Given this numbers:
150.00
150.26
I need to round like this:
If the second value of decimal part is zero (0), then the new value should be 150.0
If the second value of decimal part is different than zero (0), then the new value keeps both decimals Ex.: 150.26
Is there a rounding method that can do this?
Thanks.
My code here:
String monto = "150.10";//150.26
String nuevoMonto = "";
String[] valores = monto.split("\\.");
System.out.println("Valores : " + valores);
System.out.println("Valores length: " + valores.length);
for (int i = 0; i < valores.length; i++) {
System.out.println("-->Valor: " + valores[i]);
}
if (valores.length == 2) {
nuevoMonto = valores[1];
System.out.println("Nuevomonto: " + nuevoMonto);
if (nuevoMonto.length() == 2) {
System.out.println("Dos posiciones decimales");
System.out.println(nuevoMonto.indexOf("0"));
if (nuevoMonto.indexOf("0") == 1) {
nuevoMonto = valores[0] + "." + nuevoMonto.substring(0, 1);
}
}
}
System.out.println("Nuevo monto: " + nuevoMonto);
try something like this:
DecimalFormat decimalFormat = new DecimalFormat("#.0#");
System.out.println(decimalFormat.format(150.09));
System.out.println(decimalFormat.format(150.10));
The string inside the new decimal format allows #s to be trimmed, and 0s are forced to stay
If you have a string to start with, perhaps there is no point parsing it to a floating point number and then reformatting it. Another approach is to use a regexp for this:
String monto = "150.10";
String nuevoMonto = monto.replaceAll("(?<=\\.\\d)0$", "")
The regexp consist of two parts. The first part (?<=\\.\\d) says the match need to be preceded by a dot and a digit. The second part 0$ matches the trailing zero at the end of the string. We replace it with nothing.
There is an expression in Java called floor method which can be used to always bring a value with any form of rounding to an integer value with any relevant decimal points removed from the data
a simple check for this wold be to take the data and check if the data is not modulo or mod of a zero
sample code might look like this.
if ((monto % 0.1 ) == 0)
{
//has no relevant data so it should be floored
Nuevomonto = floor (monto);
}
else
{
Nuevomonto = monto;
}
hope that helps.
I have Strings (from DB), which may contain numeric values. If it contains numeric values, I'd like to remove trailing zeros such as:
10.0000
10.234000
str.replaceAll("\\.0*$", ""), works on the first one, but not the second one.
A lot of the answers point to use BigDecimal, but the String I get may not be numeric. So I think a better solution probably is through the Regex.
there are possibilities:
1000 -> 1000
10.000 -> 10 (without point in result)
10.0100 -> 10.01
10.1234 -> 10.1234
I am lazy and stupid, just
s = s.indexOf(".") < 0 ? s : s.replaceAll("0*$", "").replaceAll("\\.$", "");
Same solution using contains instead of indexOf as mentioned in some of the comments for easy understanding
s = s.contains(".") ? s.replaceAll("0*$","").replaceAll("\\.$","") : s
Use DecimalFormat, its cleanest way
String s = "10.1200";
DecimalFormat decimalFormat = new DecimalFormat("0.#####");
String result = decimalFormat.format(Double.valueOf(s));
System.out.println(result);
Kent's string manipulation answer magically works and also caters for precision loss, But here's a cleaner solution using BigDecimal
String value = "10.234000";
BigDecimal stripedVal = new BigDecimal(value).stripTrailingZeros();
You can then convert to other types
String stringValue = stripedVal.toPlainString();
double doubleValue = stripedVal.doubleValue();
long longValue = stripedVal.longValue();
If precision loss is an ultimate concern for you, then obtain the exact primitive value. This would throw ArithmeticException if there'll be any precision loss for the primitive. See below
int intValue = stripedVal.intValueExact();
String value = "10.010"
String s = new DecimalFormat("0.####").format(Double.parseDouble(value));
System.out.println(s);
Output:
10.01
I find all the other solution too complicated. Simply
s.replaceFirst("\\.0*$|(\\.\\d*?)0+$", "$1");
does the job. It tries the first alternative first, so that dot followed by all zeros gets replaced by nothing (as the group doesn't get set). Otherwise, if it finds a dot followed by some digits (as few as possible due to the lazy quantifier *?) followed by some zeros, the zeros get discarded as they're not included in the group. It works.
Warning
My code relies on my assumption that appending a unmatched group does nothing. This is true for the Oracle implementation, but not for others, including Android, which seem to append the string "null". I'd call the such implementations broken as it just may no sense, but they're correct according to the Javadoc.
The following works for all the following examples:
"1" -> "1"
"1.0" -> "1"
"1.01500" -> "1.015"
"1.103" -> "1.103"
s = s.replaceAll("()\\.0+$|(\\..+?)0+$", "$2");
What about replacing
(\d*\.\d*)0*$
by
\1
?
You could replace with:
String result = (str.indexOf(".")>=0?str.replaceAll("\\.?0+$",""):str);
To keep the Regex as simple as possible. (And account for inputs like 1000 as pointed out in comments)
My implementation with possibility to select numbers of digits after divider:
public static String removeTrailingZero(String number, int minPrecise, char divider) {
int dividerIndex = number.indexOf(divider);
if (dividerIndex == -1) {
return number;
}
int removeCount = 0;
for (int i = dividerIndex + 1; i < number.length(); i++) {
if (number.charAt(i) == '0') {
removeCount++;
} else {
removeCount = 0;
}
}
int fracLen = number.length() - dividerIndex - 1;
if (fracLen - removeCount < minPrecise) {
removeCount = fracLen - minPrecise;
}
if (removeCount < 0) {
return number;
}
String result = number.substring(0, number.length() - removeCount);
if (result.endsWith(String.valueOf(divider))) {
return result.substring(0, result.length() - 1);
}
return result;
}
In addition to Kent's answer.
Be careful with regex in Kotlin. You have to manually write Regex() constructor instead of a simple string!
s = if (s.contains("."))
s.replace(Regex("0*\$"),"").replace(Regex("\\.\$"),"")
else s
Try to use this code:
DecimalFormat df = new DecimalFormat("#0.#####");
String value1 = df.format(101.00000);
String value2 = df.format(102.02000);
String value3 = df.format(103.20000);
String value4 = df.format(104.30020);
Output:
101
102.02
103.2
104.3002
Separate out the fraction part first. Then you can use the below logic.
BigDecimal value = BigDecimal.valueOf(345000);
BigDecimal div = new BigDecimal(10).pow(Integer.numberOfTrailingZeros(value.intValue()));
System.out.println(value.divide(div).intValue());
I have several thousands of rows that I'm loading into a database utilizing Pentaho. I must keep the string value length at 4 characters. The source file may only have a single character but it is still needed to keep the length at 4 characters to maintain consistency in the database.
Example:
Source: 10
Database expected results: 0010
I'm using a replace in string transformation or could use a java expression, which ever one works. Please help and provide a resolution utilizing either method (Regex or Javascript expression).
Thanks,
In Java you can use String.format(...) with a format specifier to pad your number with zeroes to 4 digits:
String.format("%04d", yournumber);
In Javascript you can use sprintf(...) for the same task:
var s = sprintf("%04d", yournumber);
So apparently sprintf() isn't standard Javascript but is a library you can download if you like. You can always to do this to get your 4 digits though:
// take the last 4 digits from the right
var s = String("0000" + yournumber).slice(-4);
And you could actually turn this into a simple left-padding function:
String.prototype.leftPad = function(paddingValue, paddingLength) {
return (new Array(paddingLength + 1).join(paddingValue) + this).slice(-paddingLength);
};
var s = String(yournumber).leftPad("0", 4)
(If you mean Javascript):
var str = "10";
function padIt(s) {
s = ""+s;
while (s.length < 4) {
s = "0" + s;
}
return s;
}
console.log(padIt(str));
http://jsfiddle.net/EzqRM/1/
For arbitrary padding of numbers, in javascript:
// padLeft(
// number to pad
// length to pad to
// character to pad with[optional, uses 0's if not specified]
// )
function padLeft(num, pad, padchr) {
num = "" + num;
pad = (pad || num.length) + 1;
return (num.length < pad ? new Array(pad - num.length).join(padchr || "0") : "") + num;
}
// returns "0010"
var input = 10
padded = padLeft(input, 4)
I know variants of this question have been asked frequently before (see here and here for instance), but this is not an exact duplicate of those.
I would like to check if a String is a number, and if so I would like to store it as a double. There are several ways to do this, but all of them seem inappropriate for my purposes.
One solution would be to use Double.parseDouble(s) or similarly new BigDecimal(s). However, those solutions don't work if there are commas present (so "1,234" would cause an exception). I could of course strip out all commas before using these techniques, but that would seem to pose loads of problems in other locales.
I looked at Apache Commons NumberUtils.isNumber(s), but that suffers from the same comma issue.
I considered NumberFormat or DecimalFormat, but those seemed far too lenient. For instance, "1A" is formatted to "1" instead of indicating that it's not a number. Furthermore, something like "127.0.0.1" will be counted as the number 127 instead of indicating that it's not a number.
I feel like my requirements aren't so exotic that I'm the first to do this, but none of the solutions does exactly what I need. I suppose even I don't know exactly what I need (otherwise I could write my own parser), but I know the above solutions do not work for the reasons indicated. Does any solution exist, or do I need to figure out precisely what I need and write my own code for it?
Sounds quite weird, but I would try to follow this answer and use java.util.Scanner.
Scanner scanner = new Scanner(input);
if (scanner.hasNextInt())
System.out.println(scanner.nextInt());
else if (scanner.hasNextDouble())
System.out.println(scanner.nextDouble());
else
System.out.println("Not a number");
For inputs such as 1A, 127.0.0.1, 1,234, 6.02e-23 I get the following output:
Not a number
Not a number
1234
6.02E-23
Scanner.useLocale can be used to change to the desired locale.
You can specify the Locale that you need:
NumberFormat nf = NumberFormat.getInstance(Locale.GERMAN);
double myNumber = nf.parse(myString).doubleValue();
This should work in your example since German Locale has commas as decimal separator.
You can use the ParsePosition as a check for complete consumption of the string in a NumberFormat.parse operation. If the string is consumed, then you don't have a "1A" situation. If not, you do and can behave accordingly. See here for a quick outline of the solution and here for the related JDK bug that is closed as wont fix because of the ParsePosition option.
Unfortunately Double.parseDouble(s) or new BigDecimal(s) seem to be your best options.
You cite localisation concerns, but unfortunately there is no way reliably support all locales w/o specification by the user anyway. It is just impossible.
Sometimes you can reason about the scheme used by looking at whether commas or periods are used first, if both are used, but this isn't always possible, so why even try? Better to have a system which you know works reliably in certain situations than try to rely on one which may work in more situations but can also give bad results...
What does the number 123,456 represent? 123456 or 123.456?
Just strip commas, or spaces, or periods, depending on locale specified by user. Default to stripping spaces and commas. If you want to make it stricter, only strip commas OR spaces, not both, and only before the period if there is one. Also should be pretty easy to check manually if they are spaced properly in threes. In fact a custom parser might be easiest here.
Here is a bit of a proof of concept. It's a bit (very) messy but I reckon it works, and you get the idea anyways :).
public class StrictNumberParser {
public double parse(String numberString) throws NumberFormatException {
numberString = numberString.trim();
char[] numberChars = numberString.toCharArray();
Character separator = null;
int separatorCount = 0;
boolean noMoreSeparators = false;
for (int index = 1; index < numberChars.length; index++) {
char character = numberChars[index];
if (noMoreSeparators || separatorCount < 3) {
if (character == '.') {
if (separator != null) {
throw new NumberFormatException();
} else {
noMoreSeparators = true;
}
} else if (separator == null && (character == ',' || character == ' ')) {
if (noMoreSeparators) {
throw new NumberFormatException();
}
separator = new Character(character);
separatorCount = -1;
} else if (!Character.isDigit(character)) {
throw new NumberFormatException();
}
separatorCount++;
} else {
if (character == '.') {
noMoreSeparators = true;
} else if (separator == null) {
if (Character.isDigit(character)) {
noMoreSeparators = true;
} else if (character == ',' || character == ' ') {
separator = new Character(character);
} else {
throw new NumberFormatException();
}
} else if (!separator.equals(character)) {
throw new NumberFormatException();
}
separatorCount = 0;
}
}
if (separator != null) {
if (!noMoreSeparators && separatorCount != 3) {
throw new NumberFormatException();
}
numberString = numberString.replaceAll(separator.toString(), "");
}
return Double.parseDouble(numberString);
}
public void testParse(String testString) {
try {
System.out.println("result: " + parse(testString));
} catch (NumberFormatException e) {
System.out.println("Couldn't parse number!");
}
}
public static void main(String[] args) {
StrictNumberParser p = new StrictNumberParser();
p.testParse("123 45.6");
p.testParse("123 4567.8");
p.testParse("123 4567");
p.testParse("12 45");
p.testParse("123 456 45");
p.testParse("345.562,346");
p.testParse("123 456,789");
p.testParse("123,456,789");
p.testParse("123 456 789.52");
p.testParse("23,456,789");
p.testParse("3,456,789");
p.testParse("123 456.12");
p.testParse("1234567.8");
}
}
EDIT: obviously this would need to be extended for recognising scientific notation, but this should be simple enough, especially as you don't have to actually validate anything after the e, you can just let parseDouble fail if it is badly formed.
Also might be a good idea to properly extend NumberFormat with this. have a getSeparator() for parsed numbers and a setSeparator for giving desired output format... This sort of takes care of localisation, but again more work would need to be done to support ',' for decimals...
Not sure if it meets all your requirements, but the code found here might point you in the right direction?
From the article:
To summarize, the steps for proper input processing are:
Get an appropriate NumberFormat and define a ParsePosition variable.
Set the ParsePosition index to zero.
Parse the input value with parse(String source, ParsePosition parsePosition).
Perform error operations if the input length and ParsePosition index value don't match or if the parsed Number is null.
Otherwise, the value passed validation.
This is an interesting problem. But perhaps it is a little open-ended? Are you looking specifically to identify base-10 numbers, or hex, or what? I'm assuming base-10. What about currency? Is that important? Or is it just numbers.
In any case, I think that you can use the deficiencies of Number format to your advantage. Since you no that something like "1A", will be interpreted as 1, why not check the result by formatting it and comparing against the original string?
public static boolean isNumber(String s){
try{
Locale l = Locale.getDefault();
DecimalFormat df = new DecimalFormat("###.##;-##.##");
Number n = df.parse(s);
String sb = df.format(n);
return sb.equals(s);
}
catch(Exception e){
return false;
}
}
What do you think?
This is really interesting, and I think people are trying to overcomplicate it. I would really just break this down by rules:
1) Check for scientific notation (does it match the pattern of being all numbers, commas, periods, -/+ and having an 'e' in it?) -- if so, parse however you want
2) Does it match the regexp for valid numeric characters (0-9 , . - +) (only 1 . - or + allowed)
if so, strip out everything that's not a digit and parse appropriately, otherwise fail.
I can't see a shortcut that's going to work here, just take the brute force approach, not everything in programming can be (or needs to be) completely elegant.
My understanding is that you want to cover Western/Latin languages while retaining as much strict interpretation as possible. So what I'm doing here is asking DecimalFormatSymbols to tell me what the grouping, decimal, negative, and zero separators are, and swapping them out for symbols Double will recognize.
How does it perform?
In the US, it rejects: "1A", "127.100.100.100"
and accepts "1.47E-9"
In Germany it still rejects "1A"
It ACCEPTS "1,024.00" but interprets it correctly as 1.024. Likewise, it accepts "127.100.100.100" as 127100100100.0
In fact, the German locale correctly identifies and parses "1,47E-9"
Let me know if you have any trouble in a different locale.
import java.util.Locale;
import java.text.DecimalFormatSymbols;
public class StrictNumberFormat {
public static boolean isDouble(String s, Locale l) {
String clean = convertLocaleCharacters(s,l);
try {
Double.valueOf(clean);
return true;
} catch (NumberFormatException nfe) {
return false;
}
}
public static double doubleValue(String s, Locale l) {
return Double.valueOf(convertLocaleCharacters(s,l));
}
public static boolean isDouble(String s) {
return isDouble(s,Locale.getDefault());
}
public static double doubleValue(String s) {
return doubleValue(s,Locale.getDefault());
}
private static String convertLocaleCharacters(String number, Locale l) {
DecimalFormatSymbols symbols = new DecimalFormatSymbols(l);
String grouping = getUnicodeRepresentation( symbols.getGroupingSeparator() );
String decimal = getUnicodeRepresentation( symbols.getDecimalSeparator() );
String negative = getUnicodeRepresentation( symbols.getMinusSign() );
String zero = getUnicodeRepresentation( symbols.getZeroDigit() );
String clean = number.replaceAll(grouping, "");
clean = clean.replaceAll(decimal, ".");
clean = clean.replaceAll(negative, "-");
clean = clean.replaceAll(zero, "0");
return clean;
}
private static String getUnicodeRepresentation(char ch) {
String unicodeString = Integer.toHexString(ch); //ch implicitly promoted to int
while(unicodeString.length()<4) unicodeString = "0"+unicodeString;
return "\\u"+unicodeString;
}
}
You're best off doing it manually. Figure out what you can accept as a number and disregard everything else:
import java.lang.NumberFormatException;
import java.util.regex.Pattern;
import java.util.regex.Matcher;
public class ParseDouble {
public static void main(String[] argv) {
String line = "$$$|%|#|1A|127.0.0.1|1,344|95|99.64";
for (String s : line.split("\\|")) {
try {
System.out.println("parsed: " +
any2double(s)
);
}catch (NumberFormatException ne) {
System.out.println(ne.getMessage());
}
}
}
public static double any2double(String input) throws NumberFormatException {
double out =0d;
Pattern special = Pattern.compile("[^a-zA-Z0-9\\.,]+");
Pattern letters = Pattern.compile("[a-zA-Z]+");
Pattern comma = Pattern.compile(",");
Pattern allDigits = Pattern.compile("^[0-9]+$");
Pattern singleDouble = Pattern.compile("^[0-9]+\\.[0-9]+$");
Matcher[] goodCases = new Matcher[]{
allDigits.matcher(input),
singleDouble.matcher(input)
};
Matcher[] nanCases = new Matcher[]{
special.matcher(input),
letters.matcher(input)
};
// maybe cases
if (comma.matcher(input).find()){
out = Double.parseDouble(
comma.matcher(input).replaceFirst("."));
return out;
}
for (Matcher m : nanCases) {
if (m.find()) {
throw new NumberFormatException("Bad input "+input);
}
}
for (Matcher m : goodCases) {
if (m.find()) {
try {
out = Double.parseDouble(input);
return out;
} catch (NumberFormatException ne){
System.out.println(ne.getMessage());
}
}
}
throw new NumberFormatException("Could not parse "+input);
}
}
If you set your locale right, built in parseDouble will work with commas. Example is here.
I think you've got a multi step process to handle here with a custom solution, if you're not willing to accept the results of DecimalFormat or the answers already linked.
1) Identify the decimal and grouping separators. You might need to identify other format symbols (such as scientific notation indicators).
http://download.oracle.com/javase/1.4.2/docs/api/java/text/DecimalFormat.html#getDecimalFormatSymbols()
2) Strip out all grouping symbols (or craft a regex, be careful of other symbols you accept such as the decimal if you do). Then strip out the first decimal symbol. Other symbols as needed.
3) Call parse or isNumber.
One of the easy hacks would be to use replaceFirst for String you get and check the new String whether it is a double or not. In case it's a double - convert back (if needed)
If you want to convert some string number which is comma separated decimal to double, you could use DecimalSeparator + DecimalFormalSymbols:
final double strToDouble(String str, char separator){
DecimalFormatSymbols s = new DecimalFormatSymbols();
s.setDecimalSeparator(separator);
DecimalFormat df = new DecimalFormat();
double num = 0;
df.setDecimalFormatSymbols(s);
try{
num = ((Double) df.parse(str)).doubleValue();
}catch(ClassCastException | ParseException ex){
// if you want, you could add something here to
// indicate the string is not double
}
return num;
}
well, lets test it:
String a = "1.2";
String b = "2,3";
String c = "A1";
String d = "127.0.0.1";
System.out.println("\"" + a + "\" = " + strToDouble(a, ','));
System.out.println("\"" + a + "\" (with '.' as separator) = "
+ strToDouble(a, '.'));
System.out.println("\"" + b + "\" = " + strToDouble(b, ','));
System.out.println("\"" + c + "\" = " + strToDouble(c, ','));
System.out.println("\"" + d + "\" = " + strToDouble(d, ','));
if you run the above code, you'll see:
"1.2" = 0.0
"1.2" (with '.' as separator) = 1.2
"2,3" = 2.3
"A1" = 0.0
"127.0.0.1" = 0.0
This will take a string, count its decimals and commas, remove commas, conserve a valid decimal (note that this is based on US standardization - in order to handle 1.000.000,00 as 1 million this process would have to have the decimal and comma handling switched), determine if the structure is valid, and then return a double. Returns null if the string could not be converted. Edit: Added support for international or US. convertStoD(string,true) for US, convertStoD(string,false) for non US. Comments are now for US version.
public double convertStoD(string s,bool isUS){
//string s = "some string or number, something dynamic";
bool isNegative = false;
if(s.charAt(0)== '-')
{
s = s.subString(1);
isNegative = true;
}
string ValidNumberArguements = new string();
if(isUS)
{
ValidNumberArguements = ",.";
}else{
ValidNumberArguements = ".,";
}
int length = s.length;
int currentCommas = 0;
int currentDecimals = 0;
for(int i = 0; i < length; i++){
if(s.charAt(i) == ValidNumberArguements.charAt(0))//charAt(0) = ,
{
currentCommas++;
continue;
}
if(s.charAt(i) == ValidNumberArguements.charAt(1))//charAt(1) = .
{
currentDec++;
continue;
}
if(s.charAt(i).matches("\D"))return null;//remove 1 A
}
if(currentDecimals > 1)return null;//remove 1.00.00
string decimalValue = "";
if(currentDecimals > 0)
{
int index = s.indexOf(ValidNumberArguements.charAt(1));
decimalValue += s.substring(index);
s = s.substring(0,index);
if(decimalValue.indexOf(ValidNumberArguements.charAt(0)) != -1)return null;//remove 1.00,000
}
int allowedCommas = (s.length-1) / 3;
if(currentCommas > allowedCommas)return null;//remove 10,00,000
String[] NumberParser = s.split(ValidNumberArguements.charAt(0));
length = NumberParser.length;
StringBuilder returnString = new StringBuilder();
for(int i = 0; i < length; i++)
{
if(i == 0)
{
if(NumberParser[i].length > 3 && length > 1)return null;//remove 1234,0,000
returnString.append(NumberParser[i]);
continue;
}
if(NumberParser[i].length != 3)return null;//ensure proper 1,000,000
returnString.append(NumberParser[i]);
}
returnString.append(decimalValue);
double answer = Double.parseDouble(returnString);
if(isNegative)answer *= -1;
return answer;
}
This code should handle most inputs, except IP addresses where all groups of digits are in three's (ex: 255.255.255.255 is valid, but not 255.1.255.255). It also doesn't support scientific notation
It will work with most variants of separators (",", "." or space). If more than one separator is detected, the first is assumed to be the thousands separator, with additional checks (validity etc.)
Edit: prevDigit is used for checking that the number uses thousand separators correctly. If there are more than one group of thousands, all but the first one must be in groups of 3. I modified the code to make it clearer so that "3" is not a magic number but a constant.
Edit 2: I don't mind the down votes much, but can someone explain what the problem is?
/* A number using thousand separator must have
groups of 3 digits, except the first one.
Numbers following the decimal separator can
of course be unlimited. */
private final static int GROUP_SIZE=3;
public static boolean isNumber(String input) {
boolean inThousandSep = false;
boolean inDecimalSep = false;
boolean endsWithDigit = false;
char thousandSep = '\0';
int prevDigits = 0;
for(int i=0; i < input.length(); i++) {
char c = input.charAt(i);
switch(c) {
case ',':
case '.':
case ' ':
endsWithDigit = false;
if(inDecimalSep)
return false;
else if(inThousandSep) {
if(c != thousandSep)
inDecimalSep = true;
if(prevDigits != GROUP_SIZE)
return false; // Invalid use of separator
}
else {
if(prevDigits > GROUP_SIZE || prevDigits == 0)
return false;
thousandSep = c;
inThousandSep = true;
}
prevDigits = 0;
break;
default:
if(Character.isDigit(c)) {
prevDigits++;
endsWithDigit = true;
}
else {
return false;
}
}
}
return endsWithDigit;
}
Test code:
public static void main(String[] args) {
System.out.println(isNumber("100")); // true
System.out.println(isNumber("100.00")); // true
System.out.println(isNumber("1,5")); // true
System.out.println(isNumber("1,000,000.00.")); // false
System.out.println(isNumber("100,00,2")); // false
System.out.println(isNumber("123.123.23.123")); // false
System.out.println(isNumber("123.123.123.123")); // true
}
Is there a better, more elegant (and/or possibly faster) way than
boolean isNumber = false;
try{
Double.valueOf(myNumber);
isNumber = true;
} catch (NumberFormatException e) {
}
...?
Edit:
Since I can't pick two answers I'm going with the regex one because a) it's elegant and b) saying "Jon Skeet solved the problem" is a tautology because Jon Skeet himself is the solution to all problems.
I don't believe there's anything built into Java to do it faster and still reliably, assuming that later on you'll want to actually parse it with Double.valueOf (or similar).
I'd use Double.parseDouble instead of Double.valueOf to avoid creating a Double unnecessarily, and you can also get rid of blatantly silly numbers quicker than the exception will by checking for digits, e/E, - and . beforehand. So, something like:
public boolean isDouble(String value)
{
boolean seenDot = false;
boolean seenExp = false;
boolean justSeenExp = false;
boolean seenDigit = false;
for (int i=0; i < value.length(); i++)
{
char c = value.charAt(i);
if (c >= '0' && c <= '9')
{
seenDigit = true;
continue;
}
if ((c == '-' || c=='+') && (i == 0 || justSeenExp))
{
continue;
}
if (c == '.' && !seenDot)
{
seenDot = true;
continue;
}
justSeenExp = false;
if ((c == 'e' || c == 'E') && !seenExp)
{
seenExp = true;
justSeenExp = true;
continue;
}
return false;
}
if (!seenDigit)
{
return false;
}
try
{
Double.parseDouble(value);
return true;
}
catch (NumberFormatException e)
{
return false;
}
}
Note that despite taking a couple of tries, this still doesn't cover "NaN" or hex values. Whether you want those to pass or not depends on context.
In my experience regular expressions are slower than the hard-coded check above.
You could use a regex, i.e. something like String.matches("^[\\d\\-\\.]+$"); (if you're not testing for negative numbers or floating point numbers you could simplify a bit).
Not sure whether that would be faster than the method you outlined though.
Edit: in the light of all this controversy, I decided to make a test and get some data about how fast each of these methods were. Not so much the correctness, but just how quickly they ran.
You can read about my results on my blog. (Hint: Jon Skeet FTW).
See java.text.NumberFormat (javadoc).
NumberFormat nf = NumberFormat.getInstance(Locale.FRENCH);
Number myNumber = nf.parse(myString);
int myInt = myNumber.intValue();
double myDouble = myNumber.doubleValue();
The correct regex is actually given in the Double javadocs:
To avoid calling this method on an invalid string and having a NumberFormatException be thrown, the regular expression below can be used to screen the input string:
final String Digits = "(\\p{Digit}+)";
final String HexDigits = "(\\p{XDigit}+)";
// an exponent is 'e' or 'E' followed by an optionally
// signed decimal integer.
final String Exp = "[eE][+-]?"+Digits;
final String fpRegex =
("[\\x00-\\x20]*"+ // Optional leading "whitespace"
"[+-]?(" + // Optional sign character
"NaN|" + // "NaN" string
"Infinity|" + // "Infinity" string
// A decimal floating-point string representing a finite positive
// number without a leading sign has at most five basic pieces:
// Digits . Digits ExponentPart FloatTypeSuffix
//
// Since this method allows integer-only strings as input
// in addition to strings of floating-point literals, the
// two sub-patterns below are simplifications of the grammar
// productions from the Java Language Specification, 2nd
// edition, section 3.10.2.
// Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
"((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
// . Digits ExponentPart_opt FloatTypeSuffix_opt
"(\\.("+Digits+")("+Exp+")?)|"+
// Hexadecimal strings
"((" +
// 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
"(0[xX]" + HexDigits + "(\\.)?)|" +
// 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
"(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
")[pP][+-]?" + Digits + "))" +
"[fFdD]?))" +
"[\\x00-\\x20]*");// Optional trailing "whitespace"
if (Pattern.matches(fpRegex, myString))
Double.valueOf(myString); // Will not throw NumberFormatException
else {
// Perform suitable alternative action
}
This does not allow for localized representations, however:
To interpret localized string representations of a floating-point value, use subclasses of NumberFormat.
Use StringUtils.isDouble(String) in Apache Commons.
Leveraging off Mr. Skeet:
private boolean IsValidDoubleChar(char c)
{
return "0123456789.+-eE".indexOf(c) >= 0;
}
public boolean isDouble(String value)
{
for (int i=0; i < value.length(); i++)
{
char c = value.charAt(i);
if (IsValidDoubleChar(c))
continue;
return false;
}
try
{
Double.parseDouble(value);
return true;
}
catch (NumberFormatException e)
{
return false;
}
}
Most of these answers are somewhat acceptable solutions. All of the regex solutions have the issue of not being correct for all cases you may care about.
If you really want to ensure that the String is a valid number, then I would use your own solution. Don't forget that, I imagine, that most of the time the String will be a valid number and won't raise an exception. So most of the time the performance will be identical to that of Double.valueOf().
I guess this really isn't an answer, except that it validates your initial instinct.
Randy
I would use the Jakarta commons-lang, as always ! But I have no idea if their implementation is fast or not. It doesnt rely on Exceptions, which might be a good thig performance wise ...
Following Phill's answer can I suggest another regex?
String.matches("^-?\\d+(\\.\\d+)?$");
I prefer using a loop over the Strings's char[] representation and using the Character.isDigit() method. If elegance is desired, I think this is the most readable:
package tias;
public class Main {
private static final String NUMERIC = "123456789";
private static final String NOT_NUMERIC = "1L5C";
public static void main(String[] args) {
System.out.println(isStringNumeric(NUMERIC));
System.out.println(isStringNumeric(NOT_NUMERIC));
}
private static boolean isStringNumeric(String aString) {
if (aString == null || aString.length() == 0) {
return false;
}
for (char c : aString.toCharArray() ) {
if (!Character.isDigit(c)) {
return false;
}
}
return true;
}
}
If you want something that's blisteringly fast, and you have a very clear idea of what formats you want to accept, you can build a state machine DFA by hand. This is essentially how regexes work under the hood anyway, but you can avoid the regex compilation step this way, and it may well be faster than a generic regex compiler.