I have a program where many threads post their requests to a PriorityQueue.
Later, they wait for a response from ConcurrentSkipListMap. There is ONE thread that publishes answers to the ConcurrentSkipListMap.
The following lines of code illustrate this :
At program init
PriorityQueue<Request> requests = new PriorityQueue<Request>();
ConcurrentSkipListMap<Long, Reponse> responsesReceived = new ConcurrentSkipListMap<Long, Reponse>();
In a caller thread
// Send request ...
Request r = ... // Elaborate the request
requests.add(r);
// ... then wait for an answer
Long id = r.getId();
while (responsesReceived.containsKey(id) == false) {
synchronized (responsesReceived) {
responsesReceived.wait();
}
}
Answer a = responsesReceived.take(id);
// Do other things ...
In THE response handler thread
// Wait for a remote answer
Answer answer = ...;
// Once received publish it in ConcurrentSkipListMap
responsesReceived.put(answer.getRequestId(), answer);
synchronized (responsesReceived) {
responsesReceived.notify();
}
// Go back and wait for a new answer...
QUESTION
Is it safe to synchronize caller threads and response handler thread on the ConcurrentSkipListMap ?
Should I rather use a Lock for the synchronization ?
Should I use a HashMap of locks (HashMap<Long,Object>) ?
I'm pretty new with the java.util.concurrent API and I have some doubts...
With synchronized/wait/notify, you can use any object as lock. As for submitting jobs to a queue and waiting for their results, take a look at ExcutorService, Future, and CompletionService.
While this can work, it may not be the clearest way to represent what you are doing. I would add a separate "lock" object for such notifications.
Note: I would use notifyAll() unless you only ever have one waiting thread.
Related
I've been all over the internet and the Java docs regarding this one; I can't seem to figure out what it is about do while loops I'm not understanding. Here's the background: I have some message handler code that takes some JSON formatted data from a REST endpoint, parses it into a runnable task, then adds this task to a linked blocking queue for processing by the worker thread. Meanwhile, on the worker thread, I have this do while loop to process the message tasks:
do {
PublicTask currentTask = pubMsgQ.poll();
currentTask.run();
} while(pubMsgQ.size() > 0);
pubMsgQ is a LinkedBlockingQueue<PublicTask> (PublicTask implements the Runnable interface). I can't see any problems with this loop (obviously, or else I wouldn't be here), but this is how it behaves during execution: Upon entering the do block, pubMsgQ is polled and returns the runnable task as expected. The task is then run successfully with expected results, but then we get to the while statement. Now, according to the Java docs, poll() should return and remove the head of the queue, so I should expect that pubMsgQ.size() will return 0, right? Wrong I guess, because somehow the while statement passes and the program enters the do block again; of course this time pubMsgQ.poll() returns null (as I would have expected it should) and the program crashes with NullPointerException. What? Please explain like I'm five...
EDIT:
I decided to leave my original post as is above; because I think I actually explain the undesired behavior of that specific piece of the code quite succinctly (the loop is being executed twice while I'm fairly certain there is no way the loop should be executing twice). However, I realize that probably doesn't give enough context for that loop's existence and purpose in the first place, so here is the complete breakdown for what I am actually trying to accomplish with this code as I am sure there is a better way to implement this altogether anyways.
What this loop is actually a part of is a message handler class which implements the MessageHandler interface belonging to my Client Endpoint class [correction from my previous post; I had said the messages coming in were JSON formatted strings from a REST endpoint. This is technically not true: they are JSON formatted strings being received through a web socket connection. Note that while I am using the Spring framework, this is not a STOMP client; I am only using the built-in javax WebSocketContainer as this is more lightweight and easier for me to implement]. When a new message comes in onMessage() is called, which passes the JSON string to the MessageHandler; so here is the code for the entire MessageHandler class:
public class MessageHandler implements com.innotech.gofish.AutoBrokerClient.MessageHandler {
private LinkedBlockingQueue<PublicTask> pubMsgQ = new LinkedBlockingQueue<PublicTask>();
private LinkedBlockingQueue<AuthenticatedTask> authMsgQ = new LinkedBlockingQueue<AuthenticatedTask>();
private MessageLooper workerThread;
private CyclicBarrier latch = new CyclicBarrier(2);
private boolean running = false;
private final boolean authenticated;
public MessageHandler(boolean authenticated) {
this.authenticated = authenticated;
}
#Override
public void handleMessage(String msg) {
try {
//Create new Task and submit it to the message queue:
if(authenticated) {
AuthenticatedTask msgTsk = new AuthenticatedTask(msg);
authMsgQ.put(msgTsk);
} else {
PublicTask msgTsk = new PublicTask(msg);
pubMsgQ.put(msgTsk);
}
//Check status of worker thread:
if(!running) {
workerThread = new MessageLooper();
running = true;
workerThread.start();
} else if(running && !workerThread.active) {
latch.await();
latch.reset();
}
} catch(InterruptedException | BrokenBarrierException e) {
e.printStackTrace();
}
}
private class MessageLooper extends Thread {
boolean active = false;
public MessageLooper() {
}
#Override
public synchronized void run() {
while(running) {
active = true;
if(authenticated) {
do {
AuthenticatedTask currentTask = authMsgQ.poll();
currentTask.run();
if(GoFishApplication.halt) {
GoFishApplication.reset();
}
} while(authMsgQ.size() > 0);
} else {
do {
PublicTask currentTask = pubMsgQ.poll();
currentTask.run();
} while(pubMsgQ.size() > 0);
}
try {
active = false;
latch.await();
} catch (InterruptedException | BrokenBarrierException e) {
e.printStackTrace();
}
}
}
}
}
You may probably see where I'm going with this...what this Gerry-rigged code is trying to do is act as a facsimile for the Looper class provided by the Android Development Kit. The actual desired behavior is as messages are received, the handleMessage() method adds the messages to the queue for processing and the messages are processed on the worker thread separately as long as there are messages to process. If there are no more messages to process, the worker thread waits until it is notified by the handler that more messages have been received; at which point it resumes processing those messages until the queue is once again empty. Rinse and repeat until the user stops the program.
Of course, the closest thing the JDK provides to this is the ThreadPoolExecutor (which I know is probably the actual proper way to implement this); but for the life of me I couldn't figure out how to for this exact case. Finally, as a quick aside so I can be sure to explain everything fully, The reason why there are two queues (and a public and authenticated handler) is because there are two web socket connections. One is an authenticated channel for sending/receiving private messages; the other is un-authenticated and used only to send/receive public messages. There should be no interference, however, given that the authenticated status is final and set at construction; and each Client Endpoint is passed it's own Handler which is instantiated at the time of server connection.
You appear to have a number of concurrency / threading bugs in your code.
Assumptions:
It looks like there could be multiple MessageHandler objects, each with its own pair of queues and (supposedly) at most one MessageLooper thread. It also looks as if a given MessageHandler could be used by multiple request worker threads.
If that is the case, then one problem is that MessageHandler is not thread-safe. Specifically, the handleMessage is accessing and updating fields of the MessageHandler instance without doing any synchronization.
Some of the fields are initialized during object creation and then never changed. They are probably OK. (But you should declare them as final to be sure!) But some of the variables are supposed to change during operation, and they must be handled correctly.
One section that rings particular alarm bells is this:
if (!running) {
workerThread = new MessageLooper();
running = true;
workerThread.start();
} else if (running && !workerThread.active) {
latch.await();
latch.reset();
}
Since this is not synchronized, and the variables are not volatile:
There are race conditions if two threads call this code simultaneously; e.g. between testing running and assigning true to it.
If one thread sets running to true, there are no guarantees that a second thread will see the new value.
The net result is that you could potentially get two or more MessageLooper threads for a given set of queues. That breaks your assumptions in the MessageLooper code.
Looking at the MessageLooper code, I see that you have declared the run method as synchronized. Unfortunately, that doesn't help. The problem is that the run method will be synchronizing on this ... which is the specific instance of MessageLooper. And it will acquire the lock once and release it once. On short, the synchronized is wrong.
(For Java synchronized methods and synchronized blocks to work properly, 1) the threads involved need to synchronize on the same object (i.e. the same primitive lock), and 2) all read and write operations on the state guarded by the lock need to be done while holding the lock. This applies to use of Lock objects as well.)
So ...
There is no synchronization between a MessageLooper thread and any other threads that are adding to or removing from the queues.
There are no guarantees that the MessageLooper thread will notice changes to the running flag.
As I previously noted, you could have two or more MessageLooper polling the same pair of queues.
In short, there are lots of possible explanations for strange behavior in the code in the Question. This includes the specific problem you noticed with the queue size.
Writing correct multi-threaded code is difficult. This is why you should be using an ExecutorService rather than attempting to roll your own code.
But it you do need to roll your own concurrency code, I recommend buying and reading "Java: Concurrency in Practice" by Brian Goetz et al. It is still the only good textbook on this topic ...
My goal is to run multiple objects concurrently without creating new Thread due to scalability issues. One of the usage would be running a keep-alive Socket connection.
while (true) {
final Socket socket = serverSocket.accept();
final Thread thread = new Thread(new SessionHandler(socket)).start();
// this will become a problem when there are 1000 threads.
// I am looking for alternative to mimic the `start()` of Thread without creating new Thread for each SessionHandler object.
}
For brevity, I will use Printer anology.
What I've tried:
Use CompletableFuture, after checking, it use ForkJoinPool which is a thread pool.
What I think would work:
Actor model. Honestly, the concept is new to me today and I am still figuring out how to run an Object method without blocking the main thread.
main/java/SlowPrinter.java
public class SlowPrinter {
private static final Logger logger = LoggerFactory.getLogger(SlowPrinter.class);
void print(String message) {
try {
Thread.sleep(100);
} catch (InterruptedException ignored) {
}
logger.debug(message);
}
}
main/java/NeverEndingPrinter.java
public class NeverEndingPrinter implements Runnable {
private final SlowPrinter printer;
public NeverEndingPrinter(SlowPrinter printer) {
this.printer = printer;
}
#Override
public void run() {
while (true) {
printer.print(Thread.currentThread().getName());
}
}
}
test/java/NeverEndingPrinterTest.java
#Test
void withThread() {
SlowPrinter slowPrinter = new SlowPrinter();
NeverEndingPrinter neverEndingPrinter = new NeverEndingPrinter(slowPrinter);
Thread thread1 = new Thread(neverEndingPrinter);
Thread thread2 = new Thread(neverEndingPrinter);
thread1.start();
thread2.start();
try {
Thread.sleep(1000);
} catch (InterruptedException ignored) {
}
}
Currently, creating a new Thread is the only solution I know of. However, this became issue when there are 1000 of threads.
The solution that many developers in the past have come up with is the ThreadPool. It avoids the overhead of creating many threads by reusing the same limited set of threads.
It however requires that you split up your work in small parts and you have to link the small parts step by step to execute a flow of work that you would otherwise do in a single method on a separate thread. So that's what has resulted in the CompletableFuture.
The Actor model is a more fancy modelling technique to assign the separate steps in a flow, but they will again be executed on a limited number of threads, usually just 1 or 2 per actor.
For a very nice theoretical explanation of what problems are solved this way, see https://en.wikipedia.org/wiki/Staged_event-driven_architecture
If I look back at your original question, your problem is that you want to receive keep-alive messages from multiple sources, and don't want to use a separate thread for each source.
If you use blocking IO like while (socket.getInputStream().read() != -1) {}, you will always need a thread per connection, because that implementation will sleep the thread while waiting for data, so the thread cannot do anything else in the mean time.
Instead, you really should look into NIO. You would only need 1 selector and 1 thread where you continuously check the selector for incoming messages from any source (without blocking the thread), and use something like a HashMap to keep track of which source is still sending messages.
See also Java socket server without using threads
The NIO API is very low-level, BTW, so using a framework like Netty might be easier to get started.
You're looking for a ScheduledExecutorService.
Create an initial ScheduledExecutorService with a fixed appropriate number of threads, e.g. Executors.newScheduledThreadPool(5) for 5 threads, and then you can schedule a recurring task with e.g. service.scheduleAtFixedRate(task, initialDelay, delayPeriod, timeUnit).
Of course, this will use threads internally, but it doesn't have the problem of thousands of threads that you're concerned about.
I have an application that makes HTTP requests to a site, ant then retrives the responses, inspects them and if the contain specific keywords, writes both the HTTP request and response to an XML file. This application uses a spider to map out all the URLS of a site and then sends request(each URL in the sitemap is fed to a separate thread that sends the request). This way I wont be able to know when all the requests have been sent. At the end of all I request i want to convert the XML file to some other format. So in order to find out when the request have ended I use the following strategy :
I store the time of each request in a varible (when a new request is sent at a time later than the time in the variable, the varible is updated). Also I start a thread to monitor this time, and if the difference in the current time and the time in the varible is more than 1 min, I know that the sending of requests has ceased. I use the following code for this purpose :
class monitorReq implements Runnable{
Thread t;
monitorReq(){
t=new Thread(this);
t.start();
}
public void run(){
while((new Date().getTime()-last_request.getTime()<60000)){
try{
Thread.sleep(30000);//Sleep for 30 secs before checking again
}
catch(IOException e){
e.printStackTrace();
}
}
System.out.println("Last request happened 1 min ago at : "+last_request.toString());
//call method for conversion of file
}
}
Is this approach correct? Or is there a better way in which I can implement the same thing.
Your current approach is not reliable. You will get into race conditions - if the thread is updating the time & the other thread is reading it at the same time. Also it will be difficult to do the processing of requests in multiple threads. You are assuming that task finishes in 60 seconds..
The following are better approaches.
If you know the number of requests you are going to make before hand you can use a CountDownLatch
main() {
int noOfRequests = ..;
final CountDownLatch doneSignal = new CountDownLatch(noOfRequests);
// spawn threads or use an executor service to perform the downloads
for(int i = 0;i<noOfRequests;i++) {
new Thread(new Runnable() {
public void run() {
// perform the download
doneSignal.countDown();
}
}).start();
}
doneSignal.await(); // This will block till all threads are done.
}
If you don't know the number of requests before hand then you can use the executorService to perform the downloads / processing using a thread pool
main() {
ExecutorService executor = Executors.newCachedThreadPool();
while(moreRequests) {
executor.execute(new Runnable() {
public void run() {
// perform processing
}
});
}
// finished submitting all requests for processing. Wait for completion
executor.shutDown();
executor.awaitTermination(Long.MAX_VALUE, TimeUnit.Seconds);
}
General notes:
classes in Java should start with Capital Letters
there seems to be no synchronization between your threads; access to last_request should probably be synchronized
Using System.currentTimeMillis() would save you some objects' creation overhead
swallowing an exception like this is not a good practice
Answer:
Your way of doing it is acceptable. There is not much busy waiting and the idea is as simple as it gets. Which is good.
I would consider changing the wait time to a lower value; there is so little data, that even doing this loop every second will not take too much processing power, and will certainly improve the rection time from you app.
I have two requests in tomcat. One HTTP request will create a thread. Client can use a new HTTP request to terminate the same thread.
Is it possible to do that? If possible how?
Oh please, don't spawn unmanaged threads yourself in a Java EE application. Use an Executor with a fixed thread pool. Use Callable as tasks and use Future as future results.
Create one on application's startup (e.g. in ServletContextListener or servlet's init()).
ExecutorService executor = Executors.newFixedThreadPool(10); // Pool of 10 threads.
On first request, submit a task to it, get the Future result. The below example assumes that it's of type String and that Task is a Callable<String>:
Future<String> result = executor.submit(new Task());
Store this in the session:
request.getSession().setAttribute("result", result);
On any subsequent request in the same session, you could get it from the session and check if it's done or not and if necessary cancel it.
Future<String> result = (Future<String>) request.getSession().getAttribute("result");
if (result != null) {
if (!result.isDone() && userWantsToCancel) {
result.cancel();
}
}
See also:
Java concurrency tutorial
Yes it is possible under certain conditions:
Your Thread should be stoppable. Either by checking a flag in a loop, interrupting the Thread if it is sleeping, etc... Some explanations can be found here
You could use the session object to store the Thread and find it back when the second requests comes in. This requires that the client maintains the session (through a cookie or a request parameter, ...). There other alternatives to that.
yes it is possible
see http://oreilly.com/catalog/jservlet/chapter/ch03.html servlet life cycle
see servlet with thread
see request
My client wants my servlet to be able to return results within X seconds if there is something to return, else return zt X seconds with a message like "sorry could not return within specified time"
This is really a synchronos call to a servlet with a timeout. Is there an established pattern for this sort of behavior ?
What would be the ideal way to do this ?
The request handler thread creates a BlockingQueue called myQueue and gives it to a worker thread which will place its result in the queue when it is finished. Then the handler thread calls "myQueue.poll(X, TimeUnit.SECONDS)" and returns the serialized result if it gets one or your "timeout" error if it gets null instead (meaning the "poll" call timed out). Here is an example of how it might look:
// Servlet handler method.
BlockingQueue<MyResponse> queue = new ArrayBlockingQueue<MyResponse>();
Thread worker = new Thread(new MyResponseGenerator(queue));
worker.start();
MyResponse response = queue.poll(10, TimeUnit.SECONDS);
if (response == null) {
worker.interrupt();
// Send "timeout" message.
} else {
// Send serialized response.
}
Note that thread management in general (but especially in a servlet container) is full of pitfalls, so you should become very familiar with the servlet specification and behavior of your particular servlet container before using this pattern in a production system.
Using a ThreadPool is another option to consider but will add another layer of complexity.