Queue of Thread objects - java

I am trying to have some Threads on a Queue so I can manage them from there. Is this possible? I have some code but it don't work correctly.
The main idea is to generate X threads and put every thread inside a queue in another class. Then in the class who have the queue use wait() and notify() methods to have a FIFO execution order.
Thanks in advance.
Some of the code:
public synchronized void semWait(Thread petitionerThread){
count--;
if(count < 0){
try {
petitionerThread.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
FIFOQueue.add(petitionerThread);
}
}
public synchronized void semSignal(Thread noticeThread){
count++;
if(count <= 0)
if(!FIFOQueue.isEmpty())
FIFOQueue.pollLast().notify();
}
Edit: The problem is that when a Thread enters the queue and it is put to wait, something happen that the semSignal method is never executed for any of the other threads (its called after semWait()).

You might want to check BlockingQueue(concrete class LinkedBlockingQueue) in java. This queue allows you to put any object into it, for that matter even Thread. The queue.put() will wait if the queue is full. And queue.get() will wait if queue is empty. wait() and notify() are implicitly taken care of.
Then a set of threads can take from the queue and execute them in order.
We are talking of a producer-consumer problem.

Your code violates one basic programming rule: let object governs itself. First, code that waits/notifies should be inside the methods of that object. Then, if you want a thread to behave some way, program its run method accordingly. In the code, you try to manipulate threads as if they are ordinary objects, while they are not. Low-level code which treats thread as objects is implemented already in wait/notify/synchronized and whatever synchronization primitives, and you need not to reimplement the wheel, unless you make a new operating system.
Looks like you are trying to implement Semaphore. In this case, your methods need not parameters. semWait should place in the queue current thread, and semSignal release a thread from the queue and not the thread passed as argument.
One possible implementation is as follows:
class Sem {
int count;
public synchronized void semWait() throws InterruptedException {
while (count <= 0) {
wait();
}
count--;
}
public synchronized void semSignal() {
count++;
notify();
}
}

Related

What happens when few threads trying to call the same synchronized method?

so I got this horses race and when a horse getting to the finishing line, I invoke an arrival method. Let's say I got 10 threads, one for each horse, and the first horse who arrives indeed invoking 'arrive':
public class FinishingLine {
List arrivals;
public FinishingLine() {
arrivals = new ArrayList<Horse>();
}
public synchronized void arrive(Horse hourse) {
arrivals.add(hourse);
}
}
Ofc I set the arrive method to synchronized but I dont completely understand what could happen if it wasnt synchronized, the professor just said it wouldn't be safe.
Another thing that I would like to understand better is how it is decided which thread will after the first one has been finished? After the first thread finished 'arrive' and the method get unlocked, which thread will run next?
1) It is undefined what the behaviour would be, but you should assume that it is not what you would want it to do in any way that you can rely upon.
If two threads try to add at the same time, you might get both elements added (in either order), only one element added, or maybe even neither.
The pertinent quote from the Javadoc is:
Note that this implementation is not synchronized. If multiple threads access an ArrayList instance concurrently, and at least one of the threads modifies the list structurally, it must be synchronized externally. (A structural modification is any operation that adds or deletes one or more elements, or explicitly resizes the backing array; merely setting the value of an element is not a structural modification.)
2) This is down to how the OS schedules the threads. There is no guarantee of "fairness" (execution in arrival order) for regular synchronized blocks, although there are certain classes (Semaphore is one) which give you the choice of a fair execution order.
e.g. you can implement a fair execution order by using a Semaphore:
public class FinishingLine {
List arrivals;
final Semaphore semaphore = new Semaphore(1, true);
public FinishingLine() {
arrivals = new ArrayList<Horse>();
}
public void arrive(Horse hourse) {
semaphore.acquire();
try {
arrivals.add(hourse);
} finally {
semaphore.release();
}
}
}
However, it would be easier to do this with a fair blocking queue, which handles the concurrent access for you:
public class FinishingLine {
final BlockingQueue queue = new ArrayBlockingQueue(NUM_HORSES, true);
public void arrive(Horse hourse) {
queue.add(hourse);
}
}

wait() - notify() mechanism in java malfunctioning in a strange way [duplicate]

This question already has answers here:
Why should wait() always be called inside a loop
(11 answers)
Closed 7 years ago.
I've tried reading some answers to similar questions here (I always do that) but did not find (or did not understand?) the answer to this particular issue.
I am implementing a fairly simple consumer-producer class, which receives elements to a list from a different thread and consumes them repeatedly. The class has the following code:
public class ProduceConsume implements Runnable
{
LinkedList<Integer> _list = new LinkedList<Integer>();
public synchronized void produce(Integer i)
{
_list.add(i);
notify();
}
public void run()
{
while(true)
{
Integer i = consume();
// Do something with the integer...
}
}
private synchronized Integer consume()
{
if(_list.size() == 0)
{
try
{
wait();
}
catch(InterruptedException e){}
return _list.poll();
}
}
}
The problem is - it usually works fine, but sometimes, the execution gets to
return _list.poll();
with the list still empty. I can't wrap my head around it - am I doing something terribly wrong? Shouldn't the runnable thread, which repeatedly tries to poll detect a zero length list, wait, and be awakened only after the producer method is done, hence making the list non-empty?
Nothing else "touches" the class from the outside, except for calls to produce. No other threads are synchronized on the runnable class.
By the way, for several reasons, I wish to use my own variant and not classes such as CopyOnWriteArrayList, etc.
Thanks! Any help would be greatly appreciated.
P.S - I have not used the wait-notify many times, but when I did, in the past, it worked. So if I apologize if I made some huge stupid error!
As the Javadoc for Object.wait states
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) {
while (<condition does not hold>)
obj.wait();
... // Perform action appropriate to condition
}
Additionally, you shouldn't ignore an exception like InterruptedException. This will look like a spurious wake up and as you say produces an error.
private synchronized Integer consume() {
try {
while (_list.isEmpty())
wait();
return _list.poll();
} catch(InterruptedException e) {
throw new IllegalStateException("Interrupted");
}
}
Since wait releases the lock you can't reason based on conditions tested before it started waiting, assuming the condition must have changed once wait is exited is not valid. You need to call wait in a loop, so that once the thread ceases waiting and takes the lock again, it checks that the condition it's waiting for has the expected value:
private synchronized Integer consume()
{
try {
while (_list.size() == 0) {
wait();
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
return _list.poll();
}
From the Oracle tutorial:
Note: Always invoke wait inside a loop that tests for the condition being waited for.
Also it's not safe to assume that just because wait returned that something sent a notification. wait can return even if there is no notification (the spurious wakeup).
It's hard to say what caused what you're seeing without a complete working example.
The linked Oracle tutorial page has a Producer Consumer example you might want to look at.

Two Synchronized blocks execution in Java

Why is it that two synchronized blocks can't be executed simultaneously by two different threads in Java.
EDIT
public class JavaApplication4 {
public static void main(String[] args) {
new JavaApplication4();
}
public JavaApplication4() {
Thread t1 = new Thread() {
#Override
public void run() {
if (Thread.currentThread().getName().equals("Thread-1")) {
test(Thread.currentThread().getName());
} else {
test1(Thread.currentThread().getName());
}
}
};
Thread t2 = new Thread(t1);
t2.start();
t1.start();
}
public synchronized void test(String msg) {
for (int i = 0; i < 10; i++) {
try {
Thread.sleep(100);
} catch (InterruptedException ex) {
}
System.out.println(msg);
}
}
public synchronized void test1(String msg) {
for (int i = 0; i < 10; i++) {
try {
Thread.sleep(100);
} catch (InterruptedException ex) {
}
System.out.println(msg + " from test1");
}
}
}
Your statement is false. Any number of synchronized blocks can execute in parallel as long as they don't contend for the same lock.
But if your question is about blocks contending for the same lock, then it is wrong to ask "why is it so" because that is the purpose of the whole concept. Programmers need a mutual exclusion mechanism and they get it from Java through synchronized.
Finally, you may be asking "Why would we ever need to mutually exclude code segments from executing in parallel". The answer to that would be that there are many data structures that only make sense when they are organized in a certain way and when a thread updates the structure, it necessarily does it part by part, so the structure is in a "broken" state while it's doing the update. If another thread were to come along at that point and try to read the structure, or even worse, update it on its own, the whole thing would fall apart.
EDIT
I saw your example and your comments and now it's obvious what is troubling you: the semantics of the synchronized modifier of a method. That means that the method will contend for a lock on this's monitor. All synchronized methods of the same object will contend for the same lock.
That is the whole concept of synchronization, if you are taking a lock on an object (or a class), none of the other threads can access any synchronized blocks.
Example
Class A{
public void method1()
{
synchronized(this)//Block 1 taking lock on Object
{
//do something
}
}
public void method2()
{
synchronized(this)//Block 2 taking lock on Object
{
//do something
}
}
}
If one thread of an Object enters any of the synchronized blocks, all others threads of the same object will have to wait for that thread to come out of the synchronized block to enter any of the synchronized blocks. If there are N number of such blocks, only one thread of the Object can access only one block at a time. Please note my emphasis on Threads of same Object. The concept will not apply if we are dealing with threads from different objects.
Let me also add that if you are taking a lock on class, the above concept will get expanded to any object of the class. So if instead of saying synchronized(this), I would have used synchronized(A.class), code will instruct JVM, that irrespective of the Object that thread belongs to, make it wait for other thread to finish the synchronized block execution.
Edit: Please understand that when you are taking a lock (by using synchronized keyword), you are not just taking lock on one block. You are taking lock on the object. That means you are telling JVM "hey, this thread is doing some critical work which might change the state of the object (or class), so don't let any other thread do any other critical work" . Critical work, here refers to all the code in synchronized blocks which take lock on that particular Object (or class), and not only in one synchronized block.
This is not absolutely true. If you are dealing with locks on different objects then multiple threads can execute those blocks.
synchronized(obj1){
//your code here
}
synchronized(obj2){
//your code here
}
In above case one thread can execute first and second can execute second block , the point is here threads are working with different locks.
Your statement is correct if threads are dealing with same lock.Every object is associated with only one lock in java if one thread has acquired the lock and executing then other thread has to wait until first thread release that lock.Lock can be acquired by synchronized block or method.
Two Threads can execute synchronized blocks simultaneously till the point they are not locking the same object.
In case the blocks are synchronized on different object... they can execute simultaneously.
synchronized(object1){
...
}
synchronized(object2){
...
}
EDIT:
Please reason the output for http://pastebin.com/tcJT009i
In your example when you are invoking synchronized methods the lock is acquired over the same object. Try creating two objects and see.

How to use java notify correctly in blocking queue implementation

I am trying to understand Java multi-threading constructs, and I am trying to write a simple implementation of blocking queue. Here is the code I have written:
class BlockingBoundedQueue<E>
{
#SuppressWarnings("unchecked")
BlockingBoundedQueue(int size)
{
fSize = size;
fArray = (E[]) new Object[size];
// fBlockingQueue = new ArrayBlockingQueue<E>(size);
}
BlockingQueue<E> fBlockingQueue;
public synchronized void put(E elem)
{
if(fCnt==fSize-1)
{
try
{
// Should I be waiting/locking on the shared array instead ? how ?
wait();
}
catch (InterruptedException e)
{
throw new RuntimeException("Waiting thread was interrupted during put with msg:",e);
}
}
else
{
fArray[fCnt++]=elem;
//How to notify threads waiting during take()
}
}
public synchronized E take()
{
if(fCnt==0)
{
try
{
// Should I be waiting/locking on the shared array instead ? how ?
wait();
}
catch (InterruptedException e)
{
throw new RuntimeException("Waiting thread was interrupted during take with msg:",e);
}
}
return fArray[fCnt--];
//How to notify threads waiting during put()
}
private int fCnt;
private int fSize;
private E[] fArray;
}
I want to notify threads waiting in Take() from put() and vice versa. Can someone please help me with the correct way of doing this.
I checked the java.utils implementation and it uses Condition and ReentrantLocks which are a little complex for me at this stage. I am okay of not being completely robust[but correct] for the sake of simplicity for now.
Thanks !
The short answer is, call notifyAll() where you have the comments //How to notify threads waiting during take()
Now for the more complete answer...
The reference to read is : Java Concurrency in Practice. The answer to your question is in there.
However, to briefly answer your question: in Java, threads synchronize by locking on the same object and using wait() and notify() to safely change state. The typical simplified flow is:
Thread A obtains a lock by entering a synchronized block on a lock object
Thread A checks some condition in a loop, if not "OK to go" call thread.wait(), which is a blocking call that "releases" the lock so other code synchronized on the same lock object can proceed
Thread B obtains the same lock and may do something that changes the condition thread A is waiting for. When it calls notifyAll(), thread A will wake up and recheck the condition and (may) proceed
Some things to remember about synchronization are:
it is about keeping state of objects consistent by making changes to state atomic. "Atomic" means the entire change (e.g. to multiple fields) is guaranteed to complete (no partial, and therefore inconsistent, changes)
it is cooperative - code synchronized on a given lock object has in common the state that is being changed and the conditions that allow that state change - you wait and notify about the same "subject". Each part of state should be guarded by its own lock object - usually a private field, e.g. private Object lock = new Object(); would be fine
methods that are synchronized use this as the lock object - doing this is easy but potentially expensive, because you are locking for every call, instead of just when you need to
static methods that are synchronized use the Class object as the lock object

Allowing only two thread to operate on a function

I have an unusual problem.
I have a function, operation in this function can be done by two threads at a time.
static int iCount = 1;
public synchronized void myFunct(){
while(iCount >= 3)
{
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
iCount++;
//Do Stuffs
//After operation decrement count
iCount --;
notifyAll();
}
What i am trying to do is, i want to allow only two threads to do some operation, and other threads must wait.
But here first two threads increment the count and does the operation and other threads go for an wait state but do not get the notification.
I guess i am overlooking something.
Sounds like you want to use a Semaphore, you always call acquire() before doing your operation, and then release() in a finally block.
private static final Semphore semaphore = new Semaphore(2);
public static void myFunct() throws InterruptedException {
semaphore.aquire();
try {
// do stuff
} finally {
semaphore.release();
}
}
Your function is synchronized, so only one thread at a time can be in it.
I'm not sure I understand your question... But if you want to allow two threads to go somewhere at once, have a look at Semaphore.
Is this a singleton class?
If not then it's a problem because many concurrent instances may change the value of icounter and in addition they will block on it forever because no thread will be able to call notify on their instance object.
Anyway you should move the sync inside the function and lock iCount and not the instance, also make it volatile.
public void myFunct(){
synchronized(iCount) {
while(iCount >= 3)
{
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
iCount++;
}
//Do Stuffs
//After operation decrement count
synchronized(iCount) {
iCount--;
}
notifyAll();
Why aren't you just using a Semaphore?
An alternative might be to use a ThreadPoolExecutor with a maximum of two threads.
You need java.util.concurrent.Semaphore, initialized with 2 permits.
As for your current code - threads may cache values of variables. Try adding the volatile keyword.
There are many problems with this code. Among them:
You have no real control on the number of threads running myFunct, since the method is synchronized on the instance level, while the counter is static. So N different threads operating on N different instances may run the same method concurrently.
Manipulating the counter by multiple threads is not thread safe. Consider synchronizing it or using AtomicInteger.
Regarding the limit on the number of threads, consider using the Semaphore class.

Categories