what I want to do is the following: I have an object (blue point) and I want to point it to other object no matter where it is located around it (green point). So I need to know the angle between these two objects to do what I want right?
http://s13.postimage.org/6jeuphcdj/android_angle.jpg
The problem is, I don't know what to do to achieve this. I've already used atan, math.tan and so many other functions but without any good results.
Could you help me? Thanks in advance.
Calculate a dot product of object vectors. Use Math.acos on the value you get. That will give you an angle in radians.
So, say your blue dot is at vec1 = (50, 100) and green one at vec2 = (100, 400).
A tuple (x, y) as a two dimensional vector describes object's position and distance from (0, 0) on your screen. To find the angle between these two vectors, you do a standard, binary dot product operation on them. This will get you a scalar (a value, cos(Theta)), but you want the inverse of it (acos) which is the angle you're looking for.
You can get a better understanding on the matter here
Suppose the coordinates of the blue and green points are (xblue, yblue) and (xgreen, ygreen) respectively.
The angle at which the blue point sees the green point is:
double angleRadians = Math.atan2(ygreen-yblue, xgreen-xblue);
If you want the angle in degrees:
double angleDegrees = Math.toDegrees(angleRadians);
Related
I want to get a Vector containing a coordinate. I know my beginning coordinates, angle and distance. So far I've tried doing:
Vector2 pos = new Vector2(beginningX, beginningY).add(distance, distance).rotate(angle);
But it doesn't work as I expect it to. When the rotation isn't 0 the coordinates become big, and the ending point isn't where I expect it to be. I know this must be a simple problem, but I just can't solve it.
EDIT:
Tried doing:
Vector2 pos = new Vector2(beginningX, beginningY).add(distance, 0).rotate(angle);
(Adding distance to x only) Still no success.
I'd say you're doing it wrong: you need to rotate the distance vector and add it to the position vector:
Vector2 pos = new Vector2(beginningX, beginningY).add(new Vector2(distance, 0).rotate(angle) );
You might want to read up on vector math but basically it amounts to this (if I correctly understood what you're trying to do):
If you rotate a vector you're always rotating around point 0/0. Thus you'll want to create a vector that covers the distance from 0/0 to your distance on the x-axis:
0---------------->d
Now you rotate that vector by some angle:
d
/
/
/
/
/
0
Then you offset that vector by your starting point, i.e. you add the two vectors (for simplicity I assume your starting point lies on the y-axis):
d
/
/
/
/
/
s
|
|
|
0
You need to rotate only the distance vector, rather than a sum of beginning and distance. Addition is the same in either order (commutative), so you can try this way:
Vector2 pos = new Vector2(distance, 0).rotate(angle).add(beginningX, beginningY);
Advantage: This chained call does not create a temporary Vector2 for the beginning position that would immediately become garbage for the garbage collector. Conserving space and garbage collection time will be important when your code handles millions of vectors.
This is simple vector addition. I'm assuming 2D coordinates, with angles measured counterclockwise from x-axis:
x(new) = x(old) + distance*cos(angle)
y(new) = y(old) + distance*sin(angle)
Be sure that your angles are in radians when you plug them into trig functions.
Does anybody know how to find out if a set of coordinates are within a triangle for which you have the coordinates for. i know how to work out length of sides, area and perimeter, but i have no idea where to begin working out the whereabouts within the triangle of other points.
Any advice would be appreciated
You can create a Polygon object.
Polygon triangle = new Polygon();
Add the vertexes of your triangle with the addPoint(int x, int y) method.
And then, you just need to check if the set of coordinates is inside your triangle using contains(double x, double y) method.
Use the contains method of the Polygon class as documented here.
For a solution without using the Polygon-class:
Assume that you have giving three points A,B,C the vertices of your polygon. Let P be the point you want to check. First calculate the vectors representing the edges of your triangle. Let us call them AB, BC, CA. Also calculate the three vectors PA, PB, PC.
Now calculate the cross product between the first two of the vectors from above.
The cross product of the first pair gives you the sin(alpha), where alpha is the angle between AB and PA, multiplied with a vector pendenpicular to AB and PA. Ignore this vector because we are interested in the angle and take a look at the sine (in the case of 2D vectors you can imagine it as the vector standing perpendicular to your screen).
The sine can take values between (let's say for the ease) betwenn 0 and 2*Pi. It's 0 exactly at 0 and Pi. For every value in between the sine is positive and for every value between Pi and 2*Pi it's negative.
So let's say your Point p is on the left hand side of AB, so the sine would be positive.
By taking the cross product of each pair from above, you could easily guess that the point P is on the left hand side of each edge from the triangle. This just means that it has to be inside the triangle.
Of course this method can even be used from calculating whether a point P is in a polygon. Be aware of the fact, that this method only works if the sides of the polygon are directed.
I am studying the following code.
boolean convex(double x1, double y1, double x2, double y2,
double x3, double y3)
{
if (area(x1, y1, x2, y2, x3, y3) < 0)
return true;
else
return false;
}
/* area: determines area of triangle formed by three points
*/
double area(double x1, double y1, double x2, double y2,
double x3, double y3)
{
double areaSum = 0;
areaSum += x1 * (y3 - y2);
areaSum += x2 * (y1 - y3);
areaSum += x3 * (y2 - y1);
/* for actual area, we need to multiple areaSum * 0.5, but we are
* only interested in the sign of the area (+/-)
*/
return areaSum;
}
I do not understand the concept that area being negative.
Shouldn't area be always positive? maybe I am lacking some understanding of terms here.
I tried to contact the original writer but this code is about 8 years old and I have no way to contact the original writer.
This method of determining if the given vertex x2y2 is convex seems really mobile. I really want to understand it.
Any direction or reference to help me understand this piece of code will be appreciated greatly.
Source code : http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Ian/applets/BruteForceEarCut.java
The algorithm use a very simple formula with which you can compute twice the area of a triangle.
This formula has two advantages:
it doesn't require any division
it returns a negative area if the point are in the counterclockwise order.
In the code sample, the actual value of the area doesn't matter, only the sign of the result is needed.
The formula can also be used to check if three points are colinear.
You can find more information about this formula on this site : http://www.mathopenref.com/coordtrianglearea.html
This algorithm is basically using the dot product of two vectors and interpreting the results. This is the core of the Gift Wrapping Algorithm used to find convex hulls.
Since a dot b is also equal to |a|*|b|*cos(theta) then if the result is positive, cos of theta must be positive and thus convex. Per a wiki article on cross products...
Because the magnitude of the cross product goes by the sine of the
angle between its arguments, the cross product can be thought of as a
measure of ‘perpendicularity’ in the same way that the dot product is
a measure of ‘parallelism’. Given two unit vectors, their cross
product has a magnitude of 1 if the two are perpendicular and a
magnitude of zero if the two are parallel. The opposite is true for
the dot product of two unit vectors.
The use of "area" is slightly misleading on part of the original coder in my opinion.
You know about how integrals work, right? One way to think of integrals is in terms of the area under the integrated curve. For functions that are strictly positive, that definition works great, but when the function becomes negative at some point, there is a problem because then you have to take the absolute value, right?
That is not always so, actually, and it can be quite useful in some contexts to leave the curve negative. Think back to what was said earlier: the area under the curve. All that space between negative infinity and our function. Clearly, that is absurd, right? A better way to think of it is as the difference between the area under the curve, and the area under the x axis. That way, when the function is positive, our curve is gaining more area, and when it is negative, it is gaining less than the x axis.
The same thing applies to plane figures that are not strict functions. In order to really determine this, we have to define which direction our edge is going as it travels around the figure. We can define it so that all the area on the right of our curve is inside the region, and all the area to the left is outside (or we can define it the other way around, but I will use the first way).
So our figure includes all the area from there to the edge at infinity of the plane that is directly to our right. Regions enclosed clockwise really include their conventional interior twice. Regions enclosed counterclockwise don't include their conventional interior at all. The area, then, is the difference between our region and the whole plane.
The application of this to concavity is fairly simple, if you understand what it actually means to be concave or convex. The triangle you are given is concave if it is cutting an area out from the plane, and it is convex if you are adding extra area to it. That is the exact same thing we were doing to determine the our area, so positive area corresponds to a convex shape, and negative area corresponds to a concave shape.
You can also do other weird things with this conceptual model. For instance, you can turn a region 'inside out' by reversing the edge direction.
I'm sorry if this has been a little hard to follow, but this is the actual way I understand negative area.
I'm creating a very very simple game for fun. Realizing I needed the trajectory of an object given an angle and a velocity, it seemed logical to use this parametric equation:
x = (v*cos(ø))t and y = (v*sin(ø)t - 16t^2
I know that this equation works for a trajectory, but it isn't working with most ø values I use.
Do java angles work any differently from normal angle calculation?
My goal is for the object to start from bottom left of the window and follow an arc that is determined by the speed and angle given. However it tends to go strange directions.
The value of ø should be horizontal at 0 degrees and vertical at 90, and in the equation it refers to the angle at which the arc begins.
This is my first ever question post on this site, so if I'm missing anything in that regard please let me know.
Here is the calculating part of my code
not shown is the void time() that counts for each 5ms
also I should mention that the parX and parY are used to refer to the x and y coordinates in an unrounded form, as graphics coordinates require integer values.
Any help is much appreciated, and thank you in advance!
public void parametric()
{
parX = (float) ((speed*cos(-ø))*time);
gravity = (time*time)*(16);
parY = (float) ((float) ((speed*sin(-ø))*time)+gravity)+500;
xCoord = round(parX);
yCoord = round(parY);
}
Do java angles work any differently from normal angle calculation?
You only need to read the docs
public static double cos(double a)
Parameters:
a - an angle, in radians.
I guess you are using degrees instead of radians?
I'm trying to write a 2D game in Java that uses the Separating Axis Theorem for collision detection. In order to resolve collisions between two polygons, I need to know the Minimum Translation Vector of the collision, and I need to know which direction it points relative to the polygons (so that I can give one polygon a penalty force along that direction and the other a penalty force in the opposite direction). For reference, I'm trying to implement the algorithm here.
I'd like to guarantee that if I call my collision detection function collide(Polygon polygon1, Polygon polygon2) and it detects a collision, the returned MTV will always point away from polygon1, toward polygon2. In order to do this, I need to guarantee that the separating axes that I generate, which are the normals of the polygon edges, always point away from the polygon that generated them. (That way, I know to negate any axis from polygon2 before using it as the MTV).
Unfortunately, it seems that whether or not the normal I generate for a polygon edge points towards the interior of the polygon or the exterior depends on whether the polygon's points are declared in clockwise or counterclockwise order. I'm using the algorithm described here to generate normals, and assuming that I pick (x, y) => (y, -x) for the "perpendicular" method, the resulting normals will only point away from the polygon if I iterate over the vertices in clockwise order.
Given that I can't force the client to declare the points of the polygon in clockwise order (I'm using java.awt.Polygon, which just exposes two arrays for x and y coordinates), is there a mathematical way to guarantee that the direction of the normal vectors I generate is toward the exterior of the polygon? I'm not very good at vector math, so there may be an obvious solution to this that I'm missing. Most Internet resources about the SAT just assume that you can always iterate over the vertices of a polygon in clockwise order.
You can just calculate which direction each polygon is ordered, using, for example, the answer to this question, and then multiply your normal by -1 if the two polygons have different orders.
You could also check each polygon passed to your algorithm to see if it is ordered incorrectly, again using the algorithm above, and reverse the vertex order if necessary.
Note that when calculating the vertex order, some algorithms will work for all polygons and some just for convex polygons.
I finally figured it out, but the one answer posted was not the complete solution so I'm not going to accept it. I was able to determine the ordering of the polygon using the basic algorithm described in this SO answer (also described less clearly in David Norman's link), which is:
for each edge in polygon:
sum += (x2 - x1) * (y2 + y1)
However, there's an important caveat which none of these answers mention. Normally, you can decide that the polygon's vertices are clockwise if this sum is positive, and counterclockwise if the sum is negative. But the comparison is inverted in Java's 2D graphics system, and in fact in many graphics systems, because the positive y axis points downward. So in a normal, mathematical coordinate system, you can say
if sum > 0 then polygon is clockwise
but in a graphics coordinate system with an inverted y-axis, it's actually
if sum < 0 then polygon is clockwise
My actual code, using Java's Polygon, looked something like this:
//First, find the normals as if the polygon was clockwise
int sum = 0;
for(int i = 0; i < polygon.npoints; i++) {
int nextI = (i + 1 == polygon.npoints ? 0 : i + 1);
sum += (polygon.xpoints[nextI] - polygon.xpoints[i]) *
(polygon.ypoints[nextI] + polygon.ypoints[i]);
}
if(sum > 0) {
//reverse all the normals (multiply them by -1)
}