I've seen several other questions similiar to this one but I haven't really been able to find anything that resolves my problem.
My use case is this: user has a list of items initially (listA). They reorder the items and want to persist that order (listB), however, due to restrictions I'm unable persist the order on the backend so I have to sort listA after I retrieve it.
So basically, I have 2 ArrayLists (listA and listB). One with the specific order the lists should be in (listB) and the other has the list of items (listA). I want to sort listA based on listB.
Using Java 8:
Collections.sort(listToSort,
Comparator.comparing(item -> listWithOrder.indexOf(item)));
or better:
listToSort.sort(Comparator.comparingInt(listWithOrder::indexOf));
Collections.sort(listB, new Comparator<Item>() {
public int compare(Item left, Item right) {
return Integer.compare(listA.indexOf(left), listA.indexOf(right));
}
});
This is quite inefficient, though, and you should probably create a Map<Item, Integer> from listA to lookup the positions of the items faster.
Guava has a ready-to-use comparator for doing that: Ordering.explicit()
Let's say you have a listB list that defines the order in which you want to sort listA. This is just an example, but it demonstrates an order that is defined by a list, and not the natural order of the datatype:
List<String> listB = Arrays.asList("Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday");
Now, let's say that listA needs to be sorted according to this ordering. It's a List<Item>, and Item has a public String getWeekday() method.
Create a Map<String, Integer> that maps the values of everything in listB to something that can be sorted easily, such as the index, i.e. "Sunday" => 0, ..., "Saturday" => 6. This will provide a quick and easy lookup.
Map<String, Integer> weekdayOrder = new HashMap<String, Integer>();
for (int i = 0; i < listB.size(); i++)
{
String weekday = listB.get(i);
weekdayOrder.put(weekday, i);
}
Then you can create your custom Comparator<Item> that uses the Map to create an order:
public class ItemWeekdayComparator implements Comparator<Item>
{
private Map<String, Integer> sortOrder;
public ItemWeekdayComparator(Map<String, Integer> sortOrder)
{
this.sortOrder = sortOrder;
}
#Override
public int compare(Item i1, Item i2)
{
Integer weekdayPos1 = sortOrder.get(i1.getWeekday());
if (weekdayPos1 == null)
{
throw new IllegalArgumentException("Bad weekday encountered: " +
i1.getWeekday());
}
Integer weekdayPos2 = sortOrder.get(i2.getWeekday());
if (weekdayPos2 == null)
{
throw new IllegalArgumentException("Bad weekday encountered: " +
i2.getWeekday());
}
return weekdayPos1.compareTo(weekdayPos2);
}
}
Then you can sort listA using your custom Comparator.
Collections.sort(listA, new ItemWeekdayComparator(weekdayOrder));
Speed improvement on JB Nizet's answer (from the suggestion he made himself). With this method:
Sorting a 1000 items list 100 times improves speed 10 times on my
unit tests.
Sorting a 10000 items list 100 times improves speed 140 times (265 ms for the whole batch instead of 37 seconds) on my
unit tests.
This method will also work when both lists are not identical:
/**
* Sorts list objectsToOrder based on the order of orderedObjects.
*
* Make sure these objects have good equals() and hashCode() methods or
* that they reference the same objects.
*/
public static void sortList(List<?> objectsToOrder, List<?> orderedObjects) {
HashMap<Object, Integer> indexMap = new HashMap<>();
int index = 0;
for (Object object : orderedObjects) {
indexMap.put(object, index);
index++;
}
Collections.sort(objectsToOrder, new Comparator<Object>() {
public int compare(Object left, Object right) {
Integer leftIndex = indexMap.get(left);
Integer rightIndex = indexMap.get(right);
if (leftIndex == null) {
return -1;
}
if (rightIndex == null) {
return 1;
}
return Integer.compare(leftIndex, rightIndex);
}
});
}
Problem : sorting a list of Pojo on the basis of one of the field's all possible values present in another list.
Take a look at this solution, may be this is what you are trying to achieve:
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
public class Test {
public static void main(String[] args) {
List<Employee> listToSort = new ArrayList<>();
listToSort.add(new Employee("a", "age11"));
listToSort.add(new Employee("c", "age33"));
listToSort.add(new Employee("b", "age22"));
listToSort.add(new Employee("a", "age111"));
listToSort.add(new Employee("c", "age3"));
listToSort.add(new Employee("b", "age2"));
listToSort.add(new Employee("a", "age1"));
List<String> listWithOrder = new ArrayList<>();
listWithOrder.add("a");
listWithOrder.add("b");
listWithOrder.add("c");
Collections.sort(listToSort, Comparator.comparing(item ->
listWithOrder.indexOf(item.getName())));
System.out.println(listToSort);
}
}
class Employee {
String name;
String age;
public Employee(String name, String age) {
super();
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public String getAge() {
return age;
}
#Override
public String toString() {
return "[name=" + name + ", age=" + age + "]";
}
}
O U T P U T
[[name=a, age=age11], [name=a, age=age111], [name=a, age=age1], [name=b, age=age22], [name=b, age=age2], [name=c, age=age33], [name=c, age=age3]]
Here is a solution that increases the time complexity by 2n, but accomplishes what you want. It also doesn't care if the List R you want to sort contains Comparable elements so long as the other List L you use to sort them by is uniformly Comparable.
public class HeavyPair<L extends Comparable<L>, R> implements Comparable<HeavyPair<L, ?>> {
public final L left;
public final R right;
public HeavyPair(L left, R right) {
this.left = left;
this.right = right;
}
public compareTo(HeavyPair<L, ?> o) {
return this.left.compareTo(o.left);
}
public static <L extends Comparable<L>, R> List<R> sort(List<L> weights, List<R> toSort) {
assert(weights.size() == toSort.size());
List<R> output = new ArrayList<>(toSort.size());
List<HeavyPair<L, R>> workHorse = new ArrayList<>(toSort.size());
for(int i = 0; i < toSort.size(); i++) {
workHorse.add(new HeavyPair(weights.get(i), toSort.get(i)))
}
Collections.sort(workHorse);
for(int i = 0; i < workHorse.size(); i++) {
output.add(workHorse.get(i).right);
}
return output;
}
}
Excuse any terrible practices I used while writing this code, though. I was in a rush.
Just call HeavyPair.sort(listB, listA);
Edit: Fixed this line return this.left.compareTo(o.left);. Now it actually works.
Here is an example of how to sort a list and then make the changes in another list according to the changes exactly made to first array list. This trick will never fails and ensures the mapping between the items in list. The size of both list must be same to use this trick.
ArrayList<String> listA = new ArrayList<String>();
ArrayList<String> listB = new ArrayList<String>();
int j = 0;
// list of returns of the compare method which will be used to manipulate
// the another comparator according to the sorting of previous listA
ArrayList<Integer> sortingMethodReturns = new ArrayList<Integer>();
public void addItemstoLists() {
listA.add("Value of Z");
listA.add("Value of C");
listA.add("Value of F");
listA.add("Value of A");
listA.add("Value of Y");
listB.add("this is the value of Z");
listB.add("this is the value off C");
listB.add("this is the value off F");
listB.add("this is the value off A");
listB.add("this is the value off Y");
Collections.sort(listA, new Comparator<String>() {
#Override
public int compare(String lhs, String rhs) {
// TODO Auto-generated method stub
int returning = lhs.compareTo(rhs);
sortingMethodReturns.add(returning);
return returning;
}
});
// now sort the list B according to the changes made with the order of
// items in listA
Collections.sort(listB, new Comparator<String>() {
#Override
public int compare(String lhs, String rhs) {
// TODO Auto-generated method stub
// comparator method will sort the second list also according to
// the changes made with list a
int returning = sortingMethodReturns.get(j);
j++;
return returning;
}
});
}
try this for java 8:
listB.sort((left, right) -> Integer.compare(list.indexOf(left), list.indexOf(right)));
or
listB.sort(Comparator.comparingInt(item -> list.indexOf(item)));
import java.util.Comparator;
import java.util.List;
public class ListComparator implements Comparator<String> {
private final List<String> orderedList;
private boolean appendFirst;
public ListComparator(List<String> orderedList, boolean appendFirst) {
this.orderedList = orderedList;
this.appendFirst = appendFirst;
}
#Override
public int compare(String o1, String o2) {
if (orderedList.contains(o1) && orderedList.contains(o2))
return orderedList.indexOf(o1) - orderedList.indexOf(o2);
else if (orderedList.contains(o1))
return (appendFirst) ? 1 : -1;
else if (orderedList.contains(o2))
return (appendFirst) ? -1 : 1;
return 0;
}
}
You can use this generic comparator to sort list based on the the other list.
For example, when appendFirst is false below will be the output.
Ordered list: [a, b]
Un-ordered List: [d, a, b, c, e]
Output:
[a, b, d, c, e]
One way of doing this is looping through listB and adding the items to a temporary list if listA contains them:
List<?> tempList = new ArrayList<?>();
for(Object o : listB) {
if(listA.contains(o)) {
tempList.add(o);
}
}
listA.removeAll(listB);
tempList.addAll(listA);
return tempList;
Not completely clear what you want, but if this is the situation:
A:[c,b,a]
B:[2,1,0]
And you want to load them both and then produce:
C:[a,b,c]
Then maybe this?
List c = new ArrayList(b.size());
for(int i=0;i<b.size();i++) {
c.set(b.get(i),a.get(i));
}
that requires an extra copy, but I think to to it in place is a lot less efficient, and all kinds of not clear:
for(int i=0;i<b.size();i++){
int from = b.get(i);
if(from == i) continue;
T tmp = a.get(i);
a.set(i,a.get(from));
a.set(from,tmp);
b.set(b.lastIndexOf(i),from);
}
Note I didn't test either, maybe got a sign flipped.
Another solution that may work depending on your setting is not storing instances in listB but instead indices from listA. This could be done by wrapping listA inside a custom sorted list like so:
public static class SortedDependingList<E> extends AbstractList<E> implements List<E>{
private final List<E> dependingList;
private final List<Integer> indices;
public SortedDependingList(List<E> dependingList) {
super();
this.dependingList = dependingList;
indices = new ArrayList<>();
}
#Override
public boolean add(E e) {
int index = dependingList.indexOf(e);
if (index != -1) {
return addSorted(index);
}
return false;
}
/**
* Adds to this list the element of the depending list at the given
* original index.
* #param index The index of the element to add.
*
*/
public boolean addByIndex(int index){
if (index < 0 || index >= this.dependingList.size()) {
throw new IllegalArgumentException();
}
return addSorted(index);
}
/**
* Returns true if this list contains the element at the
* index of the depending list.
*/
public boolean containsIndex(int index){
int i = Collections.binarySearch(indices, index);
return i >= 0;
}
private boolean addSorted(int index){
int insertIndex = Collections.binarySearch(indices, index);
if (insertIndex < 0){
insertIndex = -insertIndex-1;
this.indices.add(insertIndex, index);
return true;
}
return false;
}
#Override
public E get(int index) {
return dependingList.get(indices.get(index));
}
#Override
public int size() {
return indices.size();
}
}
Then you can use this custom list as follows:
public static void main(String[] args) {
class SomeClass{
int index;
public SomeClass(int index) {
super();
this.index = index;
}
#Override
public String toString() {
return ""+index;
}
}
List<SomeClass> listA = new ArrayList<>();
for (int i = 0; i < 100; i++) {
listA.add(new SomeClass(i));
}
SortedDependingList<SomeClass> listB = new SortedDependingList<>(listA);
Random rand = new Random();
// add elements by index:
for (int i = 0; i < 5; i++) {
int index = rand.nextInt(listA.size());
listB.addByIndex(index);
}
System.out.println(listB);
// add elements by identity:
for (int i = 0; i < 5; i++) {
int index = rand.nextInt(listA.size());
SomeClass o = listA.get(index);
listB.add(o);
}
System.out.println(listB);
}
Of course, this custom list will only be valid as long as the elements in the original list do not change. If changes are possible, you would need to somehow listen for changes to the original list and update the indices inside the custom list.
Note also, that the SortedDependingList does currently not allow to add an element from listA a second time - in this respect it actually works like a set of elements from listA because this is usually what you want in such a setting.
The preferred way to add something to SortedDependingList is by already knowing the index of an element and adding it by calling sortedList.addByIndex(index);
If the two lists are guaranteed to contain the same elements, just in a different order, you can use List<T> listA = new ArrayList<>(listB) and this will be O(n) time complexity. Otherwise, I see a lot of answers here using Collections.sort(), however there is an alternative method which is guaranteed O(2n) runtime, which should theoretically be faster than sort's worst time complexity of O(nlog(n)), at the cost of 2n storage
Set<T> validItems = new HashSet<>(listB);
listA.clear();
listB.forEach(item -> {
if(validItems.contains(item)) {
listA.add(item);
}
});
List<String> listA;
Comparator<B> comparator = Comparator.comparing(e -> listA.indexOf(e.getValue()));
//call your comparator inside your list to be sorted
listB.stream().sorted(comparator)..
Like Tim Herold wrote, if the object references should be the same, you can just copy listB to listA, either:
listA = new ArrayList(listB);
Or this if you don't want to change the List that listA refers to:
listA.clear();
listA.addAll(listB);
If the references are not the same but there is some equivalence relationship between objects in listA and listB, you could sort listA using a custom Comparator that finds the object in listB and uses its index in listB as the sort key. The naive implementation that brute force searches listB would not be the best performance-wise, but would be functionally sufficient.
IMO, you need to persist something else. May be not the full listB, but something. May be just the indexes of the items that the user changed.
Try this. The code below is general purpose for a scenario where listA is a list of Objects since you did not indicate a particular type.
Object[] orderedArray = new Object[listA.size()];
for(int index = 0; index < listB.size(); index ++){
int position = listB.get(index); //this may have to be cast as an int
orderedArray[position] = listA.get(index);
}
//if you receive UnsupportedOperationException when running listA.clear()
//you should replace the line with listA = new List<Object>()
//using your actual implementation of the List interface
listA.clear();
listA.addAll(orderedArray);
Just encountered the same problem.
I have a list of ordered keys, and I need to order the objects in a list according to the order of the keys.
My lists are long enough to make the solutions with time complexity of N^2 unusable.
My solution:
<K, T> List<T> sortByOrder(List<K> orderedKeys, List<T> objectsToOrder, Function<T, K> keyExtractor) {
AtomicInteger ind = new AtomicInteger(0);
Map<K, Integer> keyToIndex = orderedKeys.stream().collect(Collectors.toMap(k -> k, k -> ind.getAndIncrement(), (oldK, newK) -> oldK));
SortedMap<Integer, T> indexToObj = new TreeMap<>();
objectsToOrder.forEach(obj -> indexToObj.put(keyToIndex.get(keyExtractor.apply(obj)), obj));
return new ArrayList<>(indexToObj.values());
}
The time complexity is O(N * Log(N)).
The solution assumes that all the objects in the list to sort have distinct keys. If not then just replace SortedMap<Integer, T> indexToObj by SortedMap<Integer, List<T>> indexToObjList.
To avoid having a very inefficient look up, you should index the items in listB and then sort listA based on it.
Map<Item, Integer> index = IntStream.range(0, listB.size()).boxed()
.collect(Collectors.toMap(listB::get, x -> x));
listA.sort((e1, e2) -> Integer.compare(index.get(c1), index.get(c2));
So for me the requirement was to sort originalList with orderedList. originalList always contains all element from orderedList, but not vice versa. No new elements.
fun <T> List<T>.sort(orderedList: List<T>): List<T> {
return if (size == orderedList.size) {
orderedList
} else {
var keepIndexCount = 0
mapIndexed { index, item ->
if (orderedList.contains(item)) {
orderedList[index - keepIndexCount]
} else {
keepIndexCount++
item
}
}
}}
P.S. my case was that I have list that user can sort by drag and drop, but some items might be filtered out, so we preserve hidden items position.
If you want to do it manually. Solution based on bubble sort (same length required):
public void sortAbasedOnB(String[] listA, double[] listB) {
for (int i = 0; i < listB.length - 1; i++) {
for (int j = listB.length - 1; j > i; j--) {
if (listB[j] < listB[j - 1]){
double tempD = listB[j - 1];
listB[j - 1] = listB[j];
listB[j] = tempD;
String tempS = listA[j - 1];
listA[j - 1] = listA[j];
listA[j] = tempS;
}
}
}
}
If the object references should be the same, you can initialize listA new.
listA = new ArrayList(listB)
In Java there are set of classes which can be useful to sort lists or arrays. Most of the following examples will use lists but the same concept can be applied for arrays. A example will show this.
We can use this by creating a list of Integers and sort these using the Collections.sort(). The Collections (Java Doc) class (part of the Java Collection Framework) provides a list of static methods which we can use when working with collections such as list, set and the like. So in a nutshell, we can sort a list by simply calling: java.util.Collections.sort(the list) as shown in the following example:
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class example {
public static void main(String[] args) {
List<Integer> ints = new ArrayList<Integer>();
ints.add(4);
ints.add(3);
ints.add(7);
ints.add(5);
Collections.sort(ints);
System.out.println(ints);
}
}
The above class creates a list of four integers and, using the collection sort method, sorts this list (in one line of code) without us having to worry about the sorting algorithm.
I wanted to find an intersection between two arraylist that are of byte[] format and return the common indices. I have the code as follows and it works correctly:
ArrayList<Integer> intersect = new ArrayList<Integer>();
for(int j = 0; j < A.size(); j++)
{
byte [] t = A.get(j);
for (int j1 = 0; j1 < B.size(); j1++)
{
byte[] t1 = B.get(j1);
if (Arrays.equals(t, t1))
{
intersect.add(j);
break;
}
}
}
However, as you can see, I have to use two for loops. Is there any way I can do it without using any for loops? I have tried to use "retainAll" but for some reason, it kept giving me an empty array. What can be the possible reason for that?
If you just dont want to use for loops, you may try the Java 8 streams, since you have not shared the complete code I did not try it out.
List<T> intersect = list1.stream()
.filter(list2::contains)
.collect(Collectors.toList());
I think for T your solution with brutforce is not so bad. This is a small refactoring of it. Yes, for specific T (e.g. int) you could use special structures, but in general case, I think this is not implementable.
public static <T> List<Integer> intersect(List<T> A, List<T> B, BiPredicate<T, T> isEqual) {
List<Integer> intersect = new LinkedList<>();
int i = -1;
for (T a : A) {
i++;
if (B.stream().anyMatch(b -> isEqual.test(a, b)))
intersect.add(i);
}
return intersect;
}
Client code could look like:
List<byte[]> a = Collections.emptyList();
List<byte[]> b = Collections.emptyList();
List<Integer> intersect = intersect(a, b, Arrays::equals);
This may help:
public <T> List<T> intersection(List<T> list1, List<T> list2) {
List<T> list = new ArrayList<T>();
for (T t : list1) {
if(list2.contains(t)) {
list.add(t);
}
}
return list;
}
Reference:
Intersection and union of ArrayLists in Java
Quick question. Suppose I have a function total (List list) and I have a MyObject class that have a String and an int displayed below and I want to compare two different object Strings in my total method. If they are the same, add the value on both of them. Otherwise, do nothing.
For example data is
{[Johanna, 200], [Jack, 205], [Johanna, 100], [Jack, 50]};
The output should look like
{[Johanna, 300], [Jack, 255]};
public static class MyObject {
int value;
String name;
public MyObject(String nm, int val)
{
name = nm;
value = val;
}
}
public void total(List<MyObject> list) {
List<MyObject> newList = new ArrayList<MyObject>();
Collections.sort(list);
Iterator<Order> ItrL = list.iterator();
int index = 0;
while(ItrL.hasNext())
{
MyObject compare = ItrL.next();
Iterator<MyObject> ItrR = list.listIterator(index);
index++;
while (cmp.name.equals(ItrR.next().name)))
newList.add(new MyObject(cmp.name, cmp.value + ItrR.value));
}
}
You can do summing and comparisons in parallel with no need to sort first using streams.
List<MyObject> newList = Arrays.asList(
new MyObject("Johanna", 200),
new MyObject("Jack", 205),
new MyObject("Johanna", 100),
new MyObject("Jack", 50)
);
Map<String,Integer> map =
newList.stream().parallel()
.collect(Collectors.groupingBy(mo -> mo.name,
Collectors.summingInt(mo -> mo.value)));
System.out.println("map = " + map);
There is no method that is "most optimal" as it depends on how big the data is. The problem seems suitable for map-reduce, but if you have like only 4 elements, then the overhead cost doesn't justify a real map reduce algorithm.
So anyway, here's one alternative that is pre-Java 8 (list doesn't need to be sorted first):
public static Map<String, Integer> total(List<MyObject> list) {
Map<String, Integer> result = new HashMap<String, Integer>();
for (MyObject myObject : list) {
Integer prevValue = result.get(myObject.name);
if (prevValue == null) {
result.put(myObject.name, myObject.value);
} else {
result.put(myObject.name, myObject.value + prevValue);
}
}
return result;
}
You can reduce from n^2 to n*(n/2) by using
for(int i = 0 ...
for(int j = i + 1 ...
I have a Map containing Strings for keys and Lists as values. After putting several entries into the Map and randomly expanding the List values in the Map I get the following problem:
list3 = map.get("string1");
list3.get(0).setName("testobject");
for(TestObject to : list3){
System.out.println(to.getName());
}
Instead of only setting the first TestObject with name "testobject" it also sets other TestObjects in the List (list3) with the name "testobject", ie:
**Output**
testobject
nonameset
nonameset
nonameset
testobject
nonameset
nonameset
nonameset
testobject
nonameset
Full code is written underneath. I guess the problem has something to do with randomly expanding the List values in the map (randomlyExpand function) and referencing, but as my Java knowledge is still beginning to develop, I do not really understand what is happening. It's probably something really stupid. So my question is: what is going on here? And how can I fix the problem while retaining same functionality.
import java.util.*;
public class Test {
public static void main(String[] args) {
Map<String, List<TestObject>> map = new HashMap<String, List<TestObject>>();
List<TestObject> list1 = new ArrayList<TestObject>();
List<TestObject> list2 = new ArrayList<TestObject>();
List<TestObject> list3 = new ArrayList<TestObject>();
for(int i = 0; i < 5; i++){
list1.add(new TestObject());
}
for(int i = 0; i < 5; i++){
list2.add(new TestObject());
}
map.put("string1", list1);
map.put("string2", list2);
map = randomlyExpand(map);
list3 = map.get("string1");
list3.get(0).setName("testobject");
for(TestObject to : list3){
System.out.println(to.getName());
}
}
//Randomly expand list values in Map from size 5 to size 10
public static Map<String, List<TestObject>> randomlyExpand(Map<String, List<TestObject>> map){
Random ran = new Random();
for (String key : map.keySet()){
List<TestObject> tempList = new ArrayList<TestObject>();
List<TestObject> values = map.get(key);
for (int i = 0; i < 10; i++){
int randomInt = ran.nextInt(values.size());
tempList.add(values.get(randomInt));
}
map.put(key, tempList);
}
return map;
}
}
TestObject class:
public class TestObject {
private String name = "nonameset";
TestObject(){
}
public String getName(){
return this.name;
}
public void setName(String s){
this.name = s;
}
}
In your randomlyExpand method, you're adding the same values you already had in the list. You add new entries to the list, but exactly the same objects.
When you add an Object to a List, you don't add a copy of that object, but simply a reference to it.
This is why when you change a property in one of the entries, it appears to reflect this change in other objects. In practice, this happens because you have the same object added several times to the list.
The problem is in your randomlyExpand function. You are iterating trough your list of 5 distinguished objects that you have previously created with this:
for(int i = 0; i < 5; i++){
list2.add(new TestObject());
}
Now you are doing this:
int randomInt = ran.nextInt(values.size());
tempList.add(values.get(randomInt));
You are getting one of this distinguished objects and you add it again on another index. Now this single objects occurs two times in your list (or even more). So you have the same object multiple times in the list. That's way you see or object multiple times.
The solution is simple: create new objects in your loop.
for (int i = 0; i < 10; i++){
int randomInt = ran.nextInt(values.size());
TestObject obj = new TestObject();
obj.setName(values.get(randomInt).getName());
tempList.add(obj);
}