Is custom enum Serializable too? - java

I understand Enum is Serializable. Hence, it is safe to do so. (selectedCountry is enum Country)
Original enum without customer member variables
public enum Country {
Australia,
Austria,
UnitedState;
}
Fragment
#Override
public void onActivityCreated (Bundle savedInstanceState) {
super.onActivityCreated(savedInstanceState);
if (savedInstanceState != null) {
selectedCountry = (Country)savedInstanceState.getSerializable(SELECTED_COUNTRY_KEY);
}
}
#Override
public void onSaveInstanceState(Bundle savedInstanceState) {
savedInstanceState.putSerializable(SELECTED_COUNTRY_KEY, selectedCountry);
}
However, what if I have non-serializable members in custom enum class? For instance,
Original enum customer member variables
package org.yccheok;
import org.yccheok.R;
/**
*
* #author yccheok
*/
public enum Country {
Australia(R.drawable.flag_au),
Austria(R.drawable.flag_at),
UnitedState(R.drawable.flag_us);
Country(int icon) {
this.icon = icon;
nonSerializableClass = new NonSerializableClass(this.toString());
}
public int getIcon() {
return icon;
}
public static class NonSerializableClass {
public NonSerializableClass(String dummy) { this.dummy = dummy; }
public String dummy;
}
private final int icon;
public NonSerializableClass nonSerializableClass;
}
I tested. It works. (I tested by printing out all the value of member variables before and after serialization. They are same before and after)
However, I do not understand why it works? As I do not provide proper readObject and writeObject, as required by Serializable interface.
As pointed in Effective Java Item 75: Consider using a custom serialized form, do I need to provide my own readObject and writeObject, if I have custom member variables in my enum?

The reason it works is that serialization process for Enum's is different from serialization process for other classes. From the official documentation:
1.12 Serialization of Enum Constants
Enum constants are serialized differently than ordinary serializable or externalizable objects. The serialized form of an enum constant consists solely of its name; field values of the constant are not present in the form. To serialize an enum constant, ObjectOutputStream writes the value returned by the enum constant's name method. To deserialize an enum constant, ObjectInputStream reads the constant name from the stream; the deserialized constant is then obtained by calling the java.lang.Enum.valueOf method, passing the constant's enum type along with the received constant name as arguments. Like other serializable or externalizable objects, enum constants can function as the targets of back references appearing subsequently in the serialization stream.
That means, all your custom fields won't be serialized. In your case everything works well because your application process is still running and you are getting the same Enum instance that you passed to savedInstanceState.putSerializable.
But imagine a situation where your app get killed because Android has not enough memory. The next time user opens the app you will get a new Enum instance and all custom fields will have been lost and reinitialized by the constructor. Thus, mutable fields in an enum are always effectively transient.

As per Serializable documentation, readObject and writeObject are not needed at all, so your question might be not fully correct.
Serializable is a marker interface and doesn't have any methods.
I refer you to this answer which provides additional details about the Serialization implementation (which explains why you don't necessary need write and read functions).
And, as mentioned here by Dianne Hackborn, Parcelable is much more efficient for Android.
If you're particularly interested in Enum, refer to below paragraph:
1.12 Serialization of Enum Constants
Enum constants are serialized differently than ordinary serializable or externalizable objects. The serialized form of an enum
constant consists solely of its name; field values of the constant are
not present in the form. To serialize an enum constant,
ObjectOutputStream writes the value returned by the enum constant's
name method. To deserialize an enum constant, ObjectInputStream reads
the constant name from the stream; the deserialized constant is then
obtained by calling the java.lang.Enum.valueOf method, passing the
constant's enum type along with the received constant name as
arguments. Like other serializable or externalizable objects, enum
constants can function as the targets of back references appearing
subsequently in the serialization stream.
The process by which enum constants are serialized cannot be customized: any class-specific writeObject, readObject,
readObjectNoData, writeReplace, and readResolve methods defined by
enum types are ignored during serialization and deserialization.
Similarly, any serialPersistentFields or serialVersionUID field
declarations are also ignored--all enum types have a fixed
serialVersionUID of 0L. Documenting serializable fields and data for
enum types is unnecessary, since there is no variation in the type of
data sent.
So, I don't think that the Enum is the right choice to test internal non-serializable classes work.

The serialization of enum members is not working.
The nonSerializable field is never serialized as #vmironov answered. Here is a test:
public enum Country {
Australia;
public static class NonSerializableClass {
public NonSerializableClass() {}
public String dummy;
}
public NonSerializableClass nonSerializableClass;
}
The code writing the enum to the serialization stream:
public class SerializationTestWrite {
public static void main(String[] args) throws Exception{
FileOutputStream f = new FileOutputStream("tmp");
ObjectOutput s = new ObjectOutputStream(f);
Country.Australia.nonSerializableClass = new Country.NonSerializableClass();
Country.Australia.nonSerializableClass.dummy = "abc";
s.writeObject(Country.Australia);
s.flush();
System.out.println(Country.Australia.nonSerializableClass.dummy);
}
}
On writing the value of the dummy field is: abc
The code reading the enum from the serialization stream:
public class SerializationTestRead {
public static void main(String[] args) throws Exception{
FileInputStream in = new FileInputStream("tmp");
ObjectInputStream so = new ObjectInputStream(in);
Country readed = (Country) so.readObject();
System.out.println(readed.nonSerializableClass);
}
}
But on reading, the value of the field nonSerializableClass is: null

Related

Is this class immutable or not?

The below class doesn't have final keyword but its member variables are private and final and the class exposes no mutate/set methods. Is this class immutable or not?
public class Abc {
private final int id;
private final String name;
public Abc(int id, String name) {
this.id = id;
this.name = name;
}
public String getName() {
return name;
}
public int getId() {
return id;
}
}
The class itself is immutable, yes - if you create an instance of just Abc, no aspect of that can be changed after the instance has been created.
However, that doesn't mean that any code receiving a parameter of type Abc can assume it's immutable with all the benefits that carries... because the class isn't final. It's entirely possible for an object of a type compatible with Abc to be mutable:
public class Mutable extends Abc {
private String value;
public Mutable(int id, String name) {
super(id, name);
}
public void setValue(String value) {
this.value = value;
}
#Override public String toString() {
return value;
}
}
Now imagine you've got code which deals with an Abc:
public class AbcConsumer {
private final Abc abc;
public AbcConsumer(Abc abc) {
this.abc = abc;
}
// No need to create a defensive copy or anything like that...
// abc is immutable, right?
public Abc getAbc() {
return abc;
}
}
Here the consumer assumes it's fine to treat Abc as if it's an immutable class - but if someone creates an AbcConsumer by passing in a Mutable instance instead of "vanilla" Abc instance, it could cause problems.
That's why it's generally a good idea when you're creating an immutable type to make it final as well - that way any consumers know that if they receive a reference with that type, it's definitely immutable.
To put it another way: yes, the Abc class is immutable... but you can't assume that a reference with a compile-time type of Abc refers to an immutable object.
As presented, yes, the class is immutable.
The "final" keyword on a class declaration prevents it from being extended - it's not related to immutability (unless your variables are declared public or protected).
Edit; "not related" is a poor choice of words, please see Jon Skeet's answer below
No, it is most likely not.
A problem is terminology. What do you mean by class? If you mean this code, sure, it's immutable. But 'this code' is not something that is particularly relevant to the concept of immutability. That usually makes a lot more sense if we consider it: this type.
As in, is the type Abc immutable?
As in, given:
public void foo(Abc abc) { ... }
is it safe to assume that the received abc couldn't possibly change?
And then the answer is no. That is not safe to assume: The type Abc is mutable.
The reason is that someone could make this:
class SneakyAbc extends Abc {
private int id;
public void setId(int id) {
this.id = id;
}
public String getId() {
return id;
}
}
This is why immutable classes are virtually always made final, to fully guarantee it.
Depending on how fancy you want to paint with the brush of 'what does this term mean', if all methods of Abc are final, you can consider it immutable as well if you really want to: Whilst the class does not need to be immutable (a subclass can add a new non-final field and create getters and setters for this), all the stuff you can 'witness' from the Abc type, assuming you don't use reflection, do appear immutable.
Exactly what definition of immutable you go with would be required knowledge to delve any further.
Note that something like java.io.File has only final fields and is final, and yet, it has easily observable state that can be modified: just.. delete the file, and voila you can see it. You can pull similar stunts with an IdentityHashMap to create a faux but nevertheless very observable 'field'.
Thus, 'immutable' as a concept: Useful. As a boolean flag to bestow upon a certain type or some java source file: Not useful.
Records
Other Answers directly addressed your questions about immutability, class being marked final, and subclasses being mutable. I’ll add an alternative option to more briefly accomplish your goal of immutability: Records.
Java 16 brings the new records feature. If the main purpose of your class is to immutably and transparently carry data, define your class as a record. The compiler implicitly creates default constructor, getters, equals & hashCode, and toString.
A record is implicitly final, so no risk of a subclass becoming mutable.
Declare the properties in parentheses. By default, you need not put anything in the curly braces body of a record.
record Abc ( int id , String name ) {}
Instantiate like any other class.
Abc x = new Abc ( 42 , "Snuffleupagus" ) ;
The implicit getter methods are simply the property names. The JavaBeans-style get…/is… method naming is not used. (You could add such methods if required.)
System.out.println( x.name() ) ;
Snuffleupagus
It is mutable if its internal states can be changed after the class is created.
In your example, although there is no class final, the inside situations cannot be changed again because of final keyword. In this way, the class becomes immutable again

Why java.util.Optional is not Serializable, how to serialize the object with such fields

The Enum class is Serializable so there is no problem to serialize object with enums. The other case is where class has fields of java.util.Optional class. In this case the following exception is thrown: java.io.NotSerializableException: java.util.Optional
How to deal with such classes, how to serialize them? Is it possible to send such objects to Remote EJB or through RMI?
This is the example:
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.Optional;
import org.junit.Test;
public class SerializationTest {
static class My implements Serializable {
private static final long serialVersionUID = 1L;
Optional<Integer> value = Optional.empty();
public void setValue(Integer i) {
this.i = Optional.of(i);
}
public Optional<Integer> getValue() {
return value;
}
}
//java.io.NotSerializableException is thrown
#Test
public void serialize() {
My my = new My();
byte[] bytes = toBytes(my);
}
public static <T extends Serializable> byte[] toBytes(T reportInfo) {
try (ByteArrayOutputStream bstream = new ByteArrayOutputStream()) {
try (ObjectOutputStream ostream = new ObjectOutputStream(bstream)) {
ostream.writeObject(reportInfo);
}
return bstream.toByteArray();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
This answer is in response to the question in the title, "Shouldn't Optional be Serializable?" The short answer is that the Java Lambda (JSR-335) expert group considered and rejected it. That note, and this one and this one indicate that the primary design goal for Optional is to be used as the return value of functions when a return value might be absent. The intent is that the caller immediately check the Optional and extract the actual value if it's present. If the value is absent, the caller can substitute a default value, throw an exception, or apply some other policy. This is typically done by chaining fluent method calls off the end of a stream pipeline (or other methods) that return Optional values.
It was never intended for Optional to be used other ways, such as for optional method arguments or to be stored as a field in an object. And by extension, making Optional serializable would enable it to be stored persistently or transmitted across a network, both of which encourage uses far beyond its original design goal.
Usually there are better ways to organize the data than to store an Optional in a field. If a getter (such as the getValue method in the question) returns the actual Optional from the field, it forces every caller to implement some policy for dealing with an empty value. This will likely lead to inconsisent behavior across callers. It's often better to have whatever code sets that field apply some policy at the time it's set.
Sometimes people want to put Optional into collections, like List<Optional<X>> or Map<Key,Optional<Value>>. This too is usually a bad idea. It's often better to replace these usages of Optional with Null-Object values (not actual null references), or simply to omit these entries from the collection entirely.
A lot of Serialization related problems can be solved by decoupling the persistent serialized form from the actual runtime implementation you operate on.
/** The class you work with in your runtime */
public class My implements Serializable {
private static final long serialVersionUID = 1L;
Optional<Integer> value = Optional.empty();
public void setValue(Integer i) {
this.value = Optional.ofNullable(i);
}
public Optional<Integer> getValue() {
return value;
}
private Object writeReplace() throws ObjectStreamException
{
return new MySerialized(this);
}
}
/** The persistent representation which exists in bytestreams only */
final class MySerialized implements Serializable {
private final Integer value;
MySerialized(My my) {
value=my.getValue().orElse(null);
}
private Object readResolve() throws ObjectStreamException {
My my=new My();
my.setValue(value);
return my;
}
}
The class Optional implements behavior which allows to write good code when dealing with possibly absent values (compared to the use of null). But it does not add any benefit to a persistent representation of your data. It would just make your serialized data bigger…
The sketch above might look complicated but that’s because it demonstrates the pattern with one property only. The more properties your class has the more its simplicity should be revealed.
And not to forget, the possibility to change the implementation of My completely without any need to adapt the persistent form…
If you would like a serializable optional, consider instead using guava's optional which is serializable.
The Vavr.io library (former Javaslang) also have the Option class which is serializable:
public interface Option<T> extends Value<T>, Serializable { ... }
It's a curious omission.
You would have to mark the field as transient and provide your own custom writeObject() method that wrote the get() result itself, and a readObject() method that restored the Optional by reading that result from the stream. Not forgetting to call defaultWriteObject() and defaultReadObject() respectively.
If you want to maintain a more consistent type list and avoid using null there's one kooky alternative.
You can store the value using an intersection of types. Coupled with a lambda, this allows something like:
private final Supplier<Optional<Integer>> suppValue;
....
List<Integer> temp = value
.map(v -> v.map(Arrays::asList).orElseGet(ArrayList::new))
.orElse(null);
this.suppValue = (Supplier<Optional<Integer>> & Serializable)() -> temp==null ? Optional.empty() : temp.stream().findFirst();
Having the temp variable separate avoids closing over the owner of the value member and thus serialising too much.
Just copy Optional class to your project and create your own custom Optional that implements Serializable. I am doing it because I just realized this sh*t too late.
the problem is you have used variables with optional. the basic solution to avoid this, provide the variable without optional and get them as optional when you call the getter like below. Optional<Integer> value = Optional.empty(); to Integer value = null;
public class My implements Serializable {
private static final long serialVersionUID = 1L;
//Optional<Integer> value = Optional.empty(); //old code
Integer value = null; //solution code without optional.
public void setValue(Integer value ) {
//this.value = Optional.of(value); //old code with Optional
this.value = value ; //solution code without optional.
}
public Optional<Integer> getValue() {
//solution code - return the value by using Optional.
return Optional.ofNullable(value);
}
}

Why Enum constructor can't have protected or public access modifier

Enum constructors must be either private or package default, and protected or public access modifier is not allowed. Why so
Because an enum, by definition, has a fixed set of instances which are declared and constructed in the enum itself. Using the constructor from outside of the enum class itself thus doesn't make sense.
And AFAIK, an enum constructor is always, explicitely or implicitely, private.
From the Java tutorial:
The constructor for an enum type must be package-private or private access. It automatically creates the constants that are defined at the beginning of the enum body. You cannot invoke an enum constructor yourself.
It doesn't make sense to be able to create new instances of an enum, so the language prevents you from doing so!
Enum is not meant to be instantiated (by you).
http://docs.oracle.com/javase/tutorial/reflect/special/enumTrouble.html :
Tip: It is a compile-time error to attempt to explicitly instantiate an enum because that would prevent the defined enum
constants from being unique. This restriction is also enforced in
reflective code. Code which attempts to instantiate classes using
their default constructors should invoke Class.isEnum() first to
determine if the class is an enum.
The reason you can't dynamically extend an enum is that the instantiated values are compiled into the bytecode for the Class object:
public T[] getEnumConstants()
Returns the elements of this enum class or null if this Class object does not
represent an enum type.
As a result, any attempt to construct a new instance would not be able to passed onto the actual Class, since Class objects cannot be changed. If you want this behavior, you'll have to simulate it yourself, and give it some kind of unique value to represent each one, then have an ordinal counter, and finally a static map (or some other structure) to hold all the values.
public class MyEnum {
private static AtomicInteger nextOrdinal = new AtomicInteger(0);
private static Map<Integer, MyEnum> instances =
new HashMap<Integer, MyEnum>();
private int ordinal;
private String name;
public MyEnum(String name) {
super();
this.ordinal = nextOrdinal.incrementAndGet();
this.name = name;
instances.put(Integer.valueOf(this.ordinal), this);
}
public String name() {
return name;
}
public int ordinal() {
return ordinal;
}
public static Set<MyEnum> getEnumConstants() {
return Collections.unmodifiableSet(instances.values());
}
public static MyEnum fromInt(int ordinal) {
return instances.get(Integer.valueOf(ordinal));
}
public static MyEnum fromString(String name) {
for (MyEnum val : instances.values()) {
if (val.name().equals(name)) {
return val;
}
}
return null;
}
}
You'll probably also want a .equals and .hashcode method, as well as preventing the same name from being used more than once (which you could do in the constructor and throw an IllegalStateException or something if you have a duplicate name).

How to create immutable objects in Java?

How to create immutable objects in Java?
Which objects should be called immutable?
If I have class with all static members is it immutable?
Below are the hard requirements of an immutable object.
Make the class final
make all members final, set them
explicitly, in a static block, or in the constructor
Make all members private
No Methods that modify state
Be extremely careful to limit access to mutable members(remember the field may be final but the object can still be mutable. ie private final Date imStillMutable). You should make defensive copies in these cases.
The reasoning behind making the class final is very subtle and often overlooked. If its not final people can freely extend your class, override public or protected behavior, add mutable properties, then supply their subclass as a substitute. By declaring the class final you can ensure this won't happen.
To see the problem in action consider the example below:
public class MyApp{
/**
* #param args
*/
public static void main(String[] args){
System.out.println("Hello World!");
OhNoMutable mutable = new OhNoMutable(1, 2);
ImSoImmutable immutable = mutable;
/*
* Ahhhh Prints out 3 just like I always wanted
* and I can rely on this super immutable class
* never changing. So its thread safe and perfect
*/
System.out.println(immutable.add());
/* Some sneak programmer changes a mutable field on the subclass */
mutable.field3=4;
/*
* Ahhh let me just print my immutable
* reference again because I can trust it
* so much.
*
*/
System.out.println(immutable.add());
/* Why is this buggy piece of crap printing 7 and not 3
It couldn't have changed its IMMUTABLE!!!!
*/
}
}
/* This class adheres to all the principles of
* good immutable classes. All the members are private final
* the add() method doesn't modify any state. This class is
* just a thing of beauty. Its only missing one thing
* I didn't declare the class final. Let the chaos ensue
*/
public class ImSoImmutable{
private final int field1;
private final int field2;
public ImSoImmutable(int field1, int field2){
this.field1 = field1;
this.field2 = field2;
}
public int add(){
return field1+field2;
}
}
/*
This class is the problem. The problem is the
overridden method add(). Because it uses a mutable
member it means that I can't guarantee that all instances
of ImSoImmutable are actually immutable.
*/
public class OhNoMutable extends ImSoImmutable{
public int field3 = 0;
public OhNoMutable(int field1, int field2){
super(field1, field2);
}
public int add(){
return super.add()+field3;
}
}
In practice it is very common to encounter the above problem in Dependency Injection environments. You are not explicitly instantiating things and the super class reference you are given may actually be a subclass.
The take away is that to make hard guarantees about immutability you have to mark the class as final. This is covered in depth in Joshua Bloch's Effective Java and referenced explicitly in the specification for the Java memory model.
Just don't add public mutator (setter) methods to the class.
Classes are not immutable, objects are.
Immutable means: my public visible state cannot change after initialization.
Fields do not have to be declared final, though it can help tremendously to ensure thread safety
If you class has only static members, then objects of this class are immutable, because you cannot change the state of that object ( you probably cannot create it either :) )
To make a class immutable in Java , you can keep note of the following points :
1. Do not provide setter methods to modify values of any of the instance variables of the class.
2. Declare the class as 'final' . This would prevent any other class from extending it and hence from overriding any method from it which could modify instance variable values.
3. Declare the instance variables as private and final.
4. You can also declare the constructor of the class as private and add a factory method to create an instance of the class when required.
These points should help!!
From oracle site, how to create immutable objects in Java.
Don't provide "setter" methods — methods that modify fields or objects referred to by fields.
Make all fields final and private.
Don't allow subclasses to override methods. The simplest way to do this is to declare the class as final. A more sophisticated approach is to make the constructor private and construct instances in factory methods.
If the instance fields include references to mutable objects, don't allow those objects to be changed:
I. Don't provide methods that modify the mutable objects.
II. Don't share references to the mutable objects. Never store references to external, mutable objects passed to the constructor; if necessary, create copies, and store references to the copies. Similarly, create copies of your internal mutable objects when necessary to avoid returning the originals in your methods.
An immutable object is an object that will not change its internal state after creation. They are very useful in multithreaded applications because they can be shared between threads without synchronization.
To create an immutable object you need to follow some simple rules:
1. Don't add any setter method
If you are building an immutable object its internal state will never change. Task of a setter method is to change the internal value of a field, so you can't add it.
2. Declare all fields final and private
A private field is not visible from outside the class so no manual changes can't be applied to it.
Declaring a field final will guarantee that if it references a primitive value the value will never change if it references an object the reference can't be changed. This is not enough to ensure that an object with only private final fields is not mutable.
3. If a field is a mutable object create defensive copies of it for
getter methods
We have seen before that defining a field final and private is not enough because it is possible to change its internal state. To solve this problem we need to create a defensive copy of that field and return that field every time it is requested.
4. If a mutable object passed to the constructor must be assigned to a
field create a defensive copy of it
The same problem happens if you hold a reference passed to the constructor because it is possible to change it. So holding a reference to an object passed to the constructor can create mutable objects. To solve this problem it is necessary to create a defensive copy of the parameter if they are mutable objects.
Note that if a field is a reference to an immutable object is not necessary to create defensive copies of it in the constructor and in the getter methods it is enough to define the field as final and private.
5. Don't allow subclasses to override methods
If a subclass override a method it can return the original value of a mutable field instead of a defensive copy of it.
To solve this problem it is possible to do one of the following:
Declare the immutable class as final so it can't be extended
Declare all methods of the immutable class final so they can't be overriden
Create a private constructor and a factory to create instances of the immutable class because a class with private constructors can't be extended
If you follow those simple rules you can freely share your immutable objects between threads because they are thread safe!
Below are few notable points:
Immutable objects do indeed make life simpler in many cases. They are especially applicable for value types, where objects don't have an identity so they can be easily replaced and they can make concurrent programming way safer and cleaner (most of the notoriously hard to find concurrency bugs are ultimately caused by mutable state shared between threads).
However, for large and/or complex objects, creating a new copy of the object for every single change can be very costly and/or tedious. And for objects with a distinct identity, changing an existing objects is much more simple and intuitive than creating a new, modified copy of it.
There are some things you simply can't do with immutable objects, like have bidirectional relationships. Once you set an association value on one object, it's identity changes. So, you set the new value on the other object and it changes as well. The problem is the first object's reference is no longer valid, because a new instance has been created to represent the object with the reference. Continuing this would just result in infinite regressions.
To implement a binary search tree, you have to return a new tree every time: Your new tree will have had to make a copy of each node that has been modified (the un-modified branches are shared). For your insert function this isn't too bad, but for me, things got fairly inefficient quickly when I started to work on delete and re-balance.
Hibernate and JPA essentially dictate that your system uses mutable objects, because the whole premise of them is that they detect and save changes to your data objects.
Depending on the language a compiler can make a bunch of optimizations when dealing with immutable data because it knows the data will never change. All sorts of stuff is skipped over, which gives you tremendous performance benefits.
If you look at other known JVM languages (Scala, Clojure), mutable objects are seen rarely in the code and that's why people start using them in scenarios where single threading is not enough.
There's no right or wrong, it just depends what you prefer. It just depends on your preference, and on what you want to achieve (and being able to easily use both approaches without alienating die-hard fans of one side or another is a holy grail some languages are seeking after).
Don't provide "setter" methods — methods that modify fields or
objects referred to by fields.
Make all fields final and private.
Don't allow subclasses to override methods. The simplest way to do this is to declare the class as final. A more sophisticated approach is to make the constructor private and construct instances in factory methods.
If the instance fields include references to mutable objects, don't allow those objects to be changed:
Don't provide methods that modify the mutable objects.
Don't share references to the mutable objects. Never store references to external, mutable objects passed to the constructor; if necessary, create copies, and store references to the copies. Similarly, create copies of your internal mutable objects when necessary to avoid returning the originals in your methods.
First of all, you know why you need to create immutable object, and what are the advantages of immutable object.
Advantages of an Immutable object
Concurrency and multithreading
It automatically Thread-safe so synchronization issue....etc
Don't need to copy constructor
Don't need to implementation of clone.
Class cannot be override
Make the field as a private and final
Force callers to construct an object completely in a single step, instead of using a no-Argument constructor
Immutable objects are simply objects whose state means object's data can't change after the
immutable object are constructed.
please see the below code.
public final class ImmutableReminder{
private final Date remindingDate;
public ImmutableReminder (Date remindingDate) {
if(remindingDate.getTime() < System.currentTimeMillis()){
throw new IllegalArgumentException("Can not set reminder" +
" for past time: " + remindingDate);
}
this.remindingDate = new Date(remindingDate.getTime());
}
public Date getRemindingDate() {
return (Date) remindingDate.clone();
}
}
Minimize mutability
An immutable class is simply a class whose instances cannot be modified. All of the information contained in each instance is provided when it is created and is fixed for the lifetime of the object.
JDK immutable classes: String, the boxed primitive classes(wrapper classes), BigInteger and BigDecimal etc.
How to make a class immutable?
Don’t provide any methods that modify the object’s state (known as mutators).
Ensure that the class can’t be extended.
Make all fields final.
Make all fields private.
This prevents clients from obtaining access to mutable objects referred to by fields and modifying these objects directly.
Make defensive copies.
Ensure exclusive access to any mutable components.
public List getList() {
return Collections.unmodifiableList(list); <=== defensive copy of the mutable
field before returning it to caller
}
If your class has any fields that refer to mutable objects, ensure that clients of the class cannot obtain references to these objects. Never initialize such a field to a client-provided object reference or return the object reference from an accessor.
import java.util.Date;
public final class ImmutableClass {
public ImmutableClass(int id, String name, Date doj) {
this.id = id;
this.name = name;
this.doj = doj;
}
private final int id;
private final String name;
private final Date doj;
public int getId() {
return id;
}
public String getName() {
return name;
}
/**
* Date class is mutable so we need a little care here.
* We should not return the reference of original instance variable.
* Instead a new Date object, with content copied to it, should be returned.
* */
public Date getDoj() {
return new Date(doj.getTime()); // For mutable fields
}
}
import java.util.Date;
public class TestImmutable {
public static void main(String[] args) {
String name = "raj";
int id = 1;
Date doj = new Date();
ImmutableClass class1 = new ImmutableClass(id, name, doj);
ImmutableClass class2 = new ImmutableClass(id, name, doj);
// every time will get a new reference for same object. Modification in reference will not affect the immutability because it is temporary reference.
Date date = class1.getDoj();
date.setTime(date.getTime()+122435);
System.out.println(class1.getDoj()==class2.getDoj());
}
}
For more information, see my blog:
http://javaexplorer03.blogspot.in/2015/07/minimize-mutability.html
an object is called immutable if its state can not be changed once created. One of the most simple way of creating immutable class in Java is by setting all of it’s fields are final.If you need to write immutable class which includes mutable classes like "java.util.Date". In order to preserve immutability in such cases, its advised to return copy of original object,
Immutable Objects are those objects whose state can not be changed once they are created, for example the String class is an immutable class. Immutable objects can not be modified so they are also thread safe in concurrent execution.
Features of immutable classes:
simple to construct
automatically thread safe
good candidate for Map keys and Set as their internal state would not change while processing
don't need implementation of clone as they always represent same state
Keys to write immutable class:
make sure class can not be overridden
make all member variable private & final
do not give their setter methods
object reference should not be leaked during construction phase
The following few steps must be considered, when you want any class as an immutable class.
Class should be marked as final
All fields must be private and final
Replace setters with constructor(for assigning a value to a
variable).
Lets have a glance what we have typed above:
//ImmutableClass
package younus.attari;
public final class ImmutableExample {
private final String name;
private final String address;
public ImmutableExample(String name,String address){
this.name=name;
this.address=address;
}
public String getName() {
return name;
}
public String getAddress() {
return address;
}
}
//MainClass from where an ImmutableClass will be called
package younus.attari;
public class MainClass {
public static void main(String[] args) {
ImmutableExample example=new ImmutableExample("Muhammed", "Hyderabad");
System.out.println(example.getName());
}
}
Commonly ignored but important properties on immutable objects
Adding over to the answer provided by #nsfyn55, the following aspects also need to be considered for object immutability, which are of prime importance
Consider the following classes:
public final class ImmutableClass {
private final MutableClass mc;
public ImmutableClass(MutableClass mc) {
this.mc = mc;
}
public MutableClass getMutClass() {
return this.mc;
}
}
public class MutableClass {
private String name;
public String getName() {
return this.name;
}
public void setName(String name) {
this.name = name;
}
}
public class MutabilityCheck {
public static void main(String[] args) {
MutableClass mc = new MutableClass();
mc.setName("Foo");
ImmutableClass iMC = new ImmutableClass(mc);
System.out.println(iMC.getMutClass().getName());
mc.setName("Bar");
System.out.println(iMC.getMutClass().getName());
}
}
Following will be the output from MutabilityCheck :
Foo
Bar
It is important to note that,
Constructing mutable objects on an immutable object ( through the constructor ), either by 'copying' or 'cloing' to instance variables of the immutable described by the following changes:
public final class ImmutableClass {
private final MutableClass mc;
public ImmutableClass(MutableClass mc) {
this.mc = new MutableClass(mc);
}
public MutableClass getMutClass() {
return this.mc;
}
}
public class MutableClass {
private String name;
public MutableClass() {
}
//copy constructor
public MutableClass(MutableClass mc) {
this.name = mc.getName();
}
public String getName() {
return this.name;
}
public void setName(String name) {
this.name = name;
}
}
still does not ensure complete immutability since the following is still valid from the class MutabilityCheck:
iMC.getMutClass().setName("Blaa");
However, running MutabilityCheck with the changes made in 1. will result in the output being:
Foo
Foo
In order to achieve complete immutability on an object, all its dependent objects must also be immutable
From JDK 14+ which has JEP 359, we can use "records". It is the simplest and hustle free way of creating Immutable class.
A record class is a shallowly immutable, transparent carrier for a fixed set of fields known as the record components that provides a state description for the record. Each component gives rise to a final field that holds the provided value and an accessor method to retrieve the value. The field name and the accessor name match the name of the component.
Let consider the example of creating an immutable rectangle
record Rectangle(double length, double width) {}
No need to declare any constructor, no need to implement equals & hashCode methods. Just any Records need a name and a state description.
var rectangle = new Rectangle(7.1, 8.9);
System.out.print(rectangle.length()); // prints 7.1
If you want to validate the value during object creation, we have to explicitly declare the constructor.
public Rectangle {
if (length <= 0.0) {
throw new IllegalArgumentException();
}
}
The record's body may declare static methods, static fields, static initializers, constructors, instance methods, and nested types.
Instance Methods
record Rectangle(double length, double width) {
public double area() {
return this.length * this.width;
}
}
static fields, methods
Since state should be part of the components we cannot add instance fields to records. But, we can add static fields and methods:
record Rectangle(double length, double width) {
static double aStaticField;
static void aStaticMethod() {
System.out.println("Hello Static");
}
}

Specify which fields are (not) serialized in ObjectOutputStream without using transient or serialPersistentFields

Is there any way to tell an ObjectOutputStream which fields of a serializable class should be serialized without using the keyword transient and without defining an serialPersistentFields-array?
Background: I need to use annotations to define which members of a class should be serialized (or better: not be serialized). The involved classes must implement the interface Serializable, but NOT Externalizable, so I don't want to implement the serialization/deserialization algorithm for each object but rather just use annotations for it. I can not use the transient keyword, because the annotation requires some further checks to determine whether a field should be serialized or not. These checks have to be done by the ObjectOutputStream (or in my own subclass of ObjectOutputStream). I also cannot define a serialPersistentFields-array in each class, because as explained previously, at compilation time it is not defined which fields should be serialized.
So the only thing that should be notet in the affected class is the annotation at field-level (#Target(ElementType.FIELD)).
I've tried quite a lot of approaches in the last few days, but haven't found one which is working:
The ObjectOutputStream has a method writeObjectOverride(Object) which can be used to define an own implementation of the serialization-process when extending ObjectOutputStream. This only works if the ObjectOutputStream is initialized with the no-argument-constructor because otherwise writeObjectOverride is never invoked. But this approach requires me to implement the whole serialization-process by myself and I don't want to do this, as it is quite complex and already implemented by the default ObjectOutputStream. I am looking for a way to just modify the default serialization implementation.
Another approach was extending ObjectOutputStream again and overriding writeObjectOverride(Object) (after calling enableReplaceObject(true)). In this method, I tried using some kind of SerializationProxy (see What is the Serialization Proxy Pattern?) to encapsulate the serialized object in a proxy which defines a List of Fields which should be serialized. But this approach also fails as writeObjectOverride then is also called for the List of fields (List<SerializedField> fields) in the Proxy resulting in an infinite loop.
Example:
public class AnnotationAwareObjectOutputStream extends ObjectOutputStream {
public AnnotationAwareObjectOutputStream(OutputStream out)
throws IOException {
super(out);
enableReplaceObject(true);
}
#Override
protected Object replaceObject(Object obj) throws IOException {
try {
return new SerializableProxy(obj);
} catch (Exception e) {
return new IOException(e);
}
}
private class SerializableProxy implements Serializable {
private Class<?> clazz;
private List<SerializedField> fields = new LinkedList<SerializedField>();
private SerializableProxy(Object obj) throws IllegalArgumentException,
IllegalAccessException {
clazz = obj.getClass();
for (Field field : getInheritedFields(obj.getClass())) {
// add all fields which don't have an DontSerialize-Annotation
if (!field.isAnnotationPresent(DontSerialize.class))
fields.add(new SerializedField(field.getType(), field
.get(obj)));
}
}
public Object readResolve() {
// TODO: reconstruct object of type clazz and set fields using
// reflection
return null;
}
}
private class SerializedField {
private Class<?> type;
private Object value;
public SerializedField(Class<?> type, Object value) {
this.type = type;
this.value = value;
}
}
/** return all fields including superclass-fields */
public static List<Field> getInheritedFields(Class<?> type) {
List<Field> fields = new ArrayList<Field>();
for (Class<?> c = type; c != null; c = c.getSuperclass()) {
fields.addAll(Arrays.asList(c.getDeclaredFields()));
}
return fields;
}
}
// I just use the annotation DontSerialize in this example for simlicity.
// Later on I want to parametrize the annotation and do some further checks
#Target(ElementType.FIELD)
#Retention(RetentionPolicy.RUNTIME)
public #interface DontSerialize {
}
When I found out that it is possible to modify modifiers at runtime (see Change private static final field using Java reflection) I tried to set the transient-Modifier at runtime if the corresponding annotation was set.
Unfortunately this also does not work, because the approach used in the previous link seems to work only on static fields.
When trying it with non-static fields it runs without an exception but is not persisted because is looks like Field.class.getDeclaredField(...) returns new instances of the affected fields every time it is called:
public void setTransientTest() throws SecurityException,
NoSuchFieldException, IllegalArgumentException,
IllegalAccessException {
Class<MyClass> clazz = MyClass.class;
// anyField is defined as "private String anyField"
Field field = clazz.getDeclaredField("anyField");
System.out.println("1. is "
+ (Modifier.isTransient(field.getModifiers()) ? "" : "NOT ")
+ "transient");
Field modifiersField = Field.class.getDeclaredField("modifiers");
boolean wasAccessible = modifiersField.isAccessible();
modifiersField.setAccessible(true);
modifiersField.setInt(field, field.getModifiers() | Modifier.TRANSIENT);
modifiersField.setAccessible(wasAccessible);
System.out.println("2. is "
+ (Modifier.isTransient(field.getModifiers()) ? "" : "NOT ")
+ "transient");
Field field2 = clazz.getDeclaredField("anyField");
System.out.println("3. is "
+ (Modifier.isTransient(field2.getModifiers()) ? "" : "NOT ")
+ "transient");
}
The output is:
1. is NOT transient
2. is transient
3. is NOT transient
So after calling getDeclaredField again (Field field2 = clazz.getDeclaredField("anyField");) it already lost the transient modifier.
Next approach:
Extend ObjectOutputStream and override ObjectOutputStream.PutField putFields() and define an own PutField-implementation. PutField lets you specify which (additional) fields are serialized but unfortunately the interface only has a lot of methodes of the form put(String name, <type> val) and when implementing these I cannot associate the method calls with the class field it is invoked from. For instance when serializing a field declared as private String test = "foo" the method put("test", "foo") is invoked, but I cannot associate the value of name (which is test) with the class containing the field test because no reference to the containing class is available and therefore it is impossible to read the annotation noted for the field test.
I also tried a few other approaches but as already mentioned I was not able to successfully serialize all fields except the ones with the annotation DontSerialize present.
One thing I also came across were ByteCode manipulators. Maybe it is possible with these but I have a requirement for not using any external tools - it needs to be pure Java (1.5 or 1.6).
Sorry for this really long post but I just wanted to show what I already tried and am hoping that someone can help me.
Thanks in advance.
I would reconsider if "Serialization" is really the thing you want to do. Given that the Serialization rules depends on some logic defined at runtime, the Deserialization process will be a nightmare to write.
Interesting problem, though.
Without rewriting much of Java Serialization, you will need to rewrite the bytecode. At runtime this can be done with Java Agents, but can also be done to class files during the build.

Categories