//Interface DAO
public abstract class BaseDAO<T extends BaseDTO> {
public void update(T t) throws DBException {
Field[] fieldsToInsert = t.getClass().getDeclaredFields();
//code to update database object academic or event
}
public Integer create(T t) throws DBException {
Field[] fieldsToInsert = t.getClass().getDeclaredFields();
//code to create academic or event in database
}
}
//Concrete DAOs
public class AcademicDAO extends BaseDAO<AcademicDTO> {
//provide implementation
}
public class EventDAO extends BaseDAO<EventDTO> {
//provide implementation
}
//Transfer object
public class AcademicDTO extends BaseDTO {
String title;
String surname;
//getters and setters
}
public class BaseDTO {
protected Integer ID;
public Integer getID() {
return ID;
}
public void setID(Integer ID) {
this.ID = ID;
}
}
Hello Guys, I have a sample code on me that follows the above structure to create a small java application to manage academics and events. It is leniently following this pattern
1- You experts are familiar with this pattern more than me. I would like to understand why generics are used in this case so DAOs can extend and implement a generic base class. It would be great if one can show how generics here may be advantageous using an example.
2 - I have also witnessed the use of java Fields. Is there a link between generics and Fields?
I would like to document DAO pattern in an academic report, but I am finding difficult to understand how Generics and Reflect Field play a part here. Do they support flexibility and loose coupling?
The code you've provided is reusable set of logic to load and persist entities. Many times, in an application of non-trivial size, you'll wind up persisting many different types of objects. In this example, you can define as many objects as necessary, but only define the logic to actually save and load once. By asking the DTO what Field objects are there, it can get at the data to help construct queries for loading and saving.
Generics allow you to use this pattern while maintaining type safety. AcademicDAO can only handle AcadmeicDTO. You can't use AcademicDAO to store EventDTO. Generics allow the instance of the class to rely on a more specific type when dealing with the Field objects. If you didn't have generics, the BaseDAO would take Object, and you wouldn't be able to access any methods except those that Object provides because the JVM wouldn't know what class is provided, so it has to limit it's knowledge to that of Object. Using getClass().getDeclaredFields() bypasses that limitation because getClass() returns the actual class of the Object parameter.
Field is just a way to use reflection to access the values of the properties in each DTO. If you had to access the fields directly, with getTitle(), you couldn't reuse a generic base class to do your persistence. What would happen when you needed to access EventDTO? You would have to provide logic for that. Field allows you to skip that logic.
Edit:
To explain what I mean by accessing getID, you could do the following within BaseDAO because T is known to be a BaseDTO with a getID() method defined:
public abstract class BaseDAO<T extends BaseDTO> {
public boolean update(T t) throws DBException {
Integer id = t.getID();
Field[] fields = t.getClass().getDeclaredFields();
// Assuming you have a db object to execute queries using bind variables:
boolean success = db.execute("UPDATE table SET ... WHERE id = ?", id.intValue());
return success;
}
}
If you had this instead (in a non-generic class):
public boolean update(Object o) throws DBException {
// This line doesn't work, since Object doesn't have a getID() method.
Integer id = t.getID();
Field[] fields = o.getClass().getDeclaredFields();
boolean success = db.execute("UPDATE table SET ... WHERE id = ?", id.intValue());
return success;
}
You'd have to look through those Field objects, or ask for the ID field and assume it existed.
For question 1. The use of generics allows the same implementations of update and create to be used regardless of the type of the DTO. Consider if you didn't use generics. Then the best you could do for the parameter type of update would be BaseDTO, but then you could call
academicDAO.update( eventDTO )
which doesn't make sense. With the code as you have it, this would be a type error. So the main advantage is: better type checking.
For question 2. The use of Fields allows a single implementation of update and create to work on DTO object of various concrete types.
Related
I am trying to make an enum list, and have an abstract method defined in the enum, which each enum value implements. The problem I am facing is that the abstract class has a generic return type but I want each enum value to return a concrete type.
I'll give an example:
public enum Attributes {
name {
#Override
public void createAttribute(Person person) {
//Do some validations
//Save in some storage
}
#Override
public Name getAttribute(Person person) {
// Validations
// Retreive from storage
return new Name("test");
}
},
address {
#Override
public void createAttribute(Person person) {
//Do some validations
//Save in some storage
}
#Override
public Address getAttribute(Person person) {
// Validations
// Retreive from storage
return new Name("test");
}
}
public abstract Object getAttribute(Person person);
public abstract void createAttribute(Person person);
}
Here the issue is that I would need to do typecasting to get the concrete object which is not recommended and I don't get any type of safety. How Should I go about so that using the enum value I can get my concrete object instead of the generic one.
Now I wanna call this as,
Arrays.stream(Attributes.values()).forEach(r -> {
r.createAttribute(person);
}
final Address address = Attributes.address.getAttribute(person);
final Name name = Attributes.name.getAttribute(person);
So now whenever I need to add a new attribute I don't want to write create methods for it in the Person class every time. I just add it to enum and it gets created. But now since I have the create method in the enum, I also want the getAttribute to be present here.
Here the issue is that I would need to do typecasting to get the concrete object which is not recommended and I don't get any type of safety.
You're right. Given an enum type E with an associated enum constant C, the type of the expression E.C is E. Java provides no mechanism for naming or representing a narrower type for that expression. One of the implications is that although an enum instance can implement methods with covariant return types, the covariance is not visible outside the instance. If you depend for some purpose on the narrower return type of one of those instances' methods, then casting is your only alternative.
And you're right that such casts are not type safe. They cannot be checked by the compiler, and in practice, you as programmer can get them wrong. But the information to perform a compile-time check is not expressed by the language, so there is no scope for a workaround in the language as it is defined today.
How Should I go about so that using the enum value I can get my concrete object instead of the generic one.
You should choose an altogether different approach, not involving an enum.
If you stuck with the enum then you would have to adopt an approach that relies on the enum instances to perform any tasks that depend on their own particular characteristics. Because you ask so persistently, one possibility would be to implement a variation on double dispatch. Instead of a getObject() method, you would have something like
void acceptReceiver(AttributeReceiver r, Person p);
paired with
public interface AttributeReceiver {
default void receiveName(Name name) { /* empty */ }
default void receiveAddress(Address addr) { /* empty */ }
}
Of course, the enum instances would have to implement acceptReceiver appropriately.
You would probably want to use that a little more directly than just to retrieve attributes, but you could use it to retrieve attributes something like this:
class Example {
Name name;
Address address;
void retrieveAttributes(Person person) {
AttributeReceiver receiver = new AttributeReceiver() {
public void receiveName(Name n) { name = n; }
public void receiveAddress(Address a) { addr = a; }
};
Attributes.name.acceptReceiver(receiver, person);
Attributes.address.acceptReceiver(receiver, person);
}
}
But that's awfully roundabout when you have the alternative of using (just) methods, whether on Person or even on some non-enum utility class. I continue not to see any advantage to involving an enum here. I think your code overall would be more complex and harder to understand and maintain with enums than without.
The root issue is that you are abstracting away details that you actually care about. That's a deep design flaw. You can program your way around it, but it would be better to choose a more appropriate level of abstraction in the first place.
Since I have a terrible memory, I like to put all the detnd I ails of data objects into enumerations, so I can use code completion in the IDE adon't have to keep referring back to get the name of a table or the name of a field. Usually I use some type of class containing only Enums for the purpose.
Lets say I have table of "Domains" (database source) "Tables" and "Fields" that look something like this:
public class DataObjectNames {
public enum Domains {
Domain1,
Domain2;
}
public enum Domain1Tables {
Customers,
Orders;
}
public enum Domain2Tables {
OrderItems,
Shipments;
}
public enum CustomerFields {
id,
email;
}
public enum OrderFields {
id,
customerId;
}
//fields for OrderItems and Shipments . . .
}
But suppose I wanted to be able to do something like:
Domain1.tables().Customers.fields(). //code completion supplies choices?
What I would like ot happen after I type the period is for autocomplete to provide a choice between .id and .email, much the same as it would if "fields" returned an object with two methods, or if I just typed
CustomerFields.
in the IDE.
In order for that to happen, it seems to me I somehow need to return not a specific instance of an enumeration, but the enumeration itself. I've tried various approaches like this:
public enum Domains {
Domain1 {
#Override
public Enum<?> tables() {
return Domain1Tables.foo();
} //Is there a method that will return the enum itself?
},
Domain2 {
#Override
public Enum<?> tables() {
return Domain2Tables.foo();
};
public abstract Enum<?> tables();
}
But of course I haven't been able to find a funciton foo() that returns the enum class itself.
Any thoughts?
You can't do this with enums because Java's class model doesn't work the way you would need in order for this style to work.
I haven't been able to find a function foo() that returns the enum class itself.
Returning the enum class itself is easy, you just do Domain1Tables.class, but that won't give you the completion you want because what it gives you is a Class<Domain1Tables> object, and that object doesn't have fields named Customers and Orders.
You want to be able to treat the "Domain1Tables" class as if it's an object and refer to the enum constants (which are effectively static final fields) as if they were members of that object, but Java simply doesn't do that.
If you give up on using enums for it, then you can simply have:
public class DataObjectNames {
public class Domains {
class Domain1 {
class Tables {
class Customers {
public static final String id = "id";
public static final String email = "email";
}
}
}
}
}
but in that case DataObjectNames.Domains.Domain1 wouldn't be a valid expression anymore (because it reference to a class scope, but not to an object.
There's probably a solution to what you're trying to do, but without more context I can provide anything more details than what's above.
I am creating a store for user preferences, and there are a fixed number of preferences that users can set values for. The names of the preferences (settings) are stored as an Enum:
public enum UserSettingName {
FOO,
BAR,
ETC
}
What I would like to be able to do is store a value type with the name so that the service will store the user's value with the correct Java type. For example, FOO might be a Long, and BAR might be a String. Up until now, we were storing all values as Strings, and then manually casting the values into the appropriate Java type. This has lead to try/catch blocks everywhere, when it makes more sense to have only one try/catch in the service. I understand that Enums cannot have generic types, so I have been playing around with:
public enum UserSettingName {
FOO(Long.class),
BAR(String.class),
ETC(Baz.class)
private Class type;
private UserSettingName(Class type) {
this.type = type;
}
public Class getType() {
return this.type;
}
}
I have a generic UserSetting object that has public T getSettingValue() and public void setSettingValue(T value) methods that should return and set the value with the correct type. My problem comes from trying to specify that generic type T when I create or retrieve a setting because I can't do something like:
new UserSetting<UserSettingName.FOO.getType()>(UserSettingName.FOO, 123L)
Sorry if this isn't exactly clear, I can try to clarify if it's not understood.
Thanks!
UPDATE
Both the setting name and value are coming in from a Spring MVC REST call:
public ResponseEntity<String> save(#PathVariable Long userId, #PathVariable UserSettingName settingName, #RequestBody String settingValue)
So I used the Enum because Spring casts the incoming data automatically.
Firstly you have to step back and think about what you're trying to achieve, and use a standard pattern or language construct to achieve it.
It's not entirely clear what you're going after here but from your approach it almost certainly looks like you're reinventing something which could be done in a much more straightforward manner in Java. For example, if you really need to know and work with the runtime classes of objects, consider using the reflection API.
On a more practical level - what you're trying to do here isn't possible with generics. Generics are a compile-time language feature - they are useful for avoiding casting everything explicitly from Object and give you type-checking at compilation time. You simply cannot use generics in this way, i.e. setting T as some value UserSettingName.Foo.getType() which is only known at runtime.
Look how it done by netty:
http://netty.io/wiki/new-and-noteworthy.html#type-safe-channeloption
They done it by using typed constants:
http://grepcode.com/file/repo1.maven.org/maven2/io.netty/netty-all/4.0.0.Beta1/io/netty/channel/ChannelOption.java#ChannelOption
EDIT:
public interface ChannelConfig {
...
<T> boolean setOption(ChannelOption<T> option, T value);
...
}
public class ChannelOption<T> ...
public static final ChannelOption<Integer> SO_TIMEOUT =
new ChannelOption<Integer>("SO_TIMEOUT");
...
}
EDIT2: you can transform it like:
class Baz {}
class UserSettingName<T> {
public static final UserSettingName<Baz> ETC = new UserSettingName<Baz>();
}
class UserSetting {
public <T> UserSetting(UserSettingName<T> name, T param) {
}
}
public class Test {
public static void main(String[] args) {
new UserSetting(UserSettingName.ETC, new Baz());
}
}
Enums are not the answer here. If you find yourself repeating code everywhere you could just create a utility class and encapsulate all the try/catch logic there. That would cut down on your code redundancy without majorly impacting your current code.
public class Util
{
public static MyObject getObjectFromString(String s)
{
try
{
return (MyObject)s;
}
catch(Exception e)
{
return null;
}
}
}
Then use as follows:
MyObject myObj = Util.getObjectFromString(string);
I often find I want to do something like this:
class Foo{
public static abstract String getParam();
}
To force a subclasses of Foo to return a parameter.
I know you can't do it and I know why you can't do it but the common alternative of:
class Foo{
public abstract String getParam();
}
Is unsatisfactory because it requires you to have an instance which is not helpful if you just want to know the value of the parameter and instantiating the class is expensive.
I'd be very interested to know of how people get around this without getting into using the "Constant Interface" anti pattern.
EDIT: I'll add some more detail about my specific problem, but this is just the current time when I've wanted to do something like this there are several others from the past.
My subclasses are all data processors and the superclass defines the common code between them which allows them to get the data, parse it and put it where it needs to go.
The processors each require certain parameters which are held in an SQL database. Each processor should be able to provide a list of parameters that it requires and the default values so the configuration database can be validated or initialised to defaults by checking the required parameters for each processor type.
Having it performed in the constructor of the processor is not acceptable because it only needs to be done once per class not once per object instance and should be done at system startup when an instance of each type of class may not yet be needed.
The best you can do here in a static context is something like one of the following:
a. Have a method you specifically look for, but is not part of any contract (and therefore you can't enforce anyone to implement) and look for that at runtime:
public static String getParam() { ... };
try {
Method m = clazz.getDeclaredMethod("getParam");
String param = (String) m.invoke(null);
}
catch (NoSuchMethodException e) {
// handle this error
}
b. Use an annotation, which suffers from the same issue in that you can't force people to put it on their classes.
#Target({TYPE})
#Retention(RUNTIME)
public #interface Param {
String value() default "";
}
#Param("foo")
public class MyClass { ... }
public static String getParam(Class<?> clazz) {
if (clazz.isAnnotationPresent(Param.class)) {
return clazz.getAnnotation(Param.class).value();
}
else {
// what to do if there is no annotation
}
}
I agree - I feel that this is a limitation of Java. Sure, they have made their case about the advantages of not allowing inherited static methods, so I get it, but the fact is I have run into cases where this would be useful. Consider this case:
I have a parent Condition class, and for each of its sub-classes, I want a getName() method that states the class' name. The name of the sub-class will not be the Java's class name, but will be some lower-case text string used for JSON purposes on a web front end. The getName() method will not change per instance, so it is safe to make it static. However, some of the sub-classes of the Condition class will not be allowed to have no-argument constructors - some of them I will need to require that some parameters are defined at instantiation.
I use the Reflections library to get all classes in a package at runtime. Now, I want a list of all the names of each Condition class that is in this package, so I can return it to a web front end for JavaScript parsing. I would go through the effort of just instantiating each class, but as I said, they do not all have no-argument constructors. I have designed the constructors of the sub-classes to throw an IllegalArgumentException if some of the parameters are not correctly defined, so I cannot merely pass in null arguments. This is why I want the getName() method to be static, but required for all sub-classes.
My current workaround is to do the following: In the Condition class (which is abstract), I have defined a method:
public String getName () {
throw new IllegalArugmentException ("Child class did not declare an overridden getName() method using a static getConditionName() method. This must be done in order for the class to be registerred with Condition.getAllConditions()");
}
So in each sub-class, I simply define:
#Override
public String getName () {
return getConditionName ();
}
And then I define a static getConditionName() method for each. This is not quite "forcing" each sub-class to do so, but I do it in a way where if getName() is ever inadvertently called, the programmer is instructed how to fix the problem.
It seems to me you want to solve the wrong problem with the wrong tool. If all subclasses define (can't really say inherit) your static method, you will still be unable to call it painlessly (To call the static method on a class not known at compile time would be via reflection or byte code manipulation).
And if the idea is to have a set of behaviors, why not just use instances that all implement the same interface? An instance with no specific state is cheap in terms of memory and construction time, and if there is no state you can always share one instance (flyweight pattern) for all callers.
If you just need to couple metadata with classes, you can build/use any metadata facility you like, the most basic (by hand) implementation is to use a Map where the class object is the key. If that suits your problem depends on your problem, which you don't really describe in detail.
EDIT: (Structural) Metadata would associate data with classes (thats only one flavor, but probably the more common one). Annotations can be used as very simple metadata facility (annotate the class with a parameter). There are countless other ways (and goals to achieve) to do it, on the complex side are frameworks that provide basically every bit of information designed into an UML model for access at runtime.
But what you describe (processors and parameters in database) is what I christened "set of behaviors". And the argument "parameters need to be loaded once per class" is moot, it completely ignores the idioms that can be used to solve this without needing anything 'static'. Namely, the flyweight pattern (for having only once instance) and lazy initialization (for doing work only once). Combine with factory as needed.
I'm having the same problem over and over again and it's hard for me to understand why Java 8 preferred to implement lambda instead of that.
Anyway, if your subclasses only implement retrieving a few parameters and doing rather simple tasks, you can use enumerations as they are very powerful in Java: you can basically consider it a fixed set of instances of an interface. They can have members, methods, etc. They just can't be instanciated (as they are "pre-instanciated").
public enum Processor {
PROC_IMAGE {
#Override
public String getParam() {
return "image";
}
},
PROC_TEXT {
#Override
public String getParam() {
return "text";
}
}
;
public abstract String getParam();
public boolean doProcessing() {
System.out.println(getParam());
}
}
The nice thing is that you can get all "instances" by calling Processor.values():
for (Processor p : Processorvalues()) {
System.out.println(String.format("Param %s: %s", p.name(), p.getParam()));
p.doProcessing();
}
If the processing is more complex, you can do it in other classes that are instanciated in the enum methods:
#Override
public String getParam() {
return new LookForParam("text").getParam();
}
You can then enrich the enumeration with any new processor you can think of.
The down side is that you can't use it if other people want to create new processors, as it means modifying the source file.
You can use the factory pattern to allow the system to create 'data' instances first, and create 'functional' instances later. The 'data' instances will contain the 'mandatory' getters that you wanted to have static. The 'functional' instances do complex parameter validation and/or expensive construction. Of course the parameter setter in the factory can also so preliminary validation.
public abstract class Processor { /*...*/ }
public interface ProcessorFactory {
String getName(); // The mandatory getter in this example
void setParameter(String parameter, String value);
/** #throws IllegalStateException when parameter validation fails */
Processor construct();
}
public class ProcessorA implements ProcessorFactory {
#Override
public String getName() { return "processor-a"; }
#Override
public void setParameter(String parameter, String value) {
Objects.requireNonNull(parameter, "parameter");
Objects.requireNonNull(value, "value");
switch (parameter) {
case "source": setSource(value); break;
/*...*/
default: throw new IllegalArgumentException("Unknown parameter: " + parameter);
}
}
private void setSource(String value) { /*...*/ }
#Override
public Processor construct() {
return new ProcessorAImpl();
}
// Doesn't have to be an inner class. It's up to you.
private class ProcessorAImpl extends Processor { /*...*/ }
}
In the Java code I'm working with we have an interface to define our Data Access Objects(DAO). Most of the methods take a parameter of a Data Transfer Object (DTO). The problem occurs when an implementation of the DAO needs to refer to a specific type of DTO. The method then needs to do a (to me completely unnecessary cast of the DTO to SpecificDTO. Not only that but the compiler can't enforce any type of type checking for specific implementations of the DAO which should only take as parameters their specifc types of DTOs.
My question is: how do I fix this in the smallest possible manner?
You could use generics:
DAO<SpecificDTO> dao = new SpecificDAO();
dao.save(new SpecificDTO());
etc.
Your DAO class would look like:
interface DAO<T extends DTO> {
void save(T);
}
class SpecificDAO implements DAO<SpecificDTO> {
void save(SpecificDTO) {
// implementation.
}
// etc.
}
SpecificDTO would extend or implement DTO.
Refactoring to generics is no small amount of pain (even though it's most likely worth it).
This will be especially horrendous if code uses your DTO interface like so:
DTO user = userDAO.getById(45);
((UserDTO)user).setEmail(newEmail)
userDAO.update(user);
I've seen this done (in much more subtle ways).
You could do this:
public DeprecatedDAO implements DAO
{
public void save(DTO dto)
{
logger.warn("Use type-specific calls from now on", new Exception());
}
}
public UserDAO extends DeprecatedDAO
{
#Deprecated
public void save(DTO dto)
{
super.save(dto);
save((UserDTO)dto);
}
public void save(UserDTO dto)
{
// do whatever you do to save the object
}
}
This is not a great solution, but might be easier to implement; your legacy code should still work, but it will produce warnings and stack traces to help you hunt them down, and you have a type-safe implementation as well.