How to write database integration test properly in Play 2.1? - java

I am new at Play! 2.1. I'm trying to TDD my database integration test. After reading the examples on the website. I wrote my test like this.
#Test
public void shouldGetDealName() {
running(fakeApplication(), new Runnable() {
public void run() {
List books = Book.find.all();
Assert.assertEquals(books.size(), 1);
}
});
}
My question would be, do I need to wrap the code in running(fakeAppliation()... all the time? Because if I run this code without the fakeApplication. It doesn't seem to work. If it has to be like that then is there a better way to do this in Java? It seems wrong for me to wrap the code in that block every time for integration or functional test.
Thanks.

You can do it this way, assuming you want to use in-memory DB and you want it to be recreated for each test:
public class ApplicationTest extends WithApplication {
#Before
public void setup() {
start(fakeApplication(inMemoryDatabase(), fakeGlobal()));
}
#Test
public void shouldGetDealName() {
List books = Book.find.all();
Assert.assertEquals(books.size(), 1);
}
}

Related

JUnit 5 AfterAllTests feature

Is there a way to execute "AfterAllTests" action within JUnit 5? E.g. close connection to db, close embedded kafka cluster, etc.
P.S. There is a way to do some preconditions before all tests with help of extension like that:
public class BeforeAfterExtension implements BeforeAllCallback, AfterAllCallback {
private static boolean FLAG = Boolean.TRUE;
...
#Override
public void beforeAll(ExtensionContext extensionContext) {
log.info("~~~~~~~~~~~~~~~~~~ BeforeAll setup ~~~~~~~~~~~~~~~~~~");
if (FLAG) {
// some code here
FLAG = Boolean.FALSE;
}
}
#Override
public void afterAll(ExtensionContext extensionContext) {
// ??
}
But no way for "After" tasks.
Yes you can use below mentioned code.
#AfterAll
static void afterAllIAmCalled() {
System.out.println("---Inside after finishing all testsDownAll---");
}
Link for you: https://www.concretepage.com/testing/junit-5/junit-5-beforeall-and-afterall-example
Updating answer further based on your need of running after all sets. Define your tests in suite as shown below
#RunWith(Suite.class)
# Suite.SuiteClasses({
SuiteTest1.class,
SuiteTest2.class,
})
public class JunitTest {
// This class remains empty, it is used only as a holder for the above annotations but as you need to perform action at the end of it do as mentioned below
#AfterSuite
Private void methodName(){
//my suite end action
}
}
Replied on mobile. Might not be symmetric answer but will solve your problem.
This should work for you.

I need an example that i can use as a template for JUnit

I have an assignment where I have to make a test plan and a unit test in java. I was wanting some help and an answer provided so I can use them as examples for the future.
The instructor's instructions: Complete a test plan and unit tests for your Card and Deck ADTs. Implement your final ADTs.
I have made two classes and I have already made some unit Tests but I just feel like they could be better.
#Test
void HideTest()
{
}
#Test
void showTest()
{
}
//this method shows the card
public void show()
{
this.visible = true;
}
//this method hides the card
public void hide()
{
this.visible = false;
}
I expect a Junit test that runs correctly.
Try creating this class in eclipse. You can create standard unit tests in eclipse as described in this tutorial: https://courses.cs.washington.edu/courses/cse143/11wi/eclipse-tutorial/junit.shtml

Check that JUnit Extension throws specific Exception

Suppose I develop an extension which disallows test method names to start with an uppercase character.
public class DisallowUppercaseLetterAtBeginning implements BeforeEachCallback {
#Override
public void beforeEach(ExtensionContext context) {
char c = context.getRequiredTestMethod().getName().charAt(0);
if (Character.isUpperCase(c)) {
throw new RuntimeException("test method names should start with lowercase.");
}
}
}
Now I want to test that my extension works as expected.
#ExtendWith(DisallowUppercaseLetterAtBeginning.class)
class MyTest {
#Test
void validTest() {
}
#Test
void TestShouldNotBeCalled() {
fail("test should have failed before");
}
}
How can I write a test to verify that the attempt to execute the second method throws a RuntimeException with a specific message?
Another approach could be to use the facilities provided by the new JUnit 5 - Jupiter framework.
I put below the code which I tested with Java 1.8 on Eclipse Oxygen. The code suffers from a lack of elegance and conciseness but could hopefully serve as a basis to build a robust solution for your meta-testing use case.
Note that this is actually how JUnit 5 is tested, I refer you to the unit tests of the Jupiter engine on Github.
public final class DisallowUppercaseLetterAtBeginningTest {
#Test
void testIt() {
// Warning here: I checked the test container created below will
// execute on the same thread as used for this test. We should remain
// careful though, as the map used here is not thread-safe.
final Map<String, TestExecutionResult> events = new HashMap<>();
EngineExecutionListener listener = new EngineExecutionListener() {
#Override
public void executionFinished(TestDescriptor descriptor, TestExecutionResult result) {
if (descriptor.isTest()) {
events.put(descriptor.getDisplayName(), result);
}
// skip class and container reports
}
#Override
public void reportingEntryPublished(TestDescriptor testDescriptor, ReportEntry entry) {}
#Override
public void executionStarted(TestDescriptor testDescriptor) {}
#Override
public void executionSkipped(TestDescriptor testDescriptor, String reason) {}
#Override
public void dynamicTestRegistered(TestDescriptor testDescriptor) {}
};
// Build our test container and use Jupiter fluent API to launch our test. The following static imports are assumed:
//
// import static org.junit.platform.engine.discovery.DiscoverySelectors.selectClass
// import static org.junit.platform.launcher.core.LauncherDiscoveryRequestBuilder.request
JupiterTestEngine engine = new JupiterTestEngine();
LauncherDiscoveryRequest request = request().selectors(selectClass(MyTest.class)).build();
TestDescriptor td = engine.discover(request, UniqueId.forEngine(engine.getId()));
engine.execute(new ExecutionRequest(td, listener, request.getConfigurationParameters()));
// Bunch of verbose assertions, should be refactored and simplified in real code.
assertEquals(new HashSet<>(asList("validTest()", "TestShouldNotBeCalled()")), events.keySet());
assertEquals(Status.SUCCESSFUL, events.get("validTest()").getStatus());
assertEquals(Status.FAILED, events.get("TestShouldNotBeCalled()").getStatus());
Throwable t = events.get("TestShouldNotBeCalled()").getThrowable().get();
assertEquals(RuntimeException.class, t.getClass());
assertEquals("test method names should start with lowercase.", t.getMessage());
}
Though a little verbose, one advantage of this approach is it doesn't require mocking and execute the tests in the same JUnit container as will be used later for real unit tests.
With a bit of clean-up, a much more readable code is achievable. Again, JUnit-Jupiter sources can be a great source of inspiration.
If the extension throws an exception then there's not much a #Test method can do since the test runner will never reach the #Test method. In this case, I think, you have to test the extension outside of its use in the normal test flow i.e. let the extension be the SUT.
For the extension provided in your question, the test might be something like this:
#Test
public void willRejectATestMethodHavingANameStartingWithAnUpperCaseLetter() throws NoSuchMethodException {
ExtensionContext extensionContext = Mockito.mock(ExtensionContext.class);
Method method = Testable.class.getMethod("MethodNameStartingWithUpperCase");
Mockito.when(extensionContext.getRequiredTestMethod()).thenReturn(method);
DisallowUppercaseLetterAtBeginning sut = new DisallowUppercaseLetterAtBeginning();
RuntimeException actual =
assertThrows(RuntimeException.class, () -> sut.beforeEach(extensionContext));
assertThat(actual.getMessage(), is("test method names should start with lowercase."));
}
#Test
public void willAllowTestMethodHavingANameStartingWithAnLowerCaseLetter() throws NoSuchMethodException {
ExtensionContext extensionContext = Mockito.mock(ExtensionContext.class);
Method method = Testable.class.getMethod("methodNameStartingWithLowerCase");
Mockito.when(extensionContext.getRequiredTestMethod()).thenReturn(method);
DisallowUppercaseLetterAtBeginning sut = new DisallowUppercaseLetterAtBeginning();
sut.beforeEach(extensionContext);
// no exception - good enough
}
public class Testable {
public void MethodNameStartingWithUpperCase() {
}
public void methodNameStartingWithLowerCase() {
}
}
However, your question suggests that the above extension is only an example so, more generally; if your extension has a side effect (e.g. sets something in an addressable context, populates a System property etc) then your #Test method could assert that this side effect is present. For example:
public class SystemPropertyExtension implements BeforeEachCallback {
#Override
public void beforeEach(ExtensionContext context) {
System.setProperty("foo", "bar");
}
}
#ExtendWith(SystemPropertyExtension.class)
public class SystemPropertyExtensionTest {
#Test
public void willSetTheSystemProperty() {
assertThat(System.getProperty("foo"), is("bar"));
}
}
This approach has the benefit of side stepping the potentially awkward setup steps of: creating the ExtensionContext and populating it with the state required by your test but it may come at the cost of limiting the test coverage since you can really only test one outcome. And, of course, it is only feasible if the extension has a side effect which can be evaulated in a test case which uses the extension.
So, in practice, I suspect you might need a combination of these approaches; for some extensions the extension can be the SUT and for others the extension can be tested by asserting against its side effect(s).
After trying the solutions in the answers and the question linked in the comments, I ended up with a solution using the JUnit Platform Launcher.
class DisallowUppercaseLetterAtBeginningTest {
#Test
void should_succeed_if_method_name_starts_with_lower_case() {
TestExecutionSummary summary = runTestMethod(MyTest.class, "validTest");
assertThat(summary.getTestsSucceededCount()).isEqualTo(1);
}
#Test
void should_fail_if_method_name_starts_with_upper_case() {
TestExecutionSummary summary = runTestMethod(MyTest.class, "InvalidTest");
assertThat(summary.getTestsFailedCount()).isEqualTo(1);
assertThat(summary.getFailures().get(0).getException())
.isInstanceOf(RuntimeException.class)
.hasMessage("test method names should start with lowercase.");
}
private TestExecutionSummary runTestMethod(Class<?> testClass, String methodName) {
SummaryGeneratingListener listener = new SummaryGeneratingListener();
LauncherDiscoveryRequest request = request().selectors(selectMethod(testClass, methodName)).build();
LauncherFactory.create().execute(request, listener);
return listener.getSummary();
}
#ExtendWith(DisallowUppercaseLetterAtBeginning.class)
static class MyTest {
#Test
void validTest() {
}
#Test
void InvalidTest() {
fail("test should have failed before");
}
}
}
JUnit itself will not run MyTest because it is an inner class without #Nested. So there are no failing tests during the build process.
Update
JUnit itself will not run MyTest because it is an inner class without #Nested. So there are no failing tests during the build process.
This is not completly correct. JUnit itself would also run MyTest, e.g. if "Run All Tests" is started within the IDE or within a Gradle build.
The reason why MyTest was not executed is because I used Maven and I tested it with mvn test. Maven uses the Maven Surefire Plugin to execute tests. This plugin has a default configuration which excludes all nested classes like MyTest.
See also this answer about "Run tests from inner classes via Maven" and the linked issues in the comments.
JUnit 5.4 introduced the JUnit Platform Test Kit which allows you to execute a test plan and inspect the results.
To take a dependency on it from Gradle, it might look something like this:
testImplementation("org.junit.platform:junit-platform-testkit:1.4.0")
And using your example, your extension test could look something like this:
import org.junit.jupiter.api.extension.ExtendWith
import org.junit.jupiter.api.fail
import org.junit.platform.engine.discovery.DiscoverySelectors
import org.junit.platform.testkit.engine.EngineTestKit
import org.junit.platform.testkit.engine.EventConditions
import org.junit.platform.testkit.engine.TestExecutionResultConditions
internal class DisallowUpperCaseExtensionTest {
#Test
internal fun `succeed if starts with lower case`() {
val results = EngineTestKit
.engine("junit-jupiter")
.selectors(
DiscoverySelectors.selectMethod(ExampleTest::class.java, "validTest")
)
.execute()
results.tests().assertStatistics { stats ->
stats.finished(1)
}
}
#Test
internal fun `fail if starts with upper case`() {
val results = EngineTestKit
.engine("junit-jupiter")
.selectors(
DiscoverySelectors.selectMethod(ExampleTest::class.java, "TestShouldNotBeCalled")
)
.execute()
results.tests().assertThatEvents()
.haveExactly(
1,
EventConditions.finishedWithFailure(
TestExecutionResultConditions.instanceOf(java.lang.RuntimeException::class.java),
TestExecutionResultConditions.message("test method names should start with lowercase.")
)
)
}
#ExtendWith(DisallowUppercaseLetterAtBeginning::class)
internal class ExampleTest {
#Test
fun validTest() {
}
#Test
fun TestShouldNotBeCalled() {
fail("test should have failed before")
}
}
}

How to use JUnit4TestAdapter with objects

I am trying to write a test suite using JUnit4 by relying on JUnit4TestAdapter. Having a look at the code of this class I saw that it only works with a Class as input. I would like to build a test class and set a parameter on it before running it with my TestSuite. Unfortunately, Junit4TestAdapter is building the test by using reflection (not 100% sure about the mechanism behind it), which means that I cannot change my test class on runtime.
Has anybody done anything similar before? Is there any possible workaround to this issue? Thanks for your help!
public class SimpleTest {
#Test
public void testBasic() {
TemplateTester tester = new TemplateTester();
ActionIconsTest test = new ActionIconsTest();
test.setParameter("New Param Value");
tester.addTests(test);
tester.run();
}
}
/////
public class TemplateTester {
private TestSuite suite;
public TemplateTester() {
suite = new TestSuite();
}
public void addTests(TemplateTest... tests) {
for (TemplateTest test : tests) {
suite.addTest(new JUnit4TestAdapter(test.getClass()));
}
}
public void run() {
suite.run(new TestResult());
}
}
/////
public interface TemplateTest {
}
/////
public class ActionIconsTest extends BaseTestStrategy implements TemplateTest {
#Test
public void icons() {
//Test logic here
}
public void navigateToTestPage() {
//Here I need the parameter
}
}
/////
public abstract class BaseTestStrategy {
protected String parameter;
#Before
public void init() {
navigateToTestPage();
}
public abstract void navigateToTestPage();
public void setParameter(String parameter) {
this.parameter = parameter;
}
}
I am trying to test a web application with Selenium. The way I want to test is by splitting the functionality, e.g., I want to test the available icons (ActionIconsTest), then I'd like to test other parts like buttons, etc.
The idea behind this is to have a better categorization of the functionality available in certain screen. This is quite coupled with the way we are currently developing our web app.
With this in mind, TemplateTest is just an interface implemented by the different kind of tests (ActionIconTest, ButtonTest, etc) available in my system.
TemplateTester is a Junit suite test with all the different tests that implement the interface TemplateTest.
The reason for this question is because I was trying to implement a Strategy pattern and then realized of the inconvenient of passing a class to Junit4TestAdapter in runtime.
Well, taking in account that JUNIT needs your tester's Class object as an object factory (so he can create several instances of your tester), I can only suggest you pass parameters to your tester through System Properties.
Moreover, it's the recommended way of passing parameters: http://junit.org/faq.html#running_7

Mockito not resetting

I have a tests, that when they run individually work fine. However when i run them together one always fail expecting total invocations accross both tests rather than one.
I have added Mockito.reset in the before and after method, but to no avail.
private Logic mockTest = Mockito.mock(Logic.class);
#Before
public void createMocks() {
Mockito.reset(mockTest);
}
#Test
public void TestGameList() {
Mockito.when(mockTest.getGame()).thenReturn(null);
Mockito.verify(mockTest, Mockito.times(1)).getGame();
}
#Test
public void TestGame2List() {
Mockito.when(mockTest.getGame()).thenReturn(null);
Mockito.verify(mockTest, Mockito.times(1)).getGame();
}
Why doesnt reset work?
I have tried VerificationModeFactory to count it, but that doesnt work either
Use one of the following:
#Mock
private Logic mockTest;
#Before
public void createMocks() {
MockitoAnnotiation.initMocks(this);
}
or
private Logic mockTest;
#Before
public void createMocks() {
mockTest = Mockito.mock(Logic.class);
}
Either way you will create an entirely new mock for each test thereby ensuring that no state is maintained across tests.

Categories