertEquals("Sub", sub.toString());
Assert.assertEquals("Base", baseHandle.invoke(sub));
Assert.assertEquals(toString(sub), objectHandle.invoke(sub));
}
private static String toString(Object o) {
return o.getClass().getName() + "#" + Integer.toHexString(o.hashCode());
}
public class Sub extends Base {
#Override
public String toString() {
return "Sub";
}
}
public class Base {
#Override
public String toString() {
return "Base";
}
}
}
Happy Coding!!!!
I would put the super.super method body in another method, if possible
class SuperSuperClass {
public String toString() {
return DescribeMe();
}
protected String DescribeMe() {
return "I am super super";
}
}
class SuperClass extends SuperSuperClass {
public String toString() {
return "I am super";
}
}
class ChildClass extends SuperClass {
public String toString() {
return DescribeMe();
}
}
Or if you cannot change the super-super class, you can try this:
class SuperSuperClass {
public String toString() {
return "I am super super";
}
}
class SuperClass extends SuperSuperClass {
public String toString() {
return DescribeMe(super.toString());
}
protected String DescribeMe(string fromSuper) {
return "I am super";
}
}
class ChildClass extends SuperClass {
protected String DescribeMe(string fromSuper) {
return fromSuper;
}
}
In both cases, the
new ChildClass().toString();
results to "I am super super"
It would seem to be possible to at least get the class of the superclass's superclass, though not necessarily the instance of it, using reflection; if this might be useful, please consider the Javadoc at http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html#getSuperclass()
public class A {
#Override
public String toString() {
return "A";
}
}
public class B extends A {
#Override
public String toString() {
return "B";
}
}
public class C extends B {
#Override
public String toString() {
return "C";
}
}
public class D extends C {
#Override
public String toString() {
String result = "";
try {
result = this.getClass().getSuperclass().getSuperclass().getSuperclass().newInstance().toString();
} catch (InstantiationException ex) {
Logger.getLogger(D.class.getName()).log(Level.SEVERE, null, ex);
} catch (IllegalAccessException ex) {
Logger.getLogger(D.class.getName()).log(Level.SEVERE, null, ex);
}
return result;
}
}
public class Main {
public static void main(String... args) {
D d = new D();
System.out.println(d);
}
}
run:
A
BUILD SUCCESSFUL (total time: 0 seconds)
I have had situations like these when the architecture is to build common functionality in a common CustomBaseClass which implements on behalf of several derived classes.
However, we need to circumvent common logic for specific method for a specific derived class. In such cases, we must use a super.super.methodX implementation.
We achieve this by introducing a boolean member in the CustomBaseClass, which can be used to selectively defer custom implementation and yield to default framework implementation where desirable.
...
FrameworkBaseClass (....) extends...
{
methodA(...){...}
methodB(...){...}
...
methodX(...)
...
methodN(...){...}
}
/* CustomBaseClass overrides default framework functionality for benefit of several derived classes.*/
CustomBaseClass(...) extends FrameworkBaseClass
{
private boolean skipMethodX=false;
/* implement accessors isSkipMethodX() and setSkipMethodX(boolean)*/
methodA(...){...}
methodB(...){...}
...
methodN(...){...}
methodX(...){
if (isSkipMethodX()) {
setSKipMethodX(false);
super.methodX(...);
return;
}
... //common method logic
}
}
DerivedClass1(...) extends CustomBaseClass
DerivedClass2(...) extends CustomBaseClass
...
DerivedClassN(...) extends CustomBaseClass...
DerivedClassX(...) extends CustomBaseClass...
{
methodX(...){
super.setSKipMethodX(true);
super.methodX(...);
}
}
However, with good architecture principles followed in framework as well as app, we could avoid such situations easily, by using hasA approach, instead of isA approach. But at all times it is not very practical to expect well designed architecture in place, and hence the need to get away from solid design principles and introduce hacks like this.
Just my 2 cents...
IMO, it's a clean way to achieve super.super.sayYourName() behavior in Java.
public class GrandMa {
public void sayYourName(){
System.out.println("Grandma Fedora");
}
}
public class Mama extends GrandMa {
public void sayYourName(boolean lie){
if(lie){
super.sayYourName();
}else {
System.out.println("Mama Stephanida");
}
}
}
public class Daughter extends Mama {
public void sayYourName(boolean lie){
if(lie){
super.sayYourName(lie);
}else {
System.out.println("Little girl Masha");
}
}
}
public class TestDaughter {
public static void main(String[] args){
Daughter d = new Daughter();
System.out.print("Request to lie: d.sayYourName(true) returns ");
d.sayYourName(true);
System.out.print("Request not to lie: d.sayYourName(false) returns ");
d.sayYourName(false);
}
}
Output:
Request to lie: d.sayYourName(true) returns Grandma Fedora
Request not to lie: d.sayYourName(false) returns Little girl Masha
I think this is a problem that breaks the inheritance agreement.
By extending a class you obey / agree its behavior, features
Whilst when calling super.super.method(), you want to break your own obedience agreement.
You just cannot cherry pick from the super class.
However, there may happen situations when you feel the need to call super.super.method() - usually a bad design sign, in your code or in the code you inherit !
If the super and super super classes cannot be refactored (some legacy code), then opt for composition over inheritance.
Encapsulation breaking is when you #Override some methods by breaking the encapsulated code.
The methods designed not to be overridden are marked
final.
In C# you can call a method of any ancestor like this:
public class A
internal virtual void foo()
...
public class B : A
public new void foo()
...
public class C : B
public new void foo() {
(this as A).foo();
}
Also you can do this in Delphi:
type
A=class
procedure foo;
...
B=class(A)
procedure foo; override;
...
C=class(B)
procedure foo; override;
...
A(objC).foo();
But in Java you can do such focus only by some gear. One possible way is:
class A {
int y=10;
void foo(Class X) throws Exception {
if(X!=A.class)
throw new Exception("Incorrect parameter of "+this.getClass().getName()+".foo("+X.getName()+")");
y++;
System.out.printf("A.foo(%s): y=%d\n",X.getName(),y);
}
void foo() throws Exception {
System.out.printf("A.foo()\n");
this.foo(this.getClass());
}
}
class B extends A {
int y=20;
#Override
void foo(Class X) throws Exception {
if(X==B.class) {
y++;
System.out.printf("B.foo(%s): y=%d\n",X.getName(),y);
} else {
System.out.printf("B.foo(%s) calls B.super.foo(%s)\n",X.getName(),X.getName());
super.foo(X);
}
}
}
class C extends B {
int y=30;
#Override
void foo(Class X) throws Exception {
if(X==C.class) {
y++;
System.out.printf("C.foo(%s): y=%d\n",X.getName(),y);
} else {
System.out.printf("C.foo(%s) calls C.super.foo(%s)\n",X.getName(),X.getName());
super.foo(X);
}
}
void DoIt() {
try {
System.out.printf("DoIt: foo():\n");
foo();
Show();
System.out.printf("DoIt: foo(B):\n");
foo(B.class);
Show();
System.out.printf("DoIt: foo(A):\n");
foo(A.class);
Show();
} catch(Exception e) {
//...
}
}
void Show() {
System.out.printf("Show: A.y=%d, B.y=%d, C.y=%d\n\n", ((A)this).y, ((B)this).y, ((C)this).y);
}
}
objC.DoIt() result output:
DoIt: foo():
A.foo()
C.foo(C): y=31
Show: A.y=10, B.y=20, C.y=31
DoIt: foo(B):
C.foo(B) calls C.super.foo(B)
B.foo(B): y=21
Show: A.y=10, B.y=21, C.y=31
DoIt: foo(A):
C.foo(A) calls C.super.foo(A)
B.foo(A) calls B.super.foo(A)
A.foo(A): y=11
Show: A.y=11, B.y=21, C.y=31
It is simply easy to do. For instance:
C subclass of B and B subclass of A. Both of three have method methodName() for example.
public abstract class A {
public void methodName() {
System.out.println("Class A");
}
}
public class B extends A {
public void methodName() {
super.methodName();
System.out.println("Class B");
}
// Will call the super methodName
public void hackSuper() {
super.methodName();
}
}
public class C extends B {
public static void main(String[] args) {
A a = new C();
a.methodName();
}
#Override
public void methodName() {
/*super.methodName();*/
hackSuper();
System.out.println("Class C");
}
}
Run class C Output will be:
Class A
Class C
Instead of output:
Class A
Class B
Class C
If you think you are going to be needing the superclass, you could reference it in a variable for that class. For example:
public class Foo
{
public int getNumber()
{
return 0;
}
}
public class SuperFoo extends Foo
{
public static Foo superClass = new Foo();
public int getNumber()
{
return 1;
}
}
public class UltraFoo extends Foo
{
public static void main(String[] args)
{
System.out.println(new UltraFoo.getNumber());
System.out.println(new SuperFoo().getNumber());
System.out.println(new SuperFoo().superClass.getNumber());
}
public int getNumber()
{
return 2;
}
}
Should print out:
2
1
0
public class SubSubClass extends SubClass {
#Override
public void print() {
super.superPrint();
}
public static void main(String[] args) {
new SubSubClass().print();
}
}
class SuperClass {
public void print() {
System.out.println("Printed in the GrandDad");
}
}
class SubClass extends SuperClass {
public void superPrint() {
super.print();
}
}
Output: Printed in the GrandDad
The keyword super is just a way to invoke the method in the superclass.
In the Java tutorial:https://docs.oracle.com/javase/tutorial/java/IandI/super.html
If your method overrides one of its superclass's methods, you can invoke the overridden method through the use of the keyword super.
Don't believe that it's a reference of the super object!!! No, it's just a keyword to invoke methods in the superclass.
Here is an example:
class Animal {
public void doSth() {
System.out.println(this); // It's a Cat! Not an animal!
System.out.println("Animal do sth.");
}
}
class Cat extends Animal {
public void doSth() {
System.out.println(this);
System.out.println("Cat do sth.");
super.doSth();
}
}
When you call cat.doSth(), the method doSth() in class Animal will print this and it is a cat.

How to reuse methods?

I am a beginner and i try to teach myself clean coding. I want to pass a function as a parameter that I can reuse a method without to repeat code. As an example I have this:
public class Dog {
private String name;
private int id;
private List<String> characteristic;
public List<String> getCharacteristic() {
return characteristic;
}
public void setCharacteristic(List<String> characteristic) {
this.characteristic = characteristic;
}
}
public class Check{
private List<Dog> dogs = new ArrayList();
public void iterate() {
while (dogs.size() > 0) {
for (Dog dog : dogs) {
List<String> restChara = new ArrayList<>();
restChara= checkChara(dog, restChara);
if (restChara.size()>0) {
dog.setCharacteristic(restChara);
} else {
dogs.remove(dog);
}
}
}
}
private List<String> checkChara(Dog dog, List<String> restChara) {
for (String chara : dog.getCharacteristic()) {
boolean charaChecked = doSomething(chara);
if (!charaChecked) {
restChara.add(chara);
} else {
dog.getCharacteristic().remove(chara);
}
}
return restChara;
}
private boolean doSomething(String chara){
//do sth.
return true;
}
private boolean doSomething2(String chara){
//do sth.
return true;
}
}
How would you define the method checkChara in order to use different functions within it?
My first thought was to pass the function as a parameter (i think it would be in C# delegates)
Thank you very much!
EDIT:
I think I found another pattern strategy design pattern
https://www.freecodecamp.org/news/the-strategy-pattern-explained-using-java-bc30542204e0/
Java does not support “directly” nested methods. Many functional programming languages support method within method. But you can achieve nested method functionality in Java 7 or older version by define local classes, class within method so this does compile. And in java 8 and newer version you achieve it by lambda expression.
Method 1 (Using anonymous subclasses)
It is an inner class without a name and for which only a single object is created. An anonymous inner class can be useful when making an instance of an object with certain “extras” such as overloading methods of a class or interface, without having to actually subclass a class.
//Java program implements method inside method
public class GFG {
// create a local interface with one abstract
// method run()
interface myInterface {
void run();
}
// function have implements another function run()
static void Foo()
{
// implement run method inside Foo() function
myInterface r = new myInterface() {
public void run()
{
System.out.println("geeksforgeeks");
};
};
r.run();
}
public static void main(String[] args)
{
Foo();
}
}
Method 2 (Using local classes)
You can also implement a method inside a local class. A class created inside a method is called local inner class. If you want to invoke the methods of local inner class, you must instantiate this class inside method.
// Java program implements method inside method
public class GFG {
// function have implementation of another
// function inside local class
static void Foo()
{
// local class
class Local {
void fun()
{
System.out.println("geeksforgeeks");
}
}
new Local().fun();
}
public static void main(String[] args)
{
Foo();
}
}
Method 3 (Using a lambda expression)
Lambda expressions basically express instances of functional interfaces (An interface with single abstract method is called functional interface. An example is java.lang.Runnable). lambda expressions implement the only abstract function and therefore implement functional interfaces.
// Java program implements method inside method
public class GFG {
interface myInterface {
void run();
}
// function have implements another function
// run() using Lambda expression
static void Foo()
{
// Lambda expression
myInterface r = () ->
{
System.out.println("geeksforgeeks");
};
r.run();
}
public static void main(String[] args)
{
Foo();
}
}
I don't exaclty know what you mean, but i figure out it could be something like that:
List<Runnable> runMyStuff = new ArrayList<Runnable>();
String variable= "Hallo"; //needs to be effectively final
runMyStuff.add(() -> {
System.out.println(variable);
doSomething(variable);
});
runMyStuff.add(() ->{
System.out.println("This is a test");
});
runMyStuff.add(() ->{
System.out.println("2 + 2 = " + (2+2) );
});
runMyStuff.get(0).run();
runMyStuff.get(2).run();
runMyStuff.get(0).run();
runMyStuff.get(1).run();
runMyStuff.get(2).run();
will result in :
Hallo
2 + 2 = 4
Hallo
This is a test
2 + 2 = 4
When you put variables or Passing Parameters in those runnable methods, they need to be effectively final or you pass them in a container.
You can re-run each method.
And within those Methods you can execute other methods.
NOTE:
If you want to have return Parameters you could do the same with Callable and than ".call()" instead of run.
EDIT:
Under the assumption you mean character Check or something like that
Example for charaCheck passable Method With Interface:
public interface CharacterChecker{
//is a template returns boolean, need a String param
public boolean call(String chara);
}
A method that executes a passes method of the type of "CHaracterChecker"
public static void excecutePassedMethod(CharacterChecker checker, String chara) {
System.out.println(chara + ": " + checker.call(chara));
}
Two different implementations of a "Character Checker"
CharacterChecker goodChecker = new CharacterChecker() {
#Override
public boolean call(String chara) {
return "good".equals(chara);
}
};
CharacterChecker lazyCheker = new CharacterChecker() {
#Override
public boolean call(String chara) {
return "lazy".equals(chara);
}
};
The Methods that are Passed the "method" (More like anonymos class object with the method)
excecutePassedMethod(goodChecker, "bad");
excecutePassedMethod(goodChecker, "good");
excecutePassedMethod(goodChecker, "jolly");
excecutePassedMethod(lazyCheker, "frisky");
excecutePassedMethod(lazyCheker, "lazy");
result will be:
bad: false
good: true
jolly: false
frisky: false
lazy: true

Adding a method to a class using anonymous class [duplicate]

Is there any Java syntax to access new methods defined within anonymous inner classes from outer class? I know there can be various workarounds, but I wonder if a special syntax exist?
For example
class Outer {
ActionListener listener = new ActionListener() {
#Override
void actionPerformed(ActionEvent e) {
// do something
}
// method is public so can be accessible
public void MyGloriousMethod() {
// viva!
}
};
public void Caller() {
listener.MyGloriousMethod(); // does not work!
}
}
MY OWN SOLUTION
I just moved all methods and members up to outer class.
Once the anonymous class instance has been implicitly cast into the named type it can't be cast back because there is no name for the anonymous type. You can access the additional members of the anonymous inner class through this within the class, in the expression immediate after the expression and the type can be inferred and returned through a method call.
Object obj = new Object() {
void fn() {
System.err.println("fn");
}
#Override public String toString() {
fn();
return "";
}
};
obj.toString();
new Object() {
void fn() {
System.err.println("fn");
}
}.fn();
identity(new Object() {
void fn() {
System.err.println("fn");
}
}).fn();
...
private static <T> T identity(T value) {
return value;
}
A student in my class asked our professor if this could be done the other day. Here is what I wrote as a cool proof of concept that it CAN be done, although not worth it, it is actually possible and here is how:
public static void main(String[] args){
//anonymous inner class with method defined inside which
//does not override anything
Object o = new Object()
{
public int test = 5;
public void sayHello()
{
System.out.println("Hello World");
}
};
//o.sayHello();//Does not work
try
{
Method m = o.getClass().getMethod("sayHello");
Field f = o.getClass().getField("test");
System.out.println(f.getInt(o));
m.invoke(o);
} catch (Exception e)
{
e.printStackTrace();
}
}
By making use of Java's Method class we can invoke a method by passing in the string value and parameters of the method. Same thing can be done with fields.
Just thought it would be cool to share this!
Your caller knows listener as an ActionListener and therefore it doesn't know anything about that new method. I think the only way to do this (other than doing reflection gymnastics, which really would defeat the purpose of using an anonymous class, i.e. shortcut/simplicity) is to simply subclass ActionListener and not use an anonymous class.
Funny enough, this is now allowed with var construct (Java 10 or newer). Example:
var calculator = new Object() {
BigDecimal intermediateSum = BigDecimal.ZERO;
void calculate(Item item) {
intermediateSum = Numbers.add(intermediateSum, item.value);
item.sum= intermediateSum;
}
};
items.forEach(calculator::calculate);
Here with method reference, but works with dot method call as well, of course. It works with fields as well. Enjoy new Java. :-)
I found more tricks with var and anonymous classes here: https://blog.codefx.org/java/tricks-var-anonymous-classes/
No, it's imposible. You would need to cast the ActionListener to its real subclass name, but since it's anonymous, it doesn't have a name.
The right way to do it is using reflection:
import java.lang.reflect.InvocationTargetException;
public class MethodByReflectionTest {
public static void main(String[] args) throws IllegalAccessException, IllegalArgumentException, InvocationTargetException, NoSuchMethodException, SecurityException {
Object obj = new Object(){
public void print(){
System.out.println("Print executed.");
}
};
obj.getClass().getMethod("print", null).invoke(obj, null);
}
}
You can check here: How do I invoke a Java method when given the method name as a string?
Yes you can access the method see the example below if any doubt please comment
package com;
interface A
{
public void display();
}
public class Outer {
public static void main(String []args)
{
A a=new A() {
#Override
public void display() {
System.out.println("Hello");
}
};
a.display();
}
}

Super class which uses the values from children

I wanted to implement a method in a abstract class that is called by the inherited classes and uses their values.
For instance:
abstract class MyClass{
String value = "myClass";
void foo(){System.out.println(this.value);}
}
public class childClass{
String value="childClass";
void foo(){super.foo();}
}
public static void main(String[] args){
new childClass.foo();
}
This will output "myClass" but what I really want is to output "childClass". This is so I can implement a "general" method in a class that when extended by other classes it will use the values from those classes.
I could pass the values as function arguments but I wanted to know if it would be possible to implement the "architecture" I've described.
A super method called by the inherited class which uses the values from the caller not itself, this without passing the values by arguments.
You could do something like this:
abstract class MyClass {
protected String myValue() {
return "MyClass";
}
final void foo() {
System.out.println(myValue());
}
}
public class ChildClass extends MyClass {
#Override
protected String myValue() {
return "ChildClass";
}
}
and so on
This is a place where composition is better than inheritance
public class Doer{
private Doee doee;
public Doer(Doee doee){
this.doee = doee;
}
public void foo(){
System.out.println(doee.value);
}
}
public abstract class Doee{
public String value="myClass"
}
public ChildDoee extends Doee{
public String= "childClass"
}
...
//Excerpt from factory
new Doer(new ChildDoee);
I believe you are asking whether this is possible:
public class MyClass {
void foo() {
if (this instanceof childClass) // do stuff for childClass
else if (this intanceof anotherChildClass) // do stuff for that one
}
}
So the answer is "yes, it's doable", but very much advised against as it a) tries to reimplement polymorphism instead of using it and b) violates the separation between abstract and concrete classes.
You simply want value in MyClass to be different for an instance of childClass.
To do this, change the value in the childClass constructor:
public class childClass {
public childClass() {
value = "childClass";
}
}
Edited:
If you can't override/replace the constructor(s), add an instance block (which gets executed after the constructor, even an undeclared "default" constructor):
public class childClass {
{
value = "childClass";
}
}

Categories