What if creat many object in short time in java? - java

I know the best practice is to avoid object creation. But have to some time.
These new instance just behave as temp object. They don't be referenced after create. How java GC react to this.
Can it cause OOM? If I can collect them immediately. How can I remove them from memory?

In a modern JVM, you'll find that creating lots and lots of very short-lived objects is cheap. "Short-lived" is key here, as things do get more expensive for objects that live long enough to get promoted out the Eden space.
As a practical matter, I recommend using a good profiler to examine the actual performance of your application.

If you worry so much about memory management you could also consider using C++ instead, in order to have complete control of your actions. On Garbage Collector behaviour.

Related

How to get the statistics of the garbage collected objects?

Is it possible to see the java objects (and their class type) that were made null and which are
Not yet garbage collected/cleaned
garbage collected/cleaned.
This statistic will help to know that how many objects repeatedly created (by a wrong logic) instead of creating one time.
I think that it is theoretically possible, though frankly you would be crazy to try it.
The route to finding unreachable objects is to use the Java VM Tool Interface (JVMTI) to iterate over all objects in the heap (reachable or unreachable) in order to find the one you are looking for. Then you extract its state via JVMTI and (somehow) reify it so that you can display it.
Normally you would do this in a separate JVM; e.g. the one running your debugger or profiling tool. But it is possible for an application to attach an agent to itself, and use it to dig around in the JVM. However, this is not the intended usage for JVMTI, and I would anticipate that there could be "hazards" in doing this.
You can read more here:
Creating a Debugging and Profiling Agent with JVMTI
Own your heap: Iterate class instances with JVMTI
But please don't blame me if you go crazy trying to get this working.
UPDATE I concur with Marko's note that you are unlikely to learn anything significant by looking at unreachable objects.
to display the unwanted or null java objects that are not cleaned by the java garbage process
This is not a well-defined concept; at least there are no useful definitions which would give you anything of relevance.
A piece of memory where an object was allocated can be considered free for all practical purposes as soon as that object has become unreachable. The amount of memory that the block represents is available to the JVM allocator in the sense that no out-of-memory event will happen due to that block being "overlooked" in some sense.
Further note that many "garbage collection" algorithms usually do the exact opposite: they find live objects and relocate them so they occupy a contiguous block of memory. The algorithms are simply oblivious to "garbage" objects and treat them as just empty space.
So, even if you manage to write up some low-level Java Agent-based module which will enumerate all the objects on the heap, you will not gain any interesting insight: the unreachable objects which you encounter will just happen to linger on because the JVM has not yet felt the need to reuse their memory.

Is it possible to mark java objects non-collectable from gc perspective to save on gc-sweep time?

Is it possible to mark java objects non-collectable from gc perspective to save on gc-sweep time?
Something along the lines of http://wwwasd.web.cern.ch/wwwasd/lhc++/Objectivity/V5.2/Java/guide/jgdStorage.fm.html and specifically non-garbage-collectible containers there (non-garbage-collectable?).
The problem is that I have lots of ordinary temporary objects, but I have even bigger (several Gigs) of objects that are stored for Cache purposes. For no reason should the Java GC traverse all those Cache gigabytes trying to find anything to collect, because they contain cached data which have their own timeouts.
This way I could partition my data in a custom way into infinite-lived and normal-lived objects, and hopefully GC would be quite fast because normal objects don't live so long and amount to smaller amounts.
There are some workarounds to this problem, such as Apache DirectMemory and Commercial Terracotta BigMemory(http://terracotta.org/products/bigmemory), but a java-native solution would be nicer (I mean free and probably more reliable?). Also I want to avoid serialization overhead which means it should happen within same jvm. To my understanding DirectMemory and BigMemory operate mainly off heap which means that the objects must be serialized/deserialized to/from memory outside jvm. Simply marking non-gc regions within the jvm would seem a better solution. Using Files for cache is not an option either, it has the same unaffordable serialization/deserialization overhead - use case is a HA server with lots of data used in random (human) order and low latency needed.
Any memory the JVM manages is also garbage-collected by the JVM. And any “live” objects which are directly available to Java methods without deserialization have to live in JVM memory. Therefore in my understanding you cannot have live objects which are immune to garbage collection.
On the other hand, the usage you describe should make the generational approach to garbage collection quite efficient. If your big objects stay around for a while, they will be checked for reclamation less often. So I doubt there is much to be gained from avoiding those checks.
Is it possible to mark java objects non-collectable from gc perspective to save on gc-sweep time?
No it is not possible.
You can prevent objects from being garbage collected by keeping them reachable, but the GC will still need to trace them to check reachability on each full; GC (at least).
Is simply my assumption, that when the jvm is starving it begins scanning all those unnecessary objects too.
Yes. That is correct. However, unless you've got LOTS of objects that you want to be treated this way, the overhead is likely to be insignificant. (And anyway, a better idea is to give the JVM more memory ... if that is possible.)
Quite simply, for you to be able to do this, the garbage collection algorithm would need to be aware of such a flag, and take it into account when doing its work.
I'm not aware of any of the standard GC algorithms having such a flag, so for this to work you would need to write your own GC algorithm (after deciding on some feasible way to communicate this information to it).
In principle, in fact, you've already started down this track - you're deciding how garbage collection should be done rather than being happy to leaving it to the JVM's GC algo. Is the situation you describe a measurable problem for you; something for which the existing garbage collection is insufficient, but your plan would work? Garbage collectors are extremely well-tuned, so I wouldn't be surprised if the "inefficient" default strategy is actually faster than your naively-optimal one.
(Doing manual memory management is tricky and error-prone at the best of times; managing some memory yourself while using a stock garbage collector to handle the rest seems even worse. I expect you'd run into a lot of edge cases where the GC assumes it "knows" what's happening with the whole heap, which would no longer be true. Steer clear if you can...)
The recommended approaches would be to use either a commerical RTSJ implementation to avoid GC, or to use off heap memory. One could also look into soft references for caches as well (they do get collected).
This is not recommended:
If for some reason you do not believe these options are sufficient, you could look into direct memory access which is UNSAFE (part of sun.misc.Unsafe). You can use the 'theUnsafe' field to get the 'Unsafe' instance. Unsafe allows to allocation/deallocate memory via 'allocateMemory' and 'freeMemory'. This is not under GC control nor limited by JVM heap size. The impact on GC/application, once you go down this route, is not guaranteed - which is why using byte buffers might be the way to go (if you're not using a RTSJ like implementation).
Hope this helps.
Living Java objects will always be part of the GC life cycle. Or said another way, marking an object to be non-gc is the same order of overhead than having your object referenced by a root reference (a static final map for instance).
But thinking a bit further, data put in a cache are most likely to be temporary, and would eventually be evicted. At that point you will start again to like the JVM and the GC.
If you have 100's of GBs of permanent data, you may want to rethink the architecture of your application, and try to shard and distribute your data (horizontally scalability).
Last but not least, lots of work has been done around serialization, and the overhead of serialization (I'm not speaking about the poor reputation of ObjectInputStream and ObjectOutputStream) is not that big.
More than that, if your data is mainly composed of primitive types (including bytes array), there is efficient way to readInt() or readBytes() from off heap buffers (for instannce netty.io's ChannelBuffer). This could be a way to go.

How to memory profile in Java?

I'm still learning the ropes of Java so sorry if there's a obvious answer to this. I have a program that is taking a ton of memory and I want to figure a way to reduce its usage, but after reading many SO questions I have the idea that I need to prove where the problem is before I start optimizing it.
So here's what I did, I added a break point to the start of my program and ran it, then I started visualVM and had it profile the memory(I also did the same thing in netbeans just to compare the results and they are the same). My problem is I don't know how to read them, I got the highest area just saying char[] and I can't see any code or anything(which makes sense because visualvm is connecting to the jvm and can't see my source, but netbeans also does not show me the source as it does when doing cpu profiling).
Basically what I want to know is which variable(and hopefully more details like in which method) all the memory is being used so I can focus on working there. Is there a easy way to do this? I right now I am using eclipse and java to develop(and installed visualVM and netbeans specifically for profiling but am willing to install anything else that you feel gets this job done).
EDIT: Ideally, I'm looking for something that will take all my objects and sort them by size(so I can see which one is hogging memory). Currently it returns generic information such as string[] or int[] but I want to know which object its referring to so I can work on getting its size more optimized.
Strings are problematic
Basically in Java, String references ( things that use char[] behind the scenes ) will dominate most business applications memory wise. How they are created determines how much memory they consume in the JVM.
Just because they are so fundamental to most business applications as a data type, and they are one of the most memory hungry as well. This isn't just a Java thing, String data types take up lots of memory in pretty much every language and run time library, because at the least they are just arrays of 1 byte per character or at the worse ( Unicode ) they are arrays of multiple bytes per character.
Once when profiling CPU usage on a web app that also had an Oracle JDBC dependency I discovered that StringBuffer.append() dominated the CPU cycles by many orders of magnitude over all other method calls combined, much less any other single method call. The JDBC driver did lots and lots of String manipulation, kind of the trade off of using PreparedStatements for everything.
What you are concerned about you can't control, not directly anyway
What you should focus on is what in in your control, which is making sure you don't hold on to references longer than you need to, and that you are not duplicating things unnecessarily. The garbage collection routines in Java are highly optimized, and if you learn how their algorithms work, you can make sure your program behaves in the optimal way for those algorithms to work.
Java Heap Memory isn't like manually managed memory in other languages, those rules don't apply
What are considered memory leaks in other languages aren't the same thing/root cause as in Java with its garbage collection system.
Most likely in Java memory isn't consumed by one single uber-object that is leaking ( dangling reference in other environments ).
It is most likely lots of smaller allocations because of StringBuffer/StringBuilder objects not sized appropriately on first instantantations and then having to automatically grow the char[] arrays to hold subsequent append() calls.
These intermediate objects may be held around longer than expected by the garbage collector because of the scope they are in and lots of other things that can vary at run time.
EXAMPLE: the garbage collector may decide that there are candidates, but because it considers that there is plenty of memory still to be had that it might be too expensive time wise to flush them out at that point in time, and it will wait until memory pressure gets higher.
The garbage collector is really good now, but it isn't magic, if you are doing degenerate things, it will cause it to not work optimally. There is lots of documentation on the internet about the garbage collector settings for all the versions of the JVMs.
These un-referenced objects may just have not reached the time that the garbage collector thinks it needs them to for them to be expunged from memory, or there could be references to them held by some other object ( List ) for example that you don't realize still points to that object. This is what is most commonly referred to as a leak in Java, which is a reference leak more specifically.
EXAMPLE: If you know you need to build a 4K String using a StringBuilder create it with new StringBuilder(4096); not the default, which is like 32 and will immediately start creating garbage that can represent many times what you think the object should be size wise.
You can discover how many of what types of objects are instantiated with VisualVM, this will tell you what you need to know. There isn't going to be one big flashing light that points at a single instance of a single class that says, "This is the big memory consumer!", that is unless there is only one instance of some char[] that you are reading some massive file into, and this is not possible either, because lots of other classes use char[] internally; and then you pretty much knew that already.
I don't see any mention of OutOfMemoryError
You probably don't have a problem in your code, the garbage collection system just might not be getting put under enough pressure to kick in and deallocate objects that you think it should be cleaning up. What you think is a problem probably isn't, not unless your program is crashing with OutOfMemoryError. This isn't C, C++, Objective-C, or any other manual memory management language / runtime. You don't get to decide what is in memory or not at the detail level you are expecting you should be able to.
In JProfiler, you can take go to the heap walker and activate the biggest objects view. You will see the objects the retain most memory. "Retained" memory is the memory that would be freed by the garbage collector if you removed the object.
You can then open the object nodes to see the reference tree of the retained objects. Here's a screen shot of the biggest object view:
Disclaimer: My company develops JProfiler
I would recommend capturing heap dumps and using a tool like Eclipse MAT that lets you analyze them. There are many tutorials available. It provides a view of the dominator tree to provide insight into the relationships between the objects on the heap. Specifically for what you mentioned, the "path to GC roots" feature of MAT will tell you where the majority of those char[], String[] and int[] objects are being referenced. JVisualVM can also be useful in identifying leaks and allocations, particularly by using snapshots with allocation stack traces. There are quite a few walk-throughs of the process of getting the snapshots and comparing them to find the allocation point.
Java JDK comes with JVisualVM under bin folder, once your application server (for example is running) you can run visualvm and connect it to your localhost, which will provide you memory allocation and enable you to perform heap dump
If you use visualVM to check your memory usage, it focuses on the data, not the methods. Maybe your big char[] data is caused by many String values? Unless you are using recursion, the data will not be from local variables. So you can focus on the methods that insert elements into large data structures. To find out what precise statements cause your "memory leakage", I suggest you additionally
read Josh Bloch's Effective Java Item 6: (Eliminate obsolete object references)
use a logging framework an log instance creations on the highest verbosity level.
There are generally two distinct approaches to analyse Java code to gain an understanding of its memory allocation profile. If you're trying to measure the impact of a specific, small section of code – say you want to compare two alternative implementations in order to decide which one gives better runtime performance – you would use a microbenchmarking tool such as JMH.
While you can pause the running program, the JVM is a sophisticated runtime that performs a variety of housekeeping tasks and it's really hard to get a "point in time" snapshot and an accurate reading of the "level of memory usage". It might allocate/free memory at a rate that does not directly reflect the behaviour of the running Java program. Similarly, performing a Java object heap dump does not fully capture the low-level machine specific memory layout that dictates the actual memory footprint, as this could depend on the machine architecture, JVM version, and other runtime factors.
Tools like JMH get around this by repeatedly running a small section of code, and observing a long-running average of memory allocations across a number of invocations. E.g. in the GC profiling sample JMH benchmark the derived *·gc.alloc.rate.norm metric gives a reasonably accurate per-invocation normalised memory cost.
In the more general case, you can attach a profiler to a running application and get JVM-level metrics, or perform a heap dump for offline analysis. Some commonly used tools for profiling full applications are Async Profiler and the newly open-sourced Java Flight Recorder in conjunction with Java Mission Control to visualise results.

Dynamic Memory Handling Java vs C++

I am a C++ programmer currently trying to work on Java. Working on C++ I have an habit of keeping track of dynamic memory allocations and employing various techniques like RAII to avoid memory leak. Java as we know provides a Garbage Collector(GC) to take care of memory leaks.So while programing in Java should one just let go all the wholesome worries of heap memory and leave it for GC to take care of the memory leaks or should one have a approach similar to that while programming languages without GC, try to take care of the memory you allocate and just let GC take care of ones that you might miss out. What should be the approach? What are the downsides of either?
I'm not sure what you mean by trying to take care of the memory you allocate in presence of a GC, but I'll try some mind reading.
Basically, you shouldn't "worry" about your memory being collected. If you don't reference objects anymore, they will be picked up. Logical memory leaks are still possible if you create a situation where objects are referenced for the rest of your program (example: register listeners and never un-register them, example: implementing a vector-like collection that doesn't set items to null when removing items off the end).
However, if you have a strong RAII background, you'll be disapointed to learn that there is no direct equivalent in Java. The GC is a first-class tool for dealing with memory, but there is no guaranteed on when (or even if) finalizers are called. This means that the first-class treatment applied to memory is not applied to any other resource, such as: windows, database connections, sockets, files, synchronization primitives, etc.
With Java and .net (and i imagine, most other GC'ed languages), you don't need to worry much about heap memory at all. What you do need to worry about, is native resources like file handles, sockets, GUI primitives like fonts and such. Those generally need to be "disposed", which releases the native resources. (They often dispose themselves on finalization anyway, but it's kinda iffy to fall back on that. Dispose stuff yourself.)
With a GC, you have to:
still take care to properly release non-memory resources like file handles and DB connections.
make sure you don't keep references to objects you don't need anymore (like keeping them in collections). Because if you do that, you have a memory leak.
Apart from that, you can't really "take care of the memory you allocate", and trying to do so would be a waste of time.
Technically you don't need to worry about cleaning up after memory allocations since all objects are properly reference counted and the GC will take care of everything. In practice, an overactive GC will negatively impact performance. So while Java does not have a delete operator, you will do well to reuse objects as much as possible.
Also Java does not have destructors since objects will exists until the GC gets to them,. Java therefore has the finally construct which you should use to ensure that all non-memory related resources (files sockets etc) are closed when you are finished with them. Do not rely on the finalise method to do this for you.
In Java the GC takes care of allocating memory and freeing unused memory. This does not mean you can disregard the issue alltogether.
The Java GC frees objects that have are not referenced from the root. This means that Java can still have memory leaks if you are not carefull to remove references from global contexts like caches in global HashMaps, etc.
If any cluster of objects that reference eachother are not referenced from the root, the Java GC will free them. I.e. it does not work with reference counts, so you do not need to null all object references (although some coding styles do prefer clearing references as sonn as they are not needed anymore.)

Java Object Reuse

Should Java Objects be reused as often as it can be reused ? Or should we reuse it only when they are "heavyweight", ie have OS resources associated with it ?
All old articles on the internet talk about object reuse and object pooling as much as possible, but I have read recent articles that say new Object() is highly optimized now ( 10 instructions ) and Object reuse is not as big a deal as it used to be.
What is the current best practice and how are you people doing it ?
I let the garbage collector do that kind of deciding for me, the only time I've hit heap limit with freshly allocated objects was after running a buggy recursive algorithm for a couple of seconds which generated 3 * 27 * 27... new objects as fast as it could.
Do what's best for readability and encapsulation. Sometimes reusing objects may be useful, but generally you shouldn't worry about it.
If you use them very intensively and the construction is costly, you should try to reuse them as much as you can.
If your objects are very small, and cheap to create ( like Object ) you should create new ones.
For instance connections database are pooled because the cost of creating a new one is higher than those of creating .. mmhh new Integer for instance.
So the answer to your question is, reuse when they are heavy AND are used often ( it is not worth to pool a 3 mb object that is only used twice )
Edit:
Additionally, this item from Effective Java:Favor Immutability is worth reading and may apply to your situation.
Object creation is cheap, yes, but sometimes not cheap enough.
If you create a lot (and I mean A LOT) temporary objects in rapid succession, the costs for the garbage collector are considerable. However even with a good profiler you may not necessarily see the costs easily, as the garbage collector nowadays works in short intervals instead of blocking the whole application for a second or two.
Most of the performance improvements I got in my projects came from either avoiding object creation or avoiding the whole work (including the object creation) through aggressive caching. No matter how big or small the object is, it still takes time to create it and to manage the references and heap structures for it. (And of course, the cleanup and the internal heap-defrag/copying also takes time.)
I would not start to be religious about avoiding object creation at all cost, but if you see a jigsaw pattern in your memory-profiler, it means your garbage collector is on heavy duty. And if your garbage collector uses the CPU, the CPI is not available for your application.
Regarding object pooling: Doing it right and not running into either memory leaks or invalid states or spending more time on the management than you would save is difficult. So I never used that strategy.
My strategy has been to simply strive for immutable objects. Immutable things can be cached easily and therefore help to keep the system simple.
However, no matter what you do: Make sure you check your hotspots with a profiler first. Premature optimization is the root of most evilness.
Let the garbage collector do its job, it can be considered better than your code.
Unless a profiler proves it guilty. And don't even use common sense to try to figure out when it's wrong. In unusual cases even cheap objects like byte arrays are better pooled.
Rule 1 of optimization: don't do it.
Rule 2 (for experts only): don't do it yet.
The rule of thumb should be to use your common sense and reuse objects when their creation consumes significant resources such as I/O, network traffic, DB connections, etc...
If it's just creating a new String(), forget about the reuse, you'll gain nothing from it. Code readability has higher preference.
I would worry about performance issues if they arise. Do what makes sense first (would you do this with primatives), if you then run a profiling tool and find that it is new causing you problems, start to think about pre-allocation (ie. when your program isn't doing much work).
Re-using objects sounds like a disaster waiting to happen by the way:
SomeClass someObject = new SomeClass();
someObject.doSomething();
someObject.changeState();
someObject.changeOtherState();
someObject.sendSignal();
// stuff
//re-use
someObject.reset(); // urgh, had to put this in to support reuse
someObject.doSomethingElse(); // oh oh, this is wrong after calling changeOtherState, regardless of reset
someObject.changeState(); // crap, now this is wrong but it's not obvious yet
someObject.doImportantStuff(); // what's going on?
Object creation is certainly faster than it used to be. The newer generational GC in JDKs 5 and higher are improvements, too.
I don't think either of these makes excessive creation of objects cost-free, but they do reduce the importance of object pooling. I think pooling makes sense for database connections, but I don't attempt it for my own domain objects.
Reuse puts a premium on thread-safety. You need to think carefully to ensure that you can reuse objects safely.
If I decided that object reuse was important I'd do it with products like Terracotta, Tangersol, GridGain, etc. and make sure that my server had scads of memory available to it.
Second the above comments.
Don't try and second guess the GC and Hotspot. Object pooling may have been useful once but these days its not so useful unless you are talking about database connections or unique system resources.
Just try and write clean and simple code and be amazed at what Hotspot can do.
Why not use VisualVM or a profiler to take a look at your code?

Categories