performance improvement: toString() - java

We are developing quite big server app. Each action is tracked by log. There are many logs with calling of toString method. Unfortunatelly we need most of them on other hand we cannot track what happens on prod.
Is it make sense trying to improve toString method? Forexample put result of toString in memory and update if some field was updated.
example of my toString
public classs InMessage{
//declared 20+ fields
#Override
public String toString() {
StringBuilder builder = new StringBuilder(this.getClass().getSimpleName());
builder.append(": [");
builder.append(super.toString());
builder.append("; updateTime: ");
builder.append(updateTime);
//forexample 20 fields here
builder.append(";]");
return builder.toString();
}}
then we process InMessage in some way and log each action
log.debug("We received inMessage: {}", inMessage);
after this discussion we decided to decrease number of logs where it's possible and nothing more.

Unless you are actively experiencing performance or memory issues, don't worry about it. Useful logs can help enormously in prod diagnostics, you need to weigh that against hypothetical performance worries that might just never happen.
(Not saying you're definitely going to be problem-free here, just don't optimise for something that's not really a problem...)
Edit: trust your own judgement on whether you're logging "too much"; if a single UI or service operation generates 20 pages of incidental / debug level information, even at INFO level logging, you might want to refine the content to make it genuinely useful

That nano-optimization usually ends up in useless effort that add no overall value with the exception of some ms substracted from a time handled in seconds or, sometimes, minutes. Depends on the case but yours could be one of those where every little bit counts.
Identify an optimization need based on data, don't pre-optimize and in particular with such methods. I bet there are other approaches that could prove more valuable than questioning the use of toString like, for example, improving the order of a commonly used algorith or reducing the load of an operation (less calls, but significant ones).
Just compare the usage of toString with the solution you have in mind, you're implementing a kind of observer pattern that updates a central string repository if a field is changed? That's executing code on every setter (if you use that approach).

Related

apply CheckReturnValue to entire project

I work on a large legacy Java 8 (Android) application. We recently found a bug that was caused by an ignored result of method. Specifically a caller of a send() method didn't take the right actions when it the sending failed. It's been fixed but now I want to add some static analysis to help find if other existing bugs of the same nature exist in our code. And additionally, to prevent new bugs of the same nature from being added in the future.
We already use Find Bugs, PMD, Checkstyle, Lint, and SonarQube. So I figured that one of these probably already has the check I'm looking for, but it just needs to be enabled. But after a few hours of searching and testing, I don't think that's the case.
For reference, this is the code I was testing with:
public class Application {
public status void main(String[] args) {
foo(); // I want this to be caught
Bar aBar = new Bar();
aBar.baz(); // I want this to be caught
}
static boolean foo() {
return System.currentTimeMillis() % 2 == 0;
}
}
public class Bar {
boolean baz() {
return System.currentTimeMillis() % 2 == 0;
}
}
I want to catch this on the caller side since some callers may use the value while others do not. (The send() method described above was this case)
I found the following existing static analysis rules but they only seem to apply to very specific circumstances to avoid false positives and not work on my example:
Return values from functions without side effects should not be ignored (only for immutable classes in the Java API)
Method ignores exceptional return value (only for known methods like File.delete())
Method ignores return value (only for methods annotated with javax.annotation.CheckReturnValue I think...)
Method ignores return value, is this OK? (only when the return value is the same type as the type the method is invoked on)
Return value of method without side effect is ignored (only when the method does not produce any effect other than return value)
So far the best option seems to be #3 but it requires me to annotate EVERY method or class in my HUGE project. Java 9+ seems to allow annotating at the package-level but that's not an option for me. Even if it was, the project has A LOT of packages. I really would like a way to configure this to be applied to my whole project via one/few locations instead needing to modify every file.
Lastly I came across this Stack Overflow answer that showed me that IntelliJ has this check with a "Report all ignored non-library calls" check. Doing this seems to work as far as highlighting in the IDE. But I want this to cause CI fail. I found there's a way to trigger this via command line using intelliJ tools but this still outputs an XML/JSON file and I'll need to write custom code to parse that output. I'd also need to install IDE tools onto the CI machine which seems like overkill.
Does anyone know of a better way to achieve what I want? I can't be the first person to only care about false negatives and not care about false positives. I feel like it should be manageable to have any return value that is currently being unused to either be logged or have it explicitly stated that the return value is intentionally ignored it via an annotation or assigning to a variable convention like they do in Error Prone
Scenarios like the one you describe invariably give rise to a substantial software defect (a true bug in every respect); made more frustrating and knotty because the code fails silently, and which allowed the problem to remain hidden. Your desire to identify any similar hidden defects (and correct them) is easy to understand; however, (I humbly suggest) static code analysis may not be the best strategy:
Working from the concerns you express in your question: a CheckReturnValue rule runs a high risk of producing a cascade of //Ignore code comments, rule violationSuppress clauses, and/or #suppressRule annotations that far outnumber the rule's positive defect detection count.
The Java programming language further increases the likelihood of a high rule suppression count, after taking Java garbage collection into consideration and assessing how garbage collection effects software development. Working from the understanding that Java garbage collection is based on object instance reference counting, that only instances with a reference count of 0 (zero) are eligible for garbage collection, it makes perfect sense for Java developers to avoid unnecessary references, and to naturally adopt the practice of ignoring unimportant method call return values. The ignored instances will simply fall off of the local call stack, most will reach a reference count of 0 (zero), immediately become eligible for and quickly undergo garbage collection.
Shifting now from a negative perspective to positive, I offer alternatives, for your consideration, that (I believe) will improve your results, as well as your probability to reach a successful outcome.
Based on your description of the scenario and resulting defect / bug, it feels like the proximate root cause of the problem is a unit testing failure or an integration testing failure. The implementation of a send operation that may (and almost certainly will at some point) fail, both unit testing and integration testing absolutely should have incorporated multiple possible failure scenarios and verified failure scenario handling. I obviously don't know, but I'm willing to bet that if you focus on creating and running unit tests and integration tests, the quality of the system will improve at every step, the improvements will be clearly evident, and you may very well uncover some or all of the hidden bugs that are the cause of your current concern, trepidation, stress, and worry.
Consider keeping the gist of your current static code analysis research alive, but shift your approach in a new direction. The first time I read your question, I was struck by the realization that the code checks you would like to perform exist in multiple unrelated locations across the code base and are quickly becoming overly complex, the specific details of the checks are different in many section of code, and each of the special cases make the overall effort unrealistic. Basically, what you would like to implement represents a cross-cutting goal that falls across a sizable section of the code base, and the implementation details have made what is a fairly simple good idea ridiculously complex. Your question is almost a textbook example of a problem that is best implemented taking a cross-cutting aspect-oriented approach.
If you have the time and interest, please take a look at the AspectJ framework, maybe code a few exploratory aspects, and let me know what you think. I'd like to hear your thoughts, if you feel like having a geeky dev conversation at some point. I really hope this is helpful-
You may use the intelliJ IDEA's inspection: Java | Probable bugs | Result of method call ignored with "Report all ignored non-library calls" option enabled. It catches both cases provided in your code sample.

In java streams using .peek() is regarded as to be used for debugging purposes only, would logging be considered as debugging? [duplicate]

This question already has answers here:
In Java streams is peek really only for debugging?
(10 answers)
Closed 4 years ago.
So I have a list of objects which I want part or whole to be processed, and I would want to log those objects that were processed.
consider a fictional example:
List<ClassInSchool> classes;
classes
.stream()
.filter(verifyClassInSixthGrade())
.filter(classHasNoClassRoom())
.peek(classInSchool -> log.debug("Processing classroom {} in sixth grade without classroom.", classInSchool)
.forEach(findMatchingClassRoomIfAvailable());
Would using .peek() in this instance be regarded as unintended use of the API?
To further explain, in this question the key takeaway is: "Don't use the API in an unintended way, even if it accomplishes your immediate goal." My question is whether or not every use of peek, short from debugging your stream until you have verified the whole chain works as designed and removed the .peek() again, is unintended use. So if using it as a means to log every object actually processed by the stream is considered unintended use.
The documentation of peek describes the intent as
This method exists mainly to support debugging, where you want to see the elements as they flow past a certain point in a pipeline.
An expression of the form .peek(classInSchool -> log.debug("Processing classroom {} in sixth grade without classroom.", classInSchool) fulfills this intend, as it is about reporting the processing of an element. It doesn’t matter whether you use the logging framework or just print statements, as in the documentation’s example, .peek(e -> System.out.println("Filtered value: " + e)). In either case, the intent matters, not the technical approach. If someone used peek with the intent to print all elements, it would be wrong, even if it used the same technical approach as the documentation’s example (System.out.println).
The documentation doesn’t mandate that you have to distinguish between production environment or debugging environment, to remove the peek usage for the former. Actually, your use would even fulfill that, as the logging framework allows you to mute that action via the configurable logging level.
I would still suggest to keep in mind that for some pipelines, inserting a peek operation may insert more overhead than the actual operation (or hinder the JVM’s loop optimizations to such degree). But if you do not experience performance problems, you may follow the old advice to not try to optimize unless you have a real reason…
Peek should be avoided as for certain terminal operations it may not be called, see this answer. In that example it would probably be better to do the logging inside the action of forEach rather than using peek. Debugging in this situation means temporary code used for fixing a bug or diagnosing an issue.
In java streams using .peek() is regarded as to be used for debugging purposes only, would logging be considered as debugging?
It depends on whether your logging code is going to be a permanent fixture of your code, or not.
Only you can really know the real purpose of your logging ...
Also note that the javadoc says:
In cases where the stream implementation is able to optimize away the production of some or all the elements (such as with short-circuiting operations like findFirst, or in the example described in count()), the action will not be invoked for those elements.
So, you are liable to find that in some circumstances peek won't be a reliable way to log (or debug) your pipeline.
In general, adding peek is liable to change the behavior of the pipeline and / or the JVM's ability to optimize it ... in a current or future generation JVM.
Eh, it's somewhat open to interpretation. Intent is something that's not always easy to determine.
I think the API note was mostly added to discourage an overzealous usage of peek when almost all desirable behaviour can be accomplished without it. It was just too useful for the developers to exclude it completely but they wanted to be clear that its inclusion was not to be taken as an unqualified endorsement; they saw the potential for misuse and they tried to address it.
I suspect - though I'm only speculating - that there were mixed opinions on whether to include it at all, and that including a version with a caveat in the JavaDoc was the compromise.
With that in mind, I think my suggestion for deciding when to use peek would simply be: don't use it unless you have a very good reason to.
In your case, you definitely don't have a good reason to. You're iterating over everything and passing the result to the method findMatchingClassRoomIfAvailable (well, presumably - your example wasn't very good). If you want to log something for each item in the stream then just log it at the top that method.
Is it misuse? I don't think so. Would I write it this way? No.

Why do we need getters?

I have read the stackoverflow page which discusses "Why use getters and setters?", I have been convinced by some of the reasons using a setter, for example: later validation, data encapsulation, etc. But what is the reason of using getters anyway? I don't see any harm of getting a value of a private field, or reasons to validation before you get the a field's value. Is it OK to never use a getter and always get a field's value using dot notation?
If a given field in a Java class be visible for reading (on the RHS of an expression), then it must also be possible to assign that field (on the LHS of an expression). For example:
class A {
int someValue;
}
A a = new A();
int value = a.someValue; // if you can do this (potentially harmless)
a.someValue = 10; // then you can also do this (bad)
Besides the above problem, a major reason for having a getter in a class is to shield the consumer of that class from implementation details. A getter does not necessarily have to simply return a value. It could return a value distilled from a Collection or something else entirely. By using a getter (and a setter), we free the consumer of the class from having to worry about the implementation changing over time.
I want to focus on practicalities, since I think you're at a point where you haven't seen the conceptual benefits line up just yet with the actual practice.
The obvious conceptual benefit is that setters and getters can be changed without impacting the outside world using those functions. Another Java-specific benefit is that all methods not marked as final are capable of being overriden, so you get the ability for subclasses to override the behavior as a bonus.
Overkill?
Yet you're probably at a point where you've heard these conceptual benefits before and it still sounds like overkill for your more daily scenarios. A difficult part of understanding software engineering practices is that they are generally designed to deal with very real world, large-scale codebases being managed by teams of developers. A lot of things are going to seem like overkill initially when you're just working on a small project of your own.
So let's get into some practical, real-world scenarios. I formerly worked in a very large-scale codebase. It a was low-level C codebase with a long legacy and sometimes barely a step above assembly, but many of the lessons I learned there translate to all kinds of languages.
Real-World Grief
In this codebase, we had a lot of bugs, and the majority of them related to state management and side effects. For example, we had cases where two fields of a structure were supposed to stay in sync with each other. The range of valid values for one field depended on the value of the other. Yet we ran into bugs where those two fields were out of sync. Unfortunately since they were just public variables with a very global scope ('global' should really be considered a degree with respect to the amount of code that can access a variable rather than an absolute), there were potentially tens of thousands of lines of code that could be the culprit.
As a simpler example, we had cases where the value of a field was never supposed to be negative, yet in our debugging sessions, we found negative values. Let's call this value that's never supposed to be negative, x. When we discovered the bugs resulting from x being negative, it was long after x was touched by anything. So we spent hours placing memory breakpoints and trying to find needles in a haystack by looking at all possible places that modified x in some way. Eventually we found and fixed the bug, but it was a bug that should have been discovered years earlier and should have been much less painful to fix.
Such would have been the case if large portions of the codebase weren't just directly accessing x and used functions like set_x instead. If that were the case, we could have done something as simple as this:
void set_x(int new_value)
{
assert(new_value >= 0);
x = new_value;
}
... and we would have discovered the culprit immediately and fixed it in a matter of minutes. Instead, we discovered it years after the bug was introduced and it took us meticulous hours of headaches to trace it down and fix.
Such is the price we can pay for ignoring engineering wisdom, and after dealing with the 10,000th issue which could have been avoided with a practice as simple as depending on functions rather than raw data throughout a codebase, if your hairs haven't all turned grey at that point, you're still generally not going to have a cheerful disposition.
The biggest value of getters and setters comes from the setters. It's the state manipulation that you generally want to control the most to prevent/detect bugs. The getter becomes a necessity simply as a result of requiring a setter to modify the data. Yet getters can also be useful sometimes when you want to exchange a raw state for a computation non-intrusively (by just changing one function's implementation), e.g.
Interface Stability
One of the most difficult things to appreciate earlier in your career is going to be interface stability (to prevent public interfaces from changing constantly). This is something that can only be appreciated with projects of scale and possibly compatibility issues with third parties.
When you're working on a small project on your own, you might be able to change the public definition of a class to your heart's content and rewrite all the code using it to update it with your changes. It won't seem like a big deal to constantly rewrite the code this way, as the amount of code using an interface might be quite small (ex: a few hundred lines of code using your class, and all code that you personally wrote).
When you work on a large-scale project and look down at millions of lines of code, changing the public definition of a widely-used class might mean that 100,000 lines of code need to be rewritten using that class in response. And a lot of that code won't even be your own code, so you have to intrusively analyze and fix other people's code and possibly collaborate with them closely to coordinate these changes. Some of these people may not even be on your team: they may be third parties writing plugins for your software or former developers who have moved on to other projects.
You really don't want to run into this scenario repeatedly, so designing public interfaces well enough to keep them stable (unchanging) becomes a key skill for your most central interfaces. If those interfaces are leaking implementation details like raw data, then the temptation to change them over and over is going to be a scenario you can face all the time.
So you generally want to design interfaces to focus on "what" they should do, not "how" they should do it, since the "how" might change a lot more often than the "what". For example, perhaps a function should append a new element to a list. However, you may want to swap out the list data structure it's using for another, or introduce a lock to make that function thread safe ("how" concerns). If these "how" concerns are not leaked to the public interface, then you can change the implementation of that class (how it's doing things) locally without affecting any of the existing code that is requesting it to do things.
You also don't want classes to do too much and become monolithic, since then your class variables will become "more global" (become visible to a lot more code even within the class's implementation) and it'll also be hard to settle on a stable design when it's already doing so much (the more classes do, the more they'll want to do).
Getters and setters aren't the best examples of such interface design, but they do avoid exposing those "how" details at least slightly better than a publicly exposed variable, and thus have fewer reasons to change (break).
Practical Avoidance of Getters/Setters
Is it OK to never use a getter and always get a field's value using dot notation?
This could sometimes be okay. For example, if you are implementing a tree structure and it utilizes a node class as a private implementation detail that clients never use directly, then trying too hard to focus on the engineering of this node class is probably going to start becoming counter-productive.
There your node class isn't a public interface. It's a private implementation detail for your tree. You can guarantee that it won't be used by anything more than the tree implementation, so there it might be overkill to apply these kinds of practices.
Where you don't want to ignore such practices is in the real public interface, the tree interface. You don't want to allow the tree to be misused and left in an invalid state, and you don't want an unstable interface which you're constantly tempted to change long after the tree is being widely used.
Another case where it might be okay is if you're just working on a scrap project/experiment as a kind of learning exercise, and you know for sure that the code you write is rather disposable and is never going to be used in any project of scale or grow into anything of scale.
Nevertheless, if you're very new to these concepts, I think it's a useful exercise even for your small scale projects to err on the side of using getters/setters. It's similar to how Mr. Miyagi got Daniel-San to paint the fence, wash the car, etc. Daniel-San finds it all pointless with his arms exhausted on top of that. Then Mr. Miyagi goes "hyah hyah hyoh hyah" throwing big punches and kicks, and using that indirect training, Daniel-San blocks all of them without realizing how he's even doing it.
In java you can't tell the compiler to allow read-only access to a public field from outside.
So exposing public fields opens the door to uncontroled modifications.
Fields are not polymorphic.
The alternative to a getter would be a public field; however, fields are not polymorphic.
This means that you cannot extend the class and "override" the field without introducing weird behaviour. Basically, the value you get will depend on how you refer to the field.
Furthermore, you can't include the field in an interface and you can't perform validation (that applies more to a setter).

Profiling a Java EE applications - What to look for and what changes to make?

I am a bit new to profiling applications for improving performance. I have selected YourKit as my profiler. There is no doubt that YourKit provides very interesting statistics. Where I am getting stuck is what to do with these statistics.
For instance, Consider a method that operates on a JAXB POJO. The method iterates through the POJO to access a tag/element that is deeply nested inside the XML. This requires 4 layers of for loops to get to the element/tag as shown below :
List<Bundle> bundles = null;
List<Item> items = null;
for(Info info : data) {
bundles = info.getBundles();
for(Bundle bundle : bundles) {
items = bundle.getItems();
//.. more loops like this till we get to the required element
}
}
YourKit tells me that the above code is a 'hot-spot' and 80 objects are getting garbage collected for each call to the method containing this code. The above code is just an example and not the only part where I am getting stuck. Most of the times I have no clue about what to do with the information given by the profiler. What can I possibly do to reduce the number of temporary objects in the above code? Are there any well defined principles for imporoving the performance of an application? What statistics to look for when profiling an application and what implications does each kind of statistics have?
Edit :
The main objective for profiling the application is to increase the throughput and response time. The current throughput is only 10 percent of the required throughput!
Focus on the statistics relevant to your performance goal. You are interested in minimal response time, so look at how much each method contributes to response time, and focus on those that contribute much (for single threaded processing, that's simply elapsed time during method call, summed over all invocation of that method). I am not sure what YourKit defines as hot spots (check the docs), but it's probably the methods with highest cummulative elapsed time, so hot spots are a good thing to look at. In constrast, object allocation has no direct impact on response time, and is irrelavant in your case (unless you have identified that the garbage collector contributes a significant proportion of cpu time, which it usually doesn't).
I absolutely agree with the given answers.
I would like to add that considering your concrete example, you actually can make an improvement by using xpath api to access the specific location in the XML.
In situations where you don't need to actually iterate the entire DOM, this should be your first choice since it is declarative and hence more expressive and less error prone.
It would often give you superior performance as well (For very complex queries it may not be the case, but you seem to have a simple scenario).
A way to improve the loop would be to change your schema and essentially flatten the model, of course this depends on whether you can change the schema. This way the generated Java will not require 4 layers of looping. Of course at the end of the day you need to ask yourself is the code really a problem - 80 objects are getting GCed so? Is your application running slow? Are you experiencing memory issues? Remember premature optimization is the root of all evil!
Profiling and optimization is a complex beast and depends on may things (Java version, 32 vs 64 bit os, etc...). Furthermore the optimization might not always require code changes, for example you could resolve problems by changing your GC policy on the JVM - for example there are GC policies that are more effective in situations where your code is creating many small objects that need to be GCed frequently. If you had specifics maybe it would be easier to help you however your question seems too broad. In fact there are many books written on topic which might be worth a read.

how can I get the History of an object or trace an Object

I have a requirement, where support in my application a lot of processing is happening, at some point of time an exception occrured, due to an object. Now I would like to know the whole history of that object. I mean whatever happened with that object over the period of time since the application has started.
Is this peeping into this history of Object possible thru anyway using JMX or anything else ?
Thanks
In one word: No
With a few more words:
The JVM does not keep any history on any object past its current state, except for very little information related to garbage collection and perhaps some method call metrics needed for the HotSpot optimizer. Doing otherwise would imply a huge processing and memory overhead. There is also the question of granularity; do you log field changes only? Every method call? Every CPU instruction during a method call? The JVM simply takes the easy way out and does none of the above.
You have to isolate the class and/or specific instance of that object and log any operation that you need on your own. You will probably have to do that manually - I have yet to find a bytecode instrumentation library that would allow me to insert logging code at runtime...
Alternatively, you might be able to use an instrumenting profiler, but be prepared for a huge performance drop when doing that.
That's not possible with standard Java (or any other programming language I'm aware of). You should add sufficient logging to your application, which will allow you to get some idea of what's happened. Also, learn to use your IDE's debugger if you don't already know how.
I generally agree with #thkala and #artbristol (+1 for both).
But you have a requirement and have no choice: you need a solution.
I'd recommend you to try to wrap your objects with dynamic proxies that perform auditing, i.e. write all changes that happen to object.
You can probably use AspectJ for this. The aspect will note what method was called and what are the parameters that were sent. You can also use other, lower level tools, e.g. Javasist or CgLib.
Answer is No.JVM doesn't mainatain the history of object's state.Maximum what you can do you can keep track of states of your object that could be some where in-memory and when you get exception you can serialize that in-memory object and then i think you can do analysis.

Categories