The problem I have to solve is that I have to input IP address prefixes and that data associated with them in a tree so they can be queried later. I'm reading these addresses from a file and the file may contain as many as 16 million records and the file could have duplicates and i have to store those too.
I wrote my own binary search tree, but learned that a TreeMap in Java is implemented using a Red Black tree, but a TreeMap can't contain duplicates.
I want the query to take O(logn) time.
The data structure needs to be in Ram, so I'm also not sure how I'm going to store 16 million nodes.
I wanted to ask: Would it be too much of a performance hit using a library like guava to insert the Ips in Multi-maps? Or is there a better way to do this?
Using a built in library, which is tested documented and well maintained is usually a good practice.
It will also help you learn more about guava. Once you start using it "for just one thing", you will most likely realize there is much more you can use to make your life a bit easier.
Also, an alternative is using a TreeMap<Key,List<MyClass>> rather then TreeMap<Key,MyClass> as a custom implementation of a Multimap.
Regarding memory - you should try to minimize your data as much as possible (use efficient data structures, no need for "wasty" String, for example for storing IPs, there are cheaper alternatives, exploit them.
Also note - the OS will be able to offer you more memory then the RAM you have, by using virtual memory (practically for 64bits machine - it is most likely to be more then enough). However, it will most likely be less efficient then a DS dedicated for disk (such as B+ trees, for example).
Alternatives:
As alternatives to the TreeMap - you might be interested in other data structures (each with its advantages and disadvantages):
hash table - implemented as HashMap in java. Your type will then beHashMap<Key,List<Value>>. It allows O(1) average case query, but might decay to O(n) worst case. It also does not allow efficient range queries.
trie or its more space efficient version - radix tree. Allows O(1) access to each key, but is usually less space efficient then the alternatives. With this approach, you will implement the Map interface with the DS, and your type will be Map<Key,List<Value>>
B+ tree, which is much more optimized for disk - if your data is too large to fit in RAM after all.
Related
I am in the middle of a Java project which will be using a 'big dictionary' of words. By 'dictionary' I mean certain numbers (int) assigned to Strings. And by 'big' I mean a file of the order of 100 MB. The first solution that I came up with is probably the simplest possible. At initialization I read in the whole file and create a large HashMap which will be later used to look strings up.
Is there an efficient way to do it without the need of reading the whole file at initialization? Perhaps not, but what if the file is really large, let's say in the order of the RAM available? So basically I'm looking for a way to look things up efficiently in a large dictionary stored in memory.
Thanks for the answers so far, as a result I've realised I could be more specific in my question. As you've probably guessed the application is to do with text mining, in particular representing text in a form of a sparse vector (although some had other inventive ideas :)). So what is critical for usage is to be able to look strings up in the dictionary, obtain their keys as fast as possible. Initial overhead of 'reading' the dictionary file or indexing it into a database is not as important as long as the string look-up time is optimized. Again, let's assume that the dictionary size is big, comparable to the size of RAM available.
Consider ChronicleMap (https://github.com/OpenHFT/Chronicle-Map) in a non-replicated mode. It is an off-heap Java Map implementation, or, from another point of view, a superlightweight NoSQL key-value store.
What it does useful for your task out of the box:
Persistance to disk via memory mapped files (see comment by MichaĆ Kosmulski)
Lazy load (disk pages are loaded only on demand) -> fast startup
If your data volume is larger than available memory, operating system will unmap rarely used pages automatically.
Several JVMs can use the same map, because off-heap memory is shared on OS level. Useful if you does the processing within a map-reduce-like framework, e. g. Hadoop.
Strings are stored in UTF-8 form, -> ~50% memory savings if strings are mostly ASCII (as maaartinus noted)
int or long values takes just 4(8) bytes, like if you have primitive-specialized map implementation.
Very little per-entry memory overhead, much less than in standard HashMap and ConcurrentHashMap
Good configurable concurrency via lock striping, if you already need, or are going to parallelize text processing in future.
At the point your data structure is a few hundred MB to orders of RAM, you're better off not initializing a data structure at run-time, but rather using a database which supports indexing(which most do these days). Indexing is going to be one of the only ways you can ensure the fastest retrieval of text once you're file gets so large and you're running up against the -Xmx settings of your JVM. This is because if your file is as large, or much larger than your maximum size settings, you're inevitably going to crash your JVM.
As for having to read the whole file at initialization. You're going to have to do this eventually so that you can efficiently search and analyze the text in your code. If you know that you're only going to be searching a certain portion of your file at a time, you can implement lazy loading. If not, you might as well bite the bullet and load your entire file into the DB in the beggenning. You can implement parallelism in this process, if there are other parts of your code execution that doesn't depend on this.
Please let me know if you have any questions!
As stated in a comment, a Trie will save you a lot of memory.
You should also consider using bytes instead of chars as this saves you a factor of 2 for plain ASCII text or when using your national charset as long as it has no more than 256 different letters.
At the first glance, combining this low-level optimization with tries makes no sense, as with them the node size is dominated by the pointers. But there's a way if you want to go low level.
So what is critical for usage is to be able to look strings up in the dictionary, obtain their keys as fast as possible.
Then forget any database, as they're damn slow when compared to HashMaps.
If it doesn't fit into memory, the cheapest solution is usually to get more of it. Otherwise, consider loading only the most common words and doing something slower for the others (e.g., a memory mapped file).
I was asked to point to a good tries implementation, especially off-heap. I'm not aware of any.
Assuming the OP needs no mutability, especially no mutability of keys, it all looks very simple.
I guess, the whole dictionary could be easily packed into a single ByteBuffer. Assuming mostly ASCII and with some bit hacking, an arrow would need 1 byte per arrow label character and 1-5 bytes for the child pointer. The child pointer would be relative (i.e., difference between the current node and the child), which would make most of them fit into a single byte when stored in a base 128 encoding.
I can only guess the total memory consumption, but I'd say, something like <4 bytes per word. The above compression would slow the lookup down, but still nowhere near what a single disk access needs.
It sounds too big to store in memory. Either store it in a relational database (easy, and with an index on the hash, fast), or a NoSQL solution, like Solr (small learning curve, very fast).
Although NoSQL is very fast, if you really want to tweak performance, and there are entries that are far more frequently looked up than others, consider using a limited size cache to hold the most recently used (say) 10000 lookups.
I have been reading several SO posts regarding K-D Trees vs. R-Trees but I still have some questions regarding my specific application.
For my Java application, I want to maintain a relatively small number of spatial data points (a few hundred thousand). The key is that data insertion will not be bulk loaded, but rather, frequently and incrementally inserted. I should also mention that I will be performing a good number of periodic range queries on sub-regions of the spatial domain.
I have read that K-D Trees do not typically support incremental building and that R-trees are more suitable for this since they maintain a balanced state.
However, after looking into the solutions suggested here:
Java commercial-friendly R-tree implementation?
I did not find that the implementations were easy to work with for returning a list of points in range searches. However, I have found: http://java-ml.sourceforge.net/ to have a very nice implementation of a K-D Tree that works quickly and outperforms standard array storage for a test set of points (~25K). Additionally, I have read that R-trees store redundant information when dealing with points (since a point is a rectangle with min=max).
Since I am working with a smaller number of points, are the differences between the two structures less important than, say, if I was working with a database application storing millions of points?
It is incorrect that R-trees can't store points. They are designed to support rectangles, and will need to do so at inner nodes. But a good implementation should store points at the leaf level, and roughly have the double data capacity there.
You can trivially store point, and expose them as a "rectangles" with min=max to the tree management code.
Your data isn't small. Small would be like 100 objects. For 100 objects, an R-tree won't make much sense, as it would likely consists of a single leaf only. For good performance, an R-tree needs a good fan-out. k-d-tree always have a fan-out of 2; they are binary trees. At 100k objects, a k-d-tree will be pretty deep. Assuming that you have a fanout of 100 (for dynamic r-trees, you then should allow up to 200 objects per page), you can store 1 million points in a 3-level tree.
I've used the ELKI R*-tree, and it is really fast. But it's not commercial friendly, unless you get a different license: it's AGPL-3 licensed, which is a copyleft license.
Furthermore, the API isn't designed for standalone use. If you want to use them, the best way is to work with the full ELKI framework, instead of trying to rip out the R*-tree.
If your data is low dimensional (say, 3-dimensional) and has a finite bound, don't underestimate the performance of simple grid-based approaches. In particular for in-memory operations. In many cases, I wouldn't even go to an Octree, but just define the optimal grid for my use case, and then implement it using object lists. Keep sorted by one coordinate within each grid cell to further accelerate performance.
If you want to frequently add/remove/update data points, you may want to look at the PH-Tree. The is on open source Java version available: www.phtree.org
It works a bit like a quadtree, but is much more efficient by using binary hypercubes and prefix-sharing.
It has excellent update performance (no rebalancing required) and is quite memory efficient. It works better with larger datasets, but 100K should be fine for 2 or 3 dimensions.
Lets say I have a list of 1,000,000 users where their unique identifier is their username string. So to compare two User objects I just override the compareTo() method an compare the username members.
Given a username string I wish to find the User object from a list. What, in an average case, would be the fastest way to do this.
I'm guessing a HashMap, mapping usernames to User objects, but I wondered if there was something else that I didn't know about which would be better.
If you don't need to store them in a database (which is the usual scenario), a HashMap<String, User> would work fine - it has O(1) complexity for lookup.
As noted, the usual scenario is to have them in the database. But in order to get faster results, caching is utilized. You can use EhCache - it is similar to ConcurrentHashMap, but it has time-to-live for elements and the option to be distributed across multiple machines.
You should not dump your whole database in memory, because it will be hard to synchronize. You will face issues with invalidating the entries in the map and keeping them up-to-date. Caching frameworks make all this easier. Also note that the database has its own optimizations, and it is not unlikely that your users will be kept in memory there for faster access.
I'm sure you want a hash map. They're the fastest thing going, and memory efficient. As also noted in other replies, a String works as a great key, so you don't need to override anything. (This is also true of the following.)
The chief alternative is a TreeMap. This is slower and a uses a bit more memory. It's a lot more flexible, however. The same map will work great with 5 entries and 5 million entries. You don't need to clue it in in advance. If your list varies wildly in size, the TreeMap will grab memory as it needs and let it go when it doesn't. Hashmaps are not so good about letting go, and as I explain below, they can be awkward when grabbing more memory.
TreeMap's work better with Garbage Collectors. They ask for memory in small, easily found chunks. If you start a hashtable with room for 100,000 entries, when it gets full it will free the 100,000 element (almost a megabye on a 64 bit machine) array and ask for one that's even larger. If it does this repeatedly, it can get ahead of the GC, which tends to throw an out-of-memory exception rather than spend a lot of time gathering up and concentrating scattered bits of free memory. (It prefers to maintain its reputation for speed at the expense of your machine's reputation for having a lot of memory. You really can manage to run out of memory with 90% of your heap unused because it's fragmented.)
So if you are running your program full tilt, your list of names varies wildly in size--and perhaps you even have several lists of names varying wildly in size--a TreeMap will work a lot better for you.
A hash map will no doubt be just what you need. But when things get really crazy, there's the ConcurrentSkipListMap. This is everything a TreeMap is except it's a bit slower. On the other hand, it allows adds, updates, deletes, and reads from multiple threads willy-nilly, with no synchronization. (I mention it just to be complete.)
In terms of data structures the HashMapcan be a good choice. It favours larger datasets. The time for inserts is considered constant O(1).
In this case it sounds like you will be carrying out more lookups than inserts. For lookups the average time complexity is O(1 + n/k), the key factor here (sorry about the pun) is how effective the hashing algorithm is at evenly distributing the data across the buckets.
the risk here is that the usernames are short in length and use a small character set such as a-z. In which case there would be a lot of collisions causing the HashMap to be loaded unevenly and therefore slowing down the lookups. One option to improve this could be to create your own user key object and override the hashcode() method with an algorthim that suits your keys better.
in summary if you have a large data set, a good/suitable hashing algorithm and you have the space to hold it all in memory then HashMap can provide a relatively fast lookup
I think given your last post on the ArrayList and it's scalabilty I would take Bozho's suggestion and go for a purpose build cache such as EhCache. This will allow you to control memory usage and eviction policies. Still a lot faster than db access.
If you don't change your list of users very often then you may want to use Aho-Corasick. You will need a pre-processing step that will take O(T) time and space, where T is the sum of the lengths of all user names. After that you can match user names in O(n) time, where n is the length of the user name you are looking for. Since you will have to look at every character in the user name you are looking for I don't think it's possible to do better than this.
We are working on a project, that will be distributed using single jar file. We have a need for some key-value store with following properties:
Embeddable into our jar file, so no additional installation.
Can hold up to tens of millions pairs
Memory efficient. That means less than 100M for 50M pairs
Both keys and values are of simple types: long, int, small byte[]
Free license for commercial use is a bonus
We do not need concurrency, ACID or such advanced stuff.
Amortized lookup time below 100 microseconds.
Any suggestions other than BerkelyDB or JDBM2/3?
GNU Trove offers a number of maps (e.g. TIntIntHashMap) that are more memory-efficient than standard Java maps because they use primitive types. I doubt you can get significantly more memory-efficient than this unless you know something about what you are storing. Trove is more or less LGPL, so it's probably safe for you to use. I don't know if it specifically meets your exact specifications, but I think it's worth trying when you can fit things in RAM.
When you might need to swap to disk, Ehcache is a good choice. You can specify that after a certain number of entries it will store values on disk (newly in version 2.5 you can specify after a certain amount of RAM is used if you don't know how the exact number of entries).
Look at noSQL implementations, CouchDB, Cassandra and more are pretty good.
Do google search to compare, you will find what you want.
My favourite is mongoDb and unfortunately its not Java based
regards
I am reading XML document into HashMaps, ArrayLists so that the relationship maintains even in the memory. My code does my job but i am worried about the iterations or function calls i am performing on this huge maps and lists. Currently the xml data i am working is not so huge. but i dont know what happens if it has. What are the testcases i need to perform on my logics that use these hashmaps? How bad is using a Java collections for such a huge data? Is there any alternatives for them? Will the huge data affect the JVM to crash?
Java collections have a certain overhead, which can increase the memory usage a lot (20 times in extreme cases) when they're the primary data structures of an application and the payload data consists of a large number of small objects. This could lead to the application terminating with an OutOfMemoryError even though the actual data is much smaller than the available memory.
ArrayList is actually very efficient for large numbers of elements, but inefficient when you have a large number of lists that are empty or contain only one element. For those cases, you could use Collections.emptyList() and Collections.singletonList() to improve efficiency.
HashMap has the same problem as well as a considerable overhead for each element stored in it. So the same advice applies as for ArrayList. If you have a large number of elements, there may be alternative Map implementations that are more efficient, e.g. Google Guava.
The biggest overheads happen when you store primitive values such as int or long in collections, as the need to be wrapped as objects. In those cases, the GNU Trove collections offer an alternative.
In your case specifically, the question is whether you really need to keep the entire data from the XML in memory at once, or whether you can process it in small chunks. This would probably be the best solution if your data can grow arbitrarily large.
The easiest short term solution would be to simply buy more memory. It's cheap.
JVM will not crash in what you describe. What may happen is an OutOfMemoryError. Also if you retain the data in those Collections for long you may have issues with the garbage collection. Do you really need to store the whole XML data in memory?
If you are dealing with temporary data and you need to have a fast access to it you do not have to many alternatives. The question is what do you mean when you say "huge"? MegaBytes? GigaBytes? TeraBytes?
While your data does not exceed 1G IMHO holding it in memory may be OK. Otherwise you should think about alternatives like DB (relational or NoSql) files etc.
In your specific example I'd think about replacing ArrayList to LinkedList unless you need random access list. ArrayList is just a wrapper over array, so when you need 1 million elements it allocates 1 million elements long array. Linked list is better for when number of elements is big but it is rate of access of element by index is o(n/2). If you need both (i.e. huge list and fast access) use TreeMap with index as a key instead. You will get log(n) access rate.
What are the testcases i need to perform on my logics that use these hashmaps?
Why not to generate large XML files (for example, 5 times larger, than your current data samples) and check your parsers/memory storages with them? Because only you knows what files are possible in your case, how fast will they grow, this is the only solution.
How bad is using a Java collections for such a huge data? Is there any
alternatives for them? Will the huge data affect the JVM to crash?
Of course, is it possible that you will have OutOfMemory exception if you try to store too much data in memory, and it is not eligible for GC. This library: http://trove.starlight-systems.com/ declares, that it uses less memory, but I didn't use it myself. Some discussion is available here: What is the most efficient Java Collections library?
How bad is using a Java collections for such a huge data?
Java Map implementations and (to a lesser extent) Collection implementations do tend to use a fair amount of memory. The effect is most pronounced when the key / value / element types are wrapper types for primitive types.
Is there any alternatives for them?
There are alternative implementations of "collections" of primitive types that use less memory; e.g. the GNU Trove libraries. But they don't implement the standard Java collection APIs, and that severely limits their usefulness.
If your collections don't use the primitive wrapper classes, then your options are more limited. You might be able to implement your own custom data structures to use less memory, but the saving won't be that great (in percentage terms) and you've got a significant amount of work to do to implement the code.
A better solution is to redesign your application so that it doesn't need to represent the entire XML data structure in memory. (If you can achieve this.)
Will the huge data affect the JVM to crash?
It could cause a JVM to throw an OutOfMemoryError. That's not technically a crash, but in your use-case it probably means that the application has no choice but to give up.