You don't really need to write the "this" keyword in Java. But is it better to do so anyway? Does it make sense to homogenise your style, i.e. if you use "this" once, you use it every time it's implied? Or is there a place where you would always use it and others where you never use it?
The general consensus is that you should use this only when it is necessary and not at any other time.
private String param;
public Construct(String param) {
// Usually the only place you need to use this.
this.param = param;
}
// A less common use of this
public Function() {
synchronized(this) {
// Some synchronized stuff.
}
}
As a rule I tend not to use it - if you can reduce redundant code then all the better.
There are however three places that I can think of where the this keyword cant be avoided:
Constructors (delegating to another constructor in the same class)
public MyClass() {
this("Default Parameter");
Synchronizing on the current object
synchronized(this) {
Passing the current object to another class
public void methodOne() {
anotherClass.doSomething(this);
You sometimes need it in constructors where the field name is the same as the parameter, but this isnt really mandatory as you could simply rename the paramter:
public MyClass(String data) {
this.data = data
Other than these I cant think of too many other scenarios where I'd use the this keyword. I have seen it overused (on every method and field reference) and this can make the code very hard to read.
Use it only when you have to, or when you believe that it enhances code readability.
As a general rule you should avoid redundant syntax wherever it may arise. You will read lots of opinion to the contrary, mostly referring to a thoroughly mythical programmer who doesn't know about member variables, doesn't know what parentheses are for, and doesn't remember the rules of operator precedence he was taught in third grade. I've never met him in 40 years. That isn't enough to justify disfiguring your code for him on the assumption that he will (a) not understand it and (b) therefore break it. I've never seen that happen at all.
What I have seen is code produced by such a person. That's not a reason to dumb down your own code for him. The occasions on which someone has actually gone as far as to incorrectly rewrite a piece of code of mine are exactly two: once in 1979, where someone refactored a grammar to remove the operator precedence, which was dumb, and he shouldn't have done it, and another time in about 1992, but in both cases there is no way I could have written the grammar or the code that would have prevented it.
There are some places in code, where you couldn't skip this keyword, e.g. setters:
public void setValue(String value) {
this.value = value;
}
But if its possible it's better to skip:
public String getValue() {
return value;
}
Related
I'm sure you all know the behaviour I mean - code such as:
Thread thread = new Thread();
int activeCount = thread.activeCount();
provokes a compiler warning. Why isn't it an error?
EDIT:
To be clear: question has nothing to do with Threads. I realise Thread examples are often given when discussing this because of the potential to really mess things up with them. But really the problem is that such usage is always nonsense and you can't (competently) write such a call and mean it. Any example of this type of method call would be barmy. Here's another:
String hello = "hello";
String number123AsString = hello.valueOf(123);
Which makes it look as if each String instance comes with a "String valueOf(int i)" method.
Basically I believe the Java designers made a mistake when they designed the language, and it's too late to fix it due to the compatibility issues involved. Yes, it can lead to very misleading code. Yes, you should avoid it. Yes, you should make sure your IDE is configured to treat it as an error, IMO. Should you ever design a language yourself, bear it in mind as an example of the kind of thing to avoid :)
Just to respond to DJClayworth's point, here's what's allowed in C#:
public class Foo
{
public static void Bar()
{
}
}
public class Abc
{
public void Test()
{
// Static methods in the same class and base classes
// (and outer classes) are available, with no
// qualification
Def();
// Static methods in other classes are available via
// the class name
Foo.Bar();
Abc abc = new Abc();
// This would *not* be legal. It being legal has no benefit,
// and just allows misleading code
// abc.Def();
}
public static void Def()
{
}
}
Why do I think it's misleading? Because if I look at code someVariable.SomeMethod() I expect it to use the value of someVariable. If SomeMethod() is a static method, that expectation is invalid; the code is tricking me. How can that possibly be a good thing?
Bizarrely enough, Java won't let you use a potentially uninitialized variable to call a static method, despite the fact that the only information it's going to use is the declared type of the variable. It's an inconsistent and unhelpful mess. Why allow it?
EDIT: This edit is a response to Clayton's answer, which claims it allows inheritance for static methods. It doesn't. Static methods just aren't polymorphic. Here's a short but complete program to demonstrate that:
class Base
{
static void foo()
{
System.out.println("Base.foo()");
}
}
class Derived extends Base
{
static void foo()
{
System.out.println("Derived.foo()");
}
}
public class Test
{
public static void main(String[] args)
{
Base b = new Derived();
b.foo(); // Prints "Base.foo()"
b = null;
b.foo(); // Still prints "Base.foo()"
}
}
As you can see, the execution-time value of b is completely ignored.
Why should it be an error? The instance has access to all the static methods. The static methods can't change the state of the instance (trying to is a compile error).
The problem with the well-known example that you give is very specific to threads, not static method calls. It looks as though you're getting the activeCount() for the thread referred to by thread, but you're really getting the count for the calling thread. This is a logical error that you as a programmer are making. Issuing a warning is the appropriate thing for the compiler to do in this case. It's up to you to heed the warning and fix your code.
EDIT: I realize that the syntax of the language is what's allowing you to write misleading code, but remember that the compiler and its warnings are part of the language too. The language allows you to do something that the compiler considers dubious, but it gives you the warning to make sure you're aware that it could cause problems.
They cannot make it an error anymore, because of all the code that is already out there.
I am with you on that it should be an error.
Maybe there should be an option/profile for the compiler to upgrade some warnings to errors.
Update: When they introduced the assert keyword in 1.4, which has similar potential compatibility issues with old code, they made it available only if you explicitly set the source mode to "1.4". I suppose one could make a it an error in a new source mode "java 7". But I doubt they would do it, considering that all the hassle it would cause. As others have pointed out, it is not strictly necessary to prevent you from writing confusing code. And language changes to Java should be limited to the strictly necessary at this point.
Short answer - the language allows it, so its not an error.
The really important thing, from the compiler's perspective, is that it be able to resolve symbols. In the case of a static method, it needs to know what class to look in for it -- since it's not associated with any particular object. Java's designers obviously decided that since they could determine the class of an object, they could also resolve the class of any static method for that object from any instance of the object. They choose to allow this -- swayed, perhaps, by #TofuBeer's observation -- to give the programmer some convenience. Other language designers have made different choices. I probably would have fallen into the latter camp, but it's not that big of a deal to me. I probably would allow the usage that #TofuBeer mentions, but having allowed it my position on not allowing access from an instance variable is less tenable.
Likely for the same logical that makes this not an error:
public class X
{
public static void foo()
{
}
public void bar()
{
foo(); // no need to do X.foo();
}
}
It isn't an error because it's part of the spec, but you're obviously asking about the rationale, which we can all guess at.
My guess is that the source of this is actually to allow a method in a class to invoke a static method in the same class without the hassle. Since calling x() is legal (even without the self class name), calling this.x() should be legal as well, and therefore calling via any object was made legal as well.
This also helps encourage users to turn private functions into static if they don't change the state.
Besides, compilers generally try to avoid declaring errors when there is no way that this could lead to a direct error. Since a static method does not change the state or care about the invoking object, it does not cause an actual error (just confusion) to allow this. A warning suffices.
The purpose of the instance variable reference is only to supply the type which encloses the static. If you look at the byte code invoking a static via instance.staticMethod or EnclosingClass.staticMethod produces the same invoke static method bytecode. No reference to the instance appears.
The answer as too why it's in there, well it just is. As long as you use the class. and not via an instance you will help avoid confusion in the future.
Probably you can change it in your IDE (in Eclipse Preferences -> Java -> Compiler -> Errors/Warnings)
There's not option for it. In java (like many other lang.) you can have access to all static members of a class through its class name or instance object of that class. That would be up to you and your case and software solution which one you should use that gives you more readability.
It's pretty old topic but still up-to-date and surprisingly bringing higher impact nowadays. As Jon mentioned, it might be just a mistake Java's designers made at the very beginning. But I wouldn't imagine before it can have impact on security.
Many coders know Apache Velocity, flexible and powerful template engine. It's so powerful that it allows to feed template with a set of named objects - stricly considered as objects from programming language (Java originally). Those objects can be accessed from within template like in programming language so for example Java's String instance can be used with all its public fields, properties and methods
$input.isEmpty()
where input is a String, runs directly through JVM and returns true or false to Velocity parser's output). So far so good.
But in Java all objects inherit from Object so our end-users can also put this to the template
$input.getClass()
to get an instance of String Class.
And with this reference they can also call a static method forName(String) on this
$input.getClass().forName("java.io.FileDescriptor")
use any class name and use it to whatever web server's account can do (deface, steal DB content, inspect config files, ...)
This exploit is somehow (in specific context) described here: https://github.com/veracode-research/solr-injection#7-cve-2019-17558-rce-via-velocity-template-by-_s00py
It wouldn't be possible if calling static methods from reference to the instance of class was prohibited.
I'm not saying that a particular programming framework is better than the other one or so but I just want to put a comparison. There's a port of Apache Velocity for .NET. In C# it's not possible to call static methods just from instance's reference what makes exploit like this useless:
$input.GetType().GetType("System.IO.FileStream, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089")
I just consider this:
instanceVar.staticMethod();
to be shorthand for this:
instanceVar.getClass().staticMethod();
If you always had to do this:
SomeClass.staticMethod();
then you wouldn't be able to leverage inheritance for static methods.
That is, by calling the static method via the instance you don't need to know what concrete class the instance is at compile time, only that it implements staticMethod() somewhere along the inheritance chain.
EDIT: This answer is wrong. See comments for details.
If I have a string constant that is used only by a single method, is it better to make it static final:
private static final String MY_CONST = "something";
or simply define it at the top of the method:
private void myMethod() {
final String myConst = "something";
// ... code that uses myConst a lot
}
or another way?
I would use it directly in the method. Not only me actually, if we browse thru JDK code we will see lots of examle when many literals are used in a class and no one static final field is declared. Take a look at java.io.DataInputStream. JDK typically uses constant fields if a constant is supposed to be used in other classes, that is public static final.
It doesn't matter either way, the only thing that matters is the readability to you. A good question to ask yourself is: which is easier for you to read and what makes more sense for you? Personally for me, I would use the second one, because it is only used in one method. However, if you are going to be changing the value a lot, then I would use the first one. But ultimately, it is totally up to you as the programmer and what makes more sense in your mind. I hope this gives you a better understanding.
Despite Java tutorials, Wikipedia searches, stackoverflow trolling, and hours of reading code samples, constructors still confuse the crap out of me. I've got three related questions that I've been trying to answer to help ME understand constructors a little better.
First, I've been under the impression that constructors need to be named the same as their classes. Consider:
public class Money {
public Money(long l) {
this.value = l;
}
public Money(String s) {
this.value = toLong(s);
}
public long getLong() {
return this.value;
}
public String getString() {
return toString(this.value);
}
}
I see this as four constructors...correct? So it appears that constructors not named the same as the class which contains them allowable. Can someone confirm that?
Second, I seem to have a block against understanding the set and get methods. Consider:
public class GetSetSample {
public int getFoo() {
return int Foo;
}
public void setFoo(int fooValue) {
int Foo = fooValue;
}
}
Why can't I just do this:
public class getFoo(int fooValue){
foo=fooValue;
}
and use foo = getFoo(12) from some other class/method?
The third question is a little more esoteric, but will help me conceive of the bigger picture...which is my learning style, and conducive to my ability to trace program flow when debugging. The get and set methods suggest a "to" and "from" relationship to me. e.g., Passing a value "to" a constructor, receiving the result "from" the get method. It seems to me though that the "to" and "from" will change depending on your perspective. I think that any setMethod is setting parameters for an object, even though the variable comes FROM another class or method, and the GetMethod is getting the resulting object (say, this.foo) with the appropriately set parameter. No matter where the get or set is used, in a main method or a standalone class with a single constructor, 'set' is always associated with sending a parameter and get is always associated with receiving an object with that parameter. Is that a good understanding? or am I missing a vital part?
Question 1:
I see this as four constructors...correct?
No, that class has two constructors and two methods. (getLong and getString are the methods.)
Question 2:
Why can't I just do this:
public class getFoo(int fooValue){
foo=fooValue;
}
Well, that's trying to declare a class with parameters, and also you're setting a value in a get method, which would be extremely weird. It's not clear what you're trying to achieve here, but that code is thoroughly invalid.
Question 3:
The get and set methods suggest a "to" and "from" relationship to me.
Well it's not really a relationship IMO. A relationship suggests something longer term than either of these methods. A setter typically changes the state of an object in some way, and a getter typically just returns some aspect of the state of an object. It's not really clear what the rest of your explanation meant, because you're playing somewhat fast and loose with terminology. For example: "get is always associated with receiving an object with that parameter" doesn't really make sense to me. Objects don't have parameters, methods/constructors do - and getters can fetch primitive values or references...
I suspect you would benefit from reading the "Classes" part of the Java tutorial, which talks about constructors and methods.
Regarding the first answer, there's only 2 constructors. The difference is on how they are going to be called (called using a string will use the construction having a string has a parameter and called using a long will use the other one). So to answer, yes a constructor has the same name as the class.
The two constructors :
public Money(long l) {
this.value = l;
}
public Money(String s) {
this.value = toLong(s);
}
Regarding the second answer, getters ans setters are not meant to be classes. They are supposed to be within the class itself.
Consider this example which uses getter and setters to get ans set value for the printer class :
public class Printer {
#Inject #Informal Greeting greeting;
private String name;
private String salutation;
public void createSalutation() {
this.salutation = greeting.greet(name);
}
public String getSalutation() {
return salutation;
}
public void setName(String name) {
this.name = name;
}
public String getName() {
return name;
}
}
A good read of this link could definitly help you out !
Java oriented-object principles
You've shown 2 constructors, which do need to have the same name as the class.
You've also shown two "getter" methods, which return the value of the class variable in the form requested by the user. You can also create "setter" methods, which are used to transfer values into class variables.
You use a constructor to create an object of a particular class, and optionally to set some or all of its internal state (that is, its member variables).
You use setters and getters to isolate the class variables from the outside world, so you don't need to allow other code to access them directly. Why? Because, before a setter updates a variable, it can verify that the new value is valid, and that the operation doesn't violate any or the rules (the "business logic") that are required for the class to work properly.
So you could add a setter and update the constructor to use it:
public Money(long l) {
setValue(l);
}
public Money(String s) {
setValue(toLong(s));
}
// Example setter that validates `l` by prohibiting negative values
public Money setValue(long l) {
if (l < 0) {
// Warn about negative values
}
this.value = l;
return this; // Return the current object to allow chaining; see below.
}
Note that a setter usually doesn't need to return a value (that is, it can be type void), but it's often helpful to return the object itself. That allows you to write code like this:
Money earnings = new Money().setValue(4).setOtherField("foo");
This creates an object of type Money, sets various attributes, and stores it in the variable earnings. Clearly, this isn't terribly useful for a simple class like this, but it can be very helpful for more complex classes:
Paycheck check = new Paycheck("MyCompany")
.setEmployee("YourName")
.setSalary(50,000)
.setPaySchedule(Schedule.BIWEEKLY)
.setAccountNumber("1234567")
.setDefaultTaxRate();
I would like to try to answer your implied conceptual questions -- you've already got plenty of examples of this and that, so I'm just going to try to explain. I have no doubt you have heard most of this -- maybe all of this -- before, but am not sure and not sure which parts.
Object-oriented programming centers mostly around objects; an object is an amalgamation of code and data. You define objects by writing a class, and you create one or more copies of the object defined by that class with the class constructor (called instantiating the class).
A parallel in other languages: you can have a data structure of related items and a set of subroutines that operate on that data structure. Think of a class as a way of collecting the items in that data structure and the subroutines that operate on it into one unit.
After you have invoked a constructor, you have a copy of the data defined in that class and a way to refer to that copy. By referring to that instance when you invoke a class method, you operate on that copy of the data with the methods defined in that class.
If you were to do this in a non-OO language, you could have a routine that created a copy of the data structure in memory and then only use the methods prescribed for it on that data structure. You could have a pointer to the copy in memory and pass that pointer as a parameter to every subroutine that operated on it, and in fact that's the way some pre-OO systems were programmed.
A constructor is similar to a method call that returns a value; it involves (or can involve) the execution of statements, and it always returns an object of that class. There are also differences between a constructor and a method; until the constructor completes, for instance, the object is not fully created and shouldn't have some methods invoked on it.
So I hope that helped; if there are conceptual things you still have questions about, perhaps something in here will help you form a specific question so we can explain things further.
Many people have found that if they have spent years learning languages such as COBOL and FORTRAN then changing to OO programming involves unlearning the old languages. I certainly found this when I first tackled C++ 20 years ago. From your description you are clearly struggling with the concepts and I sympathize.
I don't think there is a simple recipe. Practice at the simple examples and don't be disheartened. Don't be afraid to ask on SO - if the questions are clearly asked you will get a useful answer.
Get a good IDE (Eclipse, Netbeans, etc.) which allows you to "look inside" objects with the debugger. Hopefully at some stage things will click!
Question 1 - Basic Java Classes:
There's pretty much only 3 things you're going to find in a Java class
Field/attribute (Depending on your language of origin)
Method
Constructor (Which looks like a special kind of method)
Every class is going to have a class name that shares the name of the file it's located in. So to expand Money out a bit:
Money.java
----------
public class Money {
// This is a field/attribute
Long value;
// This is a constructor
public Money() {
this.value = Long(0L);
}
// This is a method
public Long getValue() {
return value;
}
// Another method
public void makeMoney(Long moreMoney) {
this.value = this.value + moreMoney;
}
} // Everything in here is part of the Money class
The only distinction between a constructor and a method is that a constructor has no specified return value, which is declared as a type right before the name of a potential method. Constructors do have to be named the same as the class they are contained in, but why is implied in how they are written.
Another way of looking at it is if you remove all of the non-type related Java keywords (public, private etc., but not things like float and int) from the front of the method you're looking at (A list of which you can find here), is there anything left in front of the method?
With the Money we have at the moment, it would look like this:
Money()
Long getValue()
void makeMoney()
The constructor is the one that has no type for the return value, because it is implied in the declaration.
Question 2/3 - Get/Set methods:
I'm going to say something potentially controversial, but don't worry about these yet. Get/Set are essentially patterns for Object Oriented development, and generally good Java style, but they aren't required (Last I checked, Android development actually discourages their use when possible for optimization reasons). Moreover, not all fields in your objects will be accessible or mutable so writing them isn't mandatory.
If you declare all of your fields as public (Like the 'value' field is implied to be right now), you simple can do this:
Money myMoney = new Money(new Long(40L));
System.out.println(myMoney.value) // 40
myMoney.value = new Long(20L);
System.out.println(myMoney.value) // 20
Aside from that, the notion of get() and set() are just methods. There is nothing special about them at all. The main reason they exist is because for general Object-Oriented programming, you shouldn't have to directly modify the internal workings of an object (This is the principle of Encapsulation). Everything you should need to affect state or get something out of it should be handled by a method.
In a pithy one-liner: If you need to know the fields of an object to use it, you designed it incorrectly.
Big Picture
So what get() and set() really are is a pair of commonly written methods that happen to affect a field in an object in an extremely simple way (get() is a simple access to a field, set() is assignment to that field). It's just that other methods you write will happen to do more complicated stuff than that.
Something I've always wondered; in a class where you can reference a member by either using 'this.[NAME]' or simply [NAME], which is preferred?
For example in Java:
public class foo {
public int bars = 0;
private void incrementBars(){
bars++;
}
}
and
public class foo {
public int bars = 0;
private void incrementBars(){
this.bars++;
}
}
'seem' to have the same effect.
In cases where I instantiate multiple instances of class foo, I'd, so far, do something like:
for (foo f : listOfFoos){
f.incrementBars();
}
and it seems to still work.
Is it technically ambiguous, and if so is there a preferred way?
use this in the case of variable shadowing.
class MyClass{
int i;//1
public void myMethod(){
i = 10;//referring to 1
}
public void myMethod(int i){//2
i = 10;//referring to 2
this.i = 10 //refering to 1
}
}
also sometime this will make code more readable due to our English mindset
There's no ambiguity. If there were, you'd have to use this.
Some people recommend this for clarity. Others recommend against it when it's not required, as it introduces "noise". Some modern IDEs or editors may be able to use syntax highlighting to color (for instance) arguments differently from fields for clarity.
Personally I avoid this when I can and use #unholysampler's underscore convention. Agree on something with your coworkers and put it in your coding standards.
You use this to ensure and communicate that you are dealing with a field.
It allows you to write a setter like
public void setX(int x) {
this.x = x;
}
which is very succint.
The only time you need this. is when the current scope also has a variable of the same name. I prefer to use the convention of _variable for all class variables. This way I never have to use this. and never accidentally touch a class variable thinking it was a locally scoped variable.
It is technically ambiguous except in the case of where you have variable shadowing (which Jigar pointed out in his answer).
Most often if you working in an editor / IDE that is very aware of your class structure syntax highlighting will make it obvious as to whether or not a variable is field in the object or just a variable defined in a method. However, in more pure text editors (vim, for instance)the syntax highlighting doesn't make this clear.
With that said, I prefer using this.field to refer to all fields that belong in the object if only because I know that every now and then I'll be reading code outside of my normal IDEs. It is marginally more verbose, but that's a tradeoff I don't mind.
In your question the first two samples have exactly the same thing. The only where this is mandatory is when an attribute is shadowed by a local variable:
public class Test {
private int a;
public void noShadow() {
System.out.println(a); // attribute
}
public void shadow(int a) {
System.out.println(a); // parameter
System.out.println(this.a); // attribute
}
}
Now I don't think there is an absolute best practice, especially as modern IDEs provide advanced syntax highlighting. Some like to prefix the attribute with something like _, m_, etc. and not use this. Some prefer to make the use of this mandatory and do not add any naming rules on attributes. What you are going to do is vastly depending on the existing code or existing coding standards. I nothing exists ensure that the coding standards will be the same for all people working on the project.
class Test
{
private int value;
public Test(int value)
{
// This is wrong
// value = value
// This is right
this.value = value;
}
}
Use "this" to access member variables when they have been hidden by a local variable.
Since "this" is just a reference to the current object, ou can do this:
doSomething(this);
These are essentially the only ways you will ever need to use this.
I'm sure you all know the behaviour I mean - code such as:
Thread thread = new Thread();
int activeCount = thread.activeCount();
provokes a compiler warning. Why isn't it an error?
EDIT:
To be clear: question has nothing to do with Threads. I realise Thread examples are often given when discussing this because of the potential to really mess things up with them. But really the problem is that such usage is always nonsense and you can't (competently) write such a call and mean it. Any example of this type of method call would be barmy. Here's another:
String hello = "hello";
String number123AsString = hello.valueOf(123);
Which makes it look as if each String instance comes with a "String valueOf(int i)" method.
Basically I believe the Java designers made a mistake when they designed the language, and it's too late to fix it due to the compatibility issues involved. Yes, it can lead to very misleading code. Yes, you should avoid it. Yes, you should make sure your IDE is configured to treat it as an error, IMO. Should you ever design a language yourself, bear it in mind as an example of the kind of thing to avoid :)
Just to respond to DJClayworth's point, here's what's allowed in C#:
public class Foo
{
public static void Bar()
{
}
}
public class Abc
{
public void Test()
{
// Static methods in the same class and base classes
// (and outer classes) are available, with no
// qualification
Def();
// Static methods in other classes are available via
// the class name
Foo.Bar();
Abc abc = new Abc();
// This would *not* be legal. It being legal has no benefit,
// and just allows misleading code
// abc.Def();
}
public static void Def()
{
}
}
Why do I think it's misleading? Because if I look at code someVariable.SomeMethod() I expect it to use the value of someVariable. If SomeMethod() is a static method, that expectation is invalid; the code is tricking me. How can that possibly be a good thing?
Bizarrely enough, Java won't let you use a potentially uninitialized variable to call a static method, despite the fact that the only information it's going to use is the declared type of the variable. It's an inconsistent and unhelpful mess. Why allow it?
EDIT: This edit is a response to Clayton's answer, which claims it allows inheritance for static methods. It doesn't. Static methods just aren't polymorphic. Here's a short but complete program to demonstrate that:
class Base
{
static void foo()
{
System.out.println("Base.foo()");
}
}
class Derived extends Base
{
static void foo()
{
System.out.println("Derived.foo()");
}
}
public class Test
{
public static void main(String[] args)
{
Base b = new Derived();
b.foo(); // Prints "Base.foo()"
b = null;
b.foo(); // Still prints "Base.foo()"
}
}
As you can see, the execution-time value of b is completely ignored.
Why should it be an error? The instance has access to all the static methods. The static methods can't change the state of the instance (trying to is a compile error).
The problem with the well-known example that you give is very specific to threads, not static method calls. It looks as though you're getting the activeCount() for the thread referred to by thread, but you're really getting the count for the calling thread. This is a logical error that you as a programmer are making. Issuing a warning is the appropriate thing for the compiler to do in this case. It's up to you to heed the warning and fix your code.
EDIT: I realize that the syntax of the language is what's allowing you to write misleading code, but remember that the compiler and its warnings are part of the language too. The language allows you to do something that the compiler considers dubious, but it gives you the warning to make sure you're aware that it could cause problems.
They cannot make it an error anymore, because of all the code that is already out there.
I am with you on that it should be an error.
Maybe there should be an option/profile for the compiler to upgrade some warnings to errors.
Update: When they introduced the assert keyword in 1.4, which has similar potential compatibility issues with old code, they made it available only if you explicitly set the source mode to "1.4". I suppose one could make a it an error in a new source mode "java 7". But I doubt they would do it, considering that all the hassle it would cause. As others have pointed out, it is not strictly necessary to prevent you from writing confusing code. And language changes to Java should be limited to the strictly necessary at this point.
Short answer - the language allows it, so its not an error.
The really important thing, from the compiler's perspective, is that it be able to resolve symbols. In the case of a static method, it needs to know what class to look in for it -- since it's not associated with any particular object. Java's designers obviously decided that since they could determine the class of an object, they could also resolve the class of any static method for that object from any instance of the object. They choose to allow this -- swayed, perhaps, by #TofuBeer's observation -- to give the programmer some convenience. Other language designers have made different choices. I probably would have fallen into the latter camp, but it's not that big of a deal to me. I probably would allow the usage that #TofuBeer mentions, but having allowed it my position on not allowing access from an instance variable is less tenable.
Likely for the same logical that makes this not an error:
public class X
{
public static void foo()
{
}
public void bar()
{
foo(); // no need to do X.foo();
}
}
It isn't an error because it's part of the spec, but you're obviously asking about the rationale, which we can all guess at.
My guess is that the source of this is actually to allow a method in a class to invoke a static method in the same class without the hassle. Since calling x() is legal (even without the self class name), calling this.x() should be legal as well, and therefore calling via any object was made legal as well.
This also helps encourage users to turn private functions into static if they don't change the state.
Besides, compilers generally try to avoid declaring errors when there is no way that this could lead to a direct error. Since a static method does not change the state or care about the invoking object, it does not cause an actual error (just confusion) to allow this. A warning suffices.
The purpose of the instance variable reference is only to supply the type which encloses the static. If you look at the byte code invoking a static via instance.staticMethod or EnclosingClass.staticMethod produces the same invoke static method bytecode. No reference to the instance appears.
The answer as too why it's in there, well it just is. As long as you use the class. and not via an instance you will help avoid confusion in the future.
Probably you can change it in your IDE (in Eclipse Preferences -> Java -> Compiler -> Errors/Warnings)
There's not option for it. In java (like many other lang.) you can have access to all static members of a class through its class name or instance object of that class. That would be up to you and your case and software solution which one you should use that gives you more readability.
It's pretty old topic but still up-to-date and surprisingly bringing higher impact nowadays. As Jon mentioned, it might be just a mistake Java's designers made at the very beginning. But I wouldn't imagine before it can have impact on security.
Many coders know Apache Velocity, flexible and powerful template engine. It's so powerful that it allows to feed template with a set of named objects - stricly considered as objects from programming language (Java originally). Those objects can be accessed from within template like in programming language so for example Java's String instance can be used with all its public fields, properties and methods
$input.isEmpty()
where input is a String, runs directly through JVM and returns true or false to Velocity parser's output). So far so good.
But in Java all objects inherit from Object so our end-users can also put this to the template
$input.getClass()
to get an instance of String Class.
And with this reference they can also call a static method forName(String) on this
$input.getClass().forName("java.io.FileDescriptor")
use any class name and use it to whatever web server's account can do (deface, steal DB content, inspect config files, ...)
This exploit is somehow (in specific context) described here: https://github.com/veracode-research/solr-injection#7-cve-2019-17558-rce-via-velocity-template-by-_s00py
It wouldn't be possible if calling static methods from reference to the instance of class was prohibited.
I'm not saying that a particular programming framework is better than the other one or so but I just want to put a comparison. There's a port of Apache Velocity for .NET. In C# it's not possible to call static methods just from instance's reference what makes exploit like this useless:
$input.GetType().GetType("System.IO.FileStream, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089")
I just consider this:
instanceVar.staticMethod();
to be shorthand for this:
instanceVar.getClass().staticMethod();
If you always had to do this:
SomeClass.staticMethod();
then you wouldn't be able to leverage inheritance for static methods.
That is, by calling the static method via the instance you don't need to know what concrete class the instance is at compile time, only that it implements staticMethod() somewhere along the inheritance chain.
EDIT: This answer is wrong. See comments for details.