select odd/even elements of array using recursion - java

Am working on some programming homework and am a bit lost. The project is to select the even/odd elements of a listarray and store in another array. It is not the even numbers in each element, but the elements themselves so if an array had values "1,2,5,7,9" and returned the even elements it would give "1, 5, 9". Also have to use recursion. Would anyone be able to give me a starting point or some advice. Though about starting with 2 elements and taking 2nd element and then building up from that, but don't know how it would add on the 2nd pass
public static ArrayList<Integer> even(ArrayList<Integer> list)
ArrayList<Integer> evenlist = ListMethods.deepClone(tList);//make copy of list
if (evenlist.size()<=1) // The list is empty or has one element
{
// return null;// Return the list as is
}
if
(evenlist.size()==2)
{
//return right element
//call method again
//add to list
}

Psuedocode
int[] evens,odds;
function categorize(List<Integer> in,int idx)
if(idx>=in.length)
return
int cur = in[idx]
if(even), add to evens
else add to odds
categorize(in,idx+1)

This sounds similar to the homework I just completed, so if it is (And you're in my class!), I'll not tell you to use any terminology we haven't covered as I know it can be daunting trying to discover something new for practicals (beyond what we have to do).
First, set your exit condition. As you've already said, you have to create a new ArrayList out of the existing one. You are going to remove items from the existing ArrayList, storing the integers that are at even (or odd) indices, until the list is empty.
So your exit condition is:
if (evenList is Empty)
return evenList;
Then, work your way through the steps. I would advise determining if the Array you start with has an even of odd number of steps, something like this:
if (evenList has Even Elements)
int holderForIntsAtEvenElements = last evenList EVEN element
Note we start at the last element, so when you are coming OUT of the recursive method, this will be the last one added to your new ArrayList, and thus it'll be in numerical order. You might find this post interesting to do this: What does this boolean return mean?
We then want to remove the last element from the list and recursively call the method again.
Finally, when we hit our exit condition and start to come out, we want to add the ints we've been storing to them, e.g.:
evenList.add(holderForIntsAtEvenElements);
return evenList;
That doesn't solve one problem, which is what to do with the very first element if the list does NOT have an even number of elements - however, I'll let you try and solve that!
That's a good mix of code and pseudo code and will hopefully help to get you on the right track.

You could use a simple for loop like this:
for (int i = 0; i < list.size(); i += 2) {
System.out.println(list.get(i));
}
If you have to use recursion, here's an outline of the steps you might take. (I won't tell you exactly what to do because you haven't tried anything and it is like homework.)
Take first element and store it
Remove (new) first element from list
Call self

Related

How would an empty HashMap with .containsKey() be true?

I am a beginner programmer working on a Two Sum problem. An array of integers are given as well as an integer, target. The intention of the program is to find which two numbers in the array of integers add up to the target integer. The most efficient solution I am seeing is quite ingenious in how it iterates over all of the integers in the array and checks if the difference between each integer in the array and the target number is another integer in the array. Then those two would be the solution. My issue is with the HashMap part. How would an empty HashMap .containsKey() work if it is empty and has no keys in it?
class Solution {
public int[] twoSum(int[] nums, int target) {
int n=nums.length;
Map<Integer,Integer> map=new HashMap<>();
int[] result=new int[2];
for(int i=0;i<n;i++){
if(map.containsKey(target-nums[i])){
result[1]=i;
result[0]=map.get(target-nums[i]);
return result;
}
map.put(nums[i],i);
}
return result;
}
}
I tried to research solution explanations but all of them just said that the solution checks if the values are in the map but how would any values be in the map if it is empty and was never linked to the integers array? Thanks a lot for the help.
I give you a phone book. I ask you if 'Ryan Siegrist' is in it. You open it up intending to scan it (or perhaps you're going to be smarter about it and use a fancy algorithm, such as binary searching by opening it to the middle page to see if you should go 'higher' or 'lower') - and it turns out the phone book is simply empty.
The correct answer is of course 'no, Ryan Siegrist is not in this empty phone book'.
HashMap is no different. .containsKey(whateverYouLike) returns false if you invoke it on an empty list. Why wouldn't it?
The stated algorithm does nothing the first time you loop, but note that at the end of the for look, whether the if ( containsKey ) check worked out or failed, an entry is added to the map. So the second and further runs through that loop, the map is no longer empty.
Short version:
If the map is empty and it does not contain a key. Then the line:
map.put(nums[i],i);
will still execute. This is because it is outside of the if check.
Long version
So when the code first iterates through the array, the HashMap is always empty at first because it was initialized as such:
Map<Integer,Integer> map=new HashMap<>();
Then the first iteration of the if check returns false:
if(map.containsKey(target-nums[i]))
But it still executes the line of code which will associate the map with the value of nums at the index of i with the index of i as the value for the map.
Then the loop will continue iterating until a solution is found or the loop terminates.

Permutations of ArrayList<Integer>

im working on a problem where i have to obtain all permutations of an arraylist of numbers. The only restriction is that any number cant start with 0, so if we have [0,1,2] we would obtain
[1,2,0]
[1,0,2]
[2,0,1]
[2,1,0]
i know how to do this with 3 loops but the thing is that i have to repeat this to different sets of numbers with differentes sizes, so i need one method that i can apply to different sets of numbers but i have no clue on how to do this. I imagine i have to used some kind of recursive function but i dont know how to implement it so the numbers cant start with a 0. Any ideas? please dont just post the code i want to understand the problem, thank you in advantage!!
Curious question! Interesting code kata.
I naively think I would have a recursive method that takes:
a list of the items currently chosen by the caller
a set of the items available for the callee
The method would iterate over the set to chose 1 more item and call itself with the list extended by this item, and the set reduced by this item. Upon return, remove from list, add back to set and go on with next item (take a defensive copy of the set of course).
If the current list is empty, the selected first item cannot be 0, as per your rules. If you must collect the permutations somewhere (not just print), a 3rd argument would be required for a collection or an observer.
The recursion obvioulsy stops when the available set is empty, at which point the permutation is sent to the collection or observer.
If items can repeat, you may have benefit from sorting them first in order to skip electing the same item again at a given position.
Beware this quires a recursion depth of N, for N items. But the danger is minimal because even with N=10000, it may not stackoverflow, but the CPU time to complete would be order(N!) (probably end of universe...)
You could solve this recursively as described here: Permutation of an ArrayList of numbers using recursion.
The only thing that is missing there is your restriction with the zeros, which could be solved somehow like this (the loop is taken from the example above):
for (List<Integer> al : myLists) {
// The part you need to add:
if (al.get(0) == 0) {
continue;
}
String appender = "";
for (Integer i : al) {
System.out.print(appender + i);
appender = " ";
}
System.out.println();
}
You basically check the first element of each permutation and skip the ones with a leading zero. The continue jumps to the next iteration of the loop and therefore to the next permutation.

element of a Linked List

Can someone please explain In Java how do you find middle element of a linked list in single pass?
I have googled it, but cannot seem to find a simple explanation on how to code it.
LinkedList<String> list = new LinkedList<>();
list.add("foo");
list.add("bar");
list.add("baz");
String middle = list.get(list.size()/2);
System.out.println(middle); // bar
The call to assign middle will pass through half of the list during the get call.
As pointed out in the comments, the middle is the worst place to operate on a LinkedList. Consider using another variation, such as ArrayList.
I think this is a sort of trick question that you see on lists of possible interview questions.
One solution would be to have two pointers to step through the list, one taking steps of two and one taking steps of one.
When the pointer that is taking two steps at a time reaches the end of the list, the one taking only one step will be halfway through.
I doubt that this practice is really useful though..
good luck!
Since it's a LinkedList, you won't be able to find out its size until after the first (and only) pass. To find the middle element, you need to know two things; what index is at the middle, and what is the value of the element at that index. Finding the middle index is easy--just make one pass through the list, keeping a counter of how many nodes there are. As you do this, you'll need to keep track of each element in a separate data structure, perhaps an ArrayList, since you're only allowed one pass through the LinkedList. Once you're done, half the counter to find the middle index, and return the ArrayList element at that index.
The pseudo code looks like this:
int count
ArrayList elements
for each node in LinkedList:
count++
elements.append(node)
middleIndex = count/2
middleElement = elements.getIndex(middleIndex)
return middleElement
Of course, you'll need to take care of the case where there isn't a single middle element.

How do you create a mathematical sequence in Java?

I want to declare integers, while the program is running.
I run the program, and then I give it via System.in.println an integer and repeat this as long as I want.
I want the program to give those integers a name of a certain type for, for example a(i) or a[i], dunno, (it should be handy) and then a(i) represents the the i'th integer I gave the program.
My idea is then that I can use those elements by their name just like, if I had declared them in the first place.
For example add two integers together.
For example I defined a method add+, which waits for 2 integer and then adds them. For example I write:
add
a(2)
a(47)
(then I would get here the result.)
I don't think implementing the add function is difficult. However I don't know, how to let the program count the number of inputs or how to let it declare and use variables.
First: Welcome to programming java; it will be a long road.
Here are some hints:
Use a List<Integer> to hold the sequence of numbers entered by the user.
Actually instanciate a concreate List class, for example LinkedList<Integer>'. If you need to access the elements by index, use anArrayList`.\
Each time the user enters a number, create a new Integer and userList.add(newInteger);
Simple sample
List<Integer> userList = new LinkedList<Integer>();
for (index = 0; index < 9; ++index)
{
Integer newInteger = new Integer(index);
userList.add(newInteger);
}
for (Integer current : userList)
{
System.out.println(current);
}
Yeah, I am following the conversation.
I am just a bit frustrated, because I can't really write any interesting or practical java programs (yet), because my knowledge isn't that big yet.
First I tried to find out, if there was a way to add elements to array, because arrays seemed to me very useful, because each element of an array already has an address. I googled, and it seems that is not possible.
I might be able to use the idea with the list, but it seems to be that the length of the list has to have a limit and actually I wanted to avoid that.

Sampling with no replacement in Java from an ArrayList

I have an arrayList with 30 elements. I'd like to create many sublists of 15 elements from this list. What's the efficient way of doing so?
Right now I clone the ArrayList and use remove(random) to do it, but I am sure this is too clumsy. What should I do instead?
Does Java have a "sample" function like in R?
Clarification: by sampling with no replacement I mean take at random 15 unique elements from the 30 available in the original list. Moreover I want to be able to do this repeatedly.
Use the Collections#shuffle method to shuffle your original list, and return a list with the first 15 elements.
Consider creating new list and adding random elements from current list instead of copying all elements and removing them.
Another way to do this is to create some kind of View on top of the current list.
Implement an Iterator interface that randomly generates index of element during next operation and retrieves element by index from current list.
No, Java does not have a sample function like in R. However, it is possible to write such a function:
// Samples n elements from original, and returns that list
public <T> static List<T> sample(List<T> original, int n) {
List<T> result = new ArrayList<T>(n);
for (int i = 0; i < original.size(); i++) {
if (result.size() == n)
return result;
if ((n - result.size()) >= (original.size() - i)) {
result.add(original.get(i));
} else if (Math.random() < ((double)n / original.size())) {
result.add(original.get(i));
}
}
return result;
}
This function iterates through original, and copies the current element to result based on a random number, unless we are near enough to the end of original to require copying all the remaining elements (the second if statement in the loop).
This is a basic combinatorics problem. You have 30 elements in your list, and you want to choose 15. If the order matters, you want a permutation, if it doesn't matter, you want a combination.
There are various Java combinatorics samples on the web, and they typically use combinadics. I don't know of any ready made Java libraries, but Apache Math Commons has binomial coefficient support to help you implement combinadics if you go that route. Once you have a sequence of 15 indices from 0 to 29, I'd suggest creating a read-only iterator that you can read the elements from. That way you won't have to create any new lists or copy any references.

Categories