In my Java (with Spring Boot and Spring Data JPA) applications, I generally use Instant. On the other hand, I would like to use the most proper data type for time values.
Could you please clarify me about these issues? What data type should I prefer for keeping date and time when:
1. To keep time precisely as timestamp (I am not sure if Instant is the best option)?
2. For normal cases when I just need date and time (as far as I know, the old library was obsolete, but not sure which library should I use).
I also consider the TimeZone, but not sure if using LocalDateTime with UTC solves my problem.
Any help would be appreciated.
Let's assume we need to cover the full span of date and time concerns. If there is a certain concern you don't have, that either collapses various types into 'well then they are interchangible' or simply means you don't need to use a certain part of the API. The point is, you need to understand what these types represent, and once you know that, you know which one to apply. Because even if various different java.time types all technically do what you want, code is more flexible and a lot simpler to read if the types you use represent the things you want them to. For the same reason String[] student = new String[] {"Joe McPringle", "56"}; is perhaps mechanically a way to represent a student's name and age, but things are just a lot simpler if you write a class Student { String name; int age; } and use that instead.
Local alarm clock
Imagine you want to wake up at 07:00 in the morning. Not because you have an appointment, you just like to be a fairly early riser.
So you set your alarm for 07:00 in the morning, go to sleep, and your alarm promptly goes off at 7. So far, so good. However, you then hop in a plane and fly from Amsterdam to New York. (it is 6 hours earlier in new york). You then go to sleep again. Should the alarm go off at 01:00 at night, or at 07:00 in the morning?
Both answers are correct. The question is, how do you 'store' that alarm, and to answer that question, you need to figure out what the alarm is attempting to represent.
If the intent is '07:00, whereever I might be at the time the alarm is supposed to go off', the correct data storage mechanism is java.time.LocalDateTime, which stores time in human terms (years, months, days, hours, minutes, and seconds) and not in computery terms (we'll get there later), and does not include a time zone at all. If the alarm is supposed to go off every day, then you don't want that either, as LDT stores date and time, hence the name, you'd use LocalTime instead.
That's because you wanted to store the concept of 'the alarm should go off at 7 o'clock' and nothing more than that. You had no intention of saying: "The alarm should go off when people in Amsterdam would agree it is currently 07:00", nor did you have the intent of saying: "When the universe arrives at this exact moment in time, sound the alarm". You had the intent of saying: "When it is 07:00 where-ever you are now, sound the alarm", so store that, which is a LocalTime.
The same principle applies to LocalDate: It stores a year/month/day tuple with no notion of where.
This does draw some perhaps wonky conclusions: Given a LocalDateTime object, it is not possible to ask how long it'll take until that LDT arrives. It is also not possible for any given moment in time to be compared to an LDT, because these things are apples and oranges. The notion 'Feb 18th, 2023, 7 in the morning on the dot' isn't a singular time. After all, in New York that 'moment' occurs a full 6 hours earlier than it would in Amsterdam. You can only compare 2 LocalDateTimes.
Instead, you would have to first 'place' your LDT somewhere, by converting it to one of the other types (ZonedDateTime or even Instant) by asking the java.time API: Okay, I want this particular LDT in a certain time zone.
Hence, if you are writing your alarm app, you would have to take the stored alarm (a LocalTime object), convert it to an Instant (which is what the nature of 'what time is it now, i.e. System.currentTimeMillis()' works on), by saying: That LocalTime, on the current day in the current local timezone, as an instant, and THEN comparing those two results.
Human appointments
Imagine that, just before jetting off to New York, you made an appointment at your local (in Amsterdam) barber. Their agenda was kinda busy so the appointment was set for June 20th, 2025, at 11:00.
If you stay in New York for a few years, the correct time for your calendar to remind you that you have an appointment with your barber's in an hour is certainly not at 10:00 on june 20th 2025 in New York. You'd have missed the appointment by then. Instead, your phone should chirp at you that you have an hour left to get to your barber's (a bit tricky, from New York, sure) at 04:00 in the middle of the night.
It sure sounds like we can say that the barber's appointment is a specific instant in time. However, this is not correct. The EU has already adopted legislation, agreed upon by all member states, that all EU countries shall abolish daylight savings time. However, this law does not provide a deadline, and crucially, does not provide a time zone that each EU member state needs to pick. The Netherlands is therefore going to change time zones at some point. They will likely choose to stick either to permanent summer time (in which case they'd be at UTC+2 permanently, vs. their current situation where they are at UTC+2 in summer and UTC+1 in winter, with, notably, different dates when the switch happens vs. New York!), or stay on winter time, i.e. UTC+1 forever.
Let's say they choose to stick to winter time forever.
The day the gavel slams down in the dutch parliament building enshrining into law that the dutch will no longer advance the clocks in march is the day your appointment shifts by one hour. After all, your barber is not going to go into their appointment book and shift all appointments by an hour. No, your appointment will remain on June 20th, 2025, at 11:00. If you have a running clock ticking down the seconds until your barber appointment, when that gavel comes down it should jump by 3600 seconds.
This belies the point: That barber appointment truly is not a singular moment in time. It's a human/political agreement that your appointment is when Amsterdam universally agrees it is currently June 20th, 2025, 11:00 – and who knows when that moment will actually occur; it depends on political choices.
So, you cannot 'solve' this by storing an instant in time, and it shows how the concept 'instant in time' and 'year/month/day hour:minute:second in a certain timezone' are not quite interchangible.
The correct data type for this concept is a ZonedDateTime. This represents a date time in human terms: year/month/day hour:second:minute, and the timezone. It doesn't shortcut by storing a moment in time in epochmillis or some such. If the gavel comes down and your JDK updates its timezone definitions, asking "how many seconds until my appointment" will correctly shift by 3600 seconds, which is what you want.
Because this is for appointments and it doesn't make sense to store just the time of an appointment but not the date, there is no such thing as a ZonedDate or a ZonedTime. Unlike the first thing which comes in 3 flavours (LocalDateTime, LocalDate, and LocalTime), there's only ZonedDateTime.
The universe/log time
Imagine you are writing a computer system that logs that an event occurred.
That event, naturally, has a timestamp associated with it. Turns out that due to severe political upheaval, the laws of the land decide that retrospectively the country has been in a different timezone than what you thought when the event occurred. Applying the same logic as the barber's case (where the actual moment in time jumps by 3600 seconds when the gavel comes down) is incorrect. The timestamp represents a moment in time when a thing happened, not an appointment in a ledger. It should not jump by 3600.
Timezone really has no purpose here. The point of storing 'timestamp' for a log event is so you know when it happened, it doesn't matter where it happened (or if it does, that is fundamentally a separate notion).
The correct data type for this is java.time.Instant. An instant doesn't even know about time zones at all, and isn't a human concept. This is 'computery time' - stored as millis since an agreed upon epoch (midnight, UTC, 1970, new years), no timezone information is necessary or sane here. Naturally there is no time-only or date-only variant, this thing doesn't even really know what 'date' is - some fancypants human concept that computery time is not concerned with in the slightest.
Conversions
You can trivially go from a ZonedDateTime to an Instant. There's a no-args method that does it. But note:
Create a ZonedDateTime.
Store it someplace.
Convert it to an Instant, store that too.
Update your JDK and get new time zone info
Load the ZDT.
Convert it to an Instant a second time.
Compare the 2 ZDTs and the 2 instants.
Results in different results: The 2 instants would not be the same, but the ZDTs are the same. The ZDT represents the appointment line in the barber's book (which never changed - 2025 june 20th, 11:00), the instant represents the moment in time that you are supposed to show up which did change.
If you store your barber's appointment as a java.time.Instant object, you will be an hour late to your barber's appointment. That's why it's important to store things as what they are. A barber's appointment is a ZonedDateTime. storing it as anything else would be wrong.
Conversions are rarely truly simple. There is no one way to convert one thing to another - you need to think of what these things represent, what the conversion implies, and then follow suit.
Example: You are writing a logging system. The backend parts store log events into a database of some sort, and the frontend parts read this database and show the log events to an admin user for review. Because the admin user is a human being, they want to see it in terms they understand, say, the time and date according to UTC (it's a programmer, they tend to like that sort of thing).
The logging system's storage should be storing the Instant concept: Epoch millis, and without timezone because that is irrelevant.
The frontend should read these as Instant (it is always a bad idea to do silent conversions!) - then consider how to render this to the user, figure out that the user wants these as local-to-UTC, and thus you would then on the fly, for each event to be printed to screen, convert the Instant to a ZonedDateTime in the zone the user wants, and from there to a LocalDateTime which you then render (because the user probably does not want to see UTC on every line, their screen estate is limited).
It would be incorrect to store the timestamps as UTC ZonedDateTimes, and even more wrong to store them as LocalDateTimes derived by asking for the current LocalDT in UTC as the event happens and then storing that. Mechanically all these things would work but the data types are all wrong. And that will complicate matters. Imagine the user actually wants to see the log event in Europe/Amsterdam time.
A note about timezones
The world is more complicated than a handful of timezones. For example, almost all of mainland europe is currently 'CET' (Central European Time), but some think that refers to european winter time (UTC+1), some thing that refers to the current state in central europe: UTC+1 in winter, UTC+2 in summer. (There's also CEST, Central European Summer Time, which means UTC+2 and isn't ambiguous). When EU countries start applying the new law to get rid of daylight savings, its likely e.g. The Netherlands on the west edge of the CET zone picks a different time than Poland on the eastern edge. Hence, 'all of central europe' is far too broad. 3-letter acronyms also are by no means unique. Various countries use 'EST' to mean 'eastern standard time', it's not just the eastern USA for example.
Hence, the only proper way to represent timezone names is using strings like Europe/Amsterdam or Asia/Singapore. If you need to render these as 09:00 PST for residents of the west coast of the USA, that's a rendering issue, so, write a rendering method that turns America/Los_Angeles into PST, which is an issue of localization, and has nothing to do with time.
The Answer by rzwitserloot is correct and wise. In addition, here is a summary of the various types. For more info, see my Answer on a similar Question.
To keep time precisely as timestamp (I am not sure if Instant is the best option)?
If you want to track a moment, a specific point on the timeline:
InstantA moment as seen with an offset-from-UTC of zero hours-minutes-seconds. This class is the basic building-block of the java.time framework.
OffsetDateTimeA moment as seen with a particular offset, some number of hours-minutes-seconds ahead of, or behind, the temporal meridian of UTC.
ZonedDateTimeA moment as seen with a particular time zone. A time zone is a named history of the past, present, and future changes to the offset used by the people of a particular region, as decided by their politicians.
If you want to track just the date and time-of-day, without the context of an offset or time zone, use LocalDateTime. This class does not represent a moment, is not a point on the timeline.
For normal cases when I just need date and time
If you are absolutely sure that you want only a date with time-of-day, but do not need the context of an offset or time zone, use LocalDateTime.
using LocalDateTime with UTC
That is a contradiction, and makes no sense. A LocalDateTime class has no concept of UTC, nor any concept of offset-from-UTC or time zone.
Spring Data JPA
The JDBC 4.2+ specification maps SQL standard data types to Java classes.
TIMESTAMP WITH TIME ZONE columns map to OffsetDateTime in Java.
TIMESTAMP WITHOUT TIME ZONE columns map to LocalDateTime in Java.
DATE columns map to LocalDate.
TIME WITHOUT TIME ZONE columns map to LocalTime.
The SQL standard also mentions TIME WITH TIME ZONE, but this type is meaningless (just think about it!). The SQL committee has never explained what they had in mind, as far as I know. If you must use this type, Java defines the ZoneOffset class to match.
Note that JDBC does not map any SQL types to Instant nor ZonedDateTime. You can easily convert to/from the mapped type OffsetDateTime.
Instant instant = myOffsetDateTime.toInstant() ;
OffsetDateTime myOffsetDateTime = instant.atOffset( ZoneOffset.UTC ) ;
… and:
ZonedDateTime zdt = myOffsetDateTime.atZoneSameInstant( myZoneId ) ;
OffsetDateTime odt = zdt.toOffsetDateTime() ; // The offset in use at that moment in that zone.
OffsetDateTime odt = zdt.toInstant().atOffset( ZoneOffset.UTC ) ; // Offset of zero hours-minutes-seconds from UTC.
I also consider the TimeZone
The TimeZone class is part of the terrible legacy date-time classes that were years ago supplanted by the modern java.time classes. Replaced by ZoneId and ZoneOffset.
You should take a look at the Java Date and Time API introduced with Java 8. Each class like Instant, LocalDateTime, ZonedDateTime etc. has a documentation as JavaDoc. If you have problems understanding the documentation, please provide a more specific question.
I want to get a difference in hours between a current time in a specific timezone and UTC time. I tried this:
LocalTime time = LocalTime.now();
System.out.println(time); //21:05:42:764
LocalTime utcTime = LocalTime.now(ZoneId.of("UTC"));
System.out.println(utcTime); //18:05:42:769
System.out.println(Duration.between(utcTime, time).getSeconds()/3600); //2
System.out.println(Duration.between(time, utcTime).getSeconds()/3600); //-3
Why is the difference between the last two results and are there better ways to do it? I need to get the number 3.
Why is the difference between the last two results
The reason that you're getting different results for the two computed durations is a combination of the fact that there is some tiny amount of time elapsed between the two recordings and the fact that the duration start time is included in the range but the duration end time is not.
Consider these times instead: 6:00:00:001 vs 8:00:00:000. Here it is very obvious that we're only exactly one millisecond off of two hours, but when we think about seconds we're either going to get 7199 or -7200. When we then do integer math (i.e. divide by 3600), we're going to get 1 or -2.
If it weren't for the one extra millisecond on the first timestamp, the absolute value of the two would be identical.
Duration is the wrong class. There is zero duration between "now" in one time zone and "now" in another. For a fun but memorable way to think about this, see here.
You appear to be seeking to know the current offset from UTC for a given time zone. You can use the ZonedDateTime class for that:
ZonedDateTime zdt = ZonedDateTime.now(ZoneId.of("Asia/Kolkata"));
ZoneOffset offset = zdt.getOffset();
int offsetMinutes = offset.getTotalSeconds() / 60;
double offsetHours = ((double) offsetMinutes) / 60;
System.out.println(offsetHours); // 5.5
You could also just use ZonedDateTime.now() on the first line, if you want to use the computer's current time zone.
With regard to LocalTime - that is just the time portion (hours, minutes, seconds, and smaller). Since there is no date associated, you can't necessarily determine which time zone offset it belongs to. There is more than one date that "today" going on at any given moment. Time zone offsets range from UTC-12 to UTC+14, so there are indeed values where the same time of day is happening on two different dates somewhere on the planet.
As an example, 08:00:00 in Hawaii (Pacific/Honolulu) on 2019-01-01 is also 08:00:00 in Kiribati (Pacific/Kiritimati), but on 2019-01-02 - the following date! (Reference here.) Thus, if you had a LocalTime object with 08:00:00 and it was 08:00:00 in one of those two zones, you'd not be able to tell which one it was, or what the corresponding UTC offset should be.
Also, keep in mind that time zone offsets are not limited to whole hours. There are present-day time zones with half-hour and 45-minute offset. Historically, there have been others.
Lastly, keep in mind that an offset is not necessarily enough to identify a time zone. Many time zones share offsets at some points in time, but differ in others. See "Time Zone != Offset" in the timezone tag wiki.
Oh, and about your results getting 2 in one direction and -3 in the other - this is a rounding error due to your integer division. If you print out the seconds value, you'll notice they are one second apart (10799, vs -10800). Dig closer and you'll find that "now" included fractional seconds that were truncated with the getSeconds call. (You called .now() twice, so they were at slightly different times.)
Why in Elasticsearch we have the 'Z'
at the end of the date field?
For instance:
2016-05-16T00:00:00.000Z
What does it mean?
Is this something useful for anything?
Is it harmful?
Can I get rid of it?
What about joda time?
What does it mean?
The 'Z' means UTC.
Reference:
https://www.w3.org/TR/NOTE-datetime
Try not to store local dates. If you want to find a good thread on dates and why you should use UTC check this thread.
Is this something useful for anything?
It is very useful, storing all dates in UTC allows for easy conversion of dates from locale to locale. It also allows for date comparison and date visualisations to be consistent.
Is it harmful?
No.
Can I get rid of it?
If you wish? I wouldn't recommend doing it... It's a bit like removing the currency field from a transaction. The transaction doesn't make any sense.
Another example with dates:
I rang my friend in Country X (+6 hours ahead) at 1pm December 24th 2016.
For him it was 7pm.
So we have two local date times.
One for me:
1pm December 24th 2016 in London
One for my friend:
7pm December 24th 2016 in Country X
If I delete the 'in ...' Part these two become become two instances of time 5 hours apart of each other. Which means we couldn't have possibly spoken on the phone? Right?
No, because they are the same instance in time, across two locales.
What about joda time?
What about it?...
I hope this helps.
From RFC3339 about Date and Time on the Internet:
Numeric offsets are calculated as "local time minus UTC". So the
equivalent time in UTC can be determined by subtracting the offset
from the local time. For example, 18:50:00-04:00 is the same time as
22:50:00Z. (This example shows negative offsets handled by adding
the absolute value of the offset.)
So, a date with Z at the end is the date&time in UTC. And it should be the equivalent of 2016-05-16T00:00:00.000Z-00:00.
The presence of the timezone offset or not is just a matter of the date format being used in Elasticsearch's field definition.
I have to prepare some app that will graph the use of resources over time, but there is one day on the year that has 25 hours (the day with 23 hours is not a big problem).
How can I represent that with a Date? What would be the best way of doing it?
I would like to use Date class, (as it works, is Comparable and so on) as a key, but I'm not sure if this would work... Any ideas?
The Date class itself simply represents an instant in time, from the UTC Unix epoch. It has no concept of time zones, calendars etc.
It's hard to know what exactly you're trying to represent, but in general Joda Time is a much better date/time API than the types in java.util.*.
My main advice on thinking about time-related issues is to be really, really clear about what concept each value is meant to be representing. If you're interested in a local date (a date within a particular calendar, with no reference to a particular time zone), then Joda Time's LocalDate class is probably what you're after. If you need to associate time zone information, then DateTime is probably your best bet - although that does represent an instant within a particular calendar and time zone, rather than a whole day.
It important not to confuse how time is represented and how it is displayed.
In its representation, you have only the number of milli-seconds since 1/1/1970. When you do calculations on this you are just comparing this long value.
When you display this time/date, depending on your timezone, you can have a period of 25 hours or 23 hours with the same day.
I have 2 different computers, each with different TimeZone.
In one computer im printing System.currentTimeMillis(), and then prints the following command in both computers:
System.out.println(new Date(123456)); --> 123456 stands for the number came in the currentTimeMillis in computer #1.
The second print (though typed hardcoded) result in different prints, in both computers.
why is that?
How about some pedantic detail.
java.util.Date is timezone-independent. Says so right in the javadoc.
You want something with respect to a particular timezone? That's java.util.Calendar.
The tricky part? When you print this stuff (with java.text.DateFormat or a subclass), that involves a Calendar (which involves a timezone). See DateFormat.setTimeZone().
It sure looks (haven't checked the implementation) like java.util.Date.toString() goes through a DateFormat. So even our (mostly) timezone-independent class gets messed up w/ timezones.
Want to get that timezone stuff out of our pure zoneless Date objects? There's Date.toGMTString(). Or you can create your own SimpleDateFormatter and use setTimeZone() to control which zone is used yourself.
why is that?
Because something like "Oct 4th 2009, 14:20" is meaningless without knowing the timezone it refers to - which you can most likely see right now, because that's my time as I write this, and it probably differs by several hours from your time even though it's the same moment in time.
Computer timestamps are usually measured in UTC (basically the timezone of Greenwich, England), and the time zone has to be taken into account when formatting them into something human readable.
Because that milliseconds number is the number of milliseconds past 1/1/1970 UTC. If you then translate to a different timezone, the rendered time will be different.
e.g. 123456 may correspond to midday at Greenwich (UTC). But that will be a different time in New York.
To confirm this, use SimpleDateFormat with a time zone output, and/or change the timezone on the second computer to match the first.
javadoc explains this well,
System.currentTimeMillis()
Note that while the unit of time of the return value is a millisecond, the granularity of the value depends on the underlying operating system and may be larger. For example, many operating systems measure time in units of tens of milliseconds.
See https://docs.oracle.com/javase/7/docs/api/java/util/Date.html#toString().
Yes, it's using timezones. It should also print them out (the three characters before the year).